P.O. Box 347
 Owings Mills, Md. 21117 (301) 363-3268

INSIDE

WHAT ELSE FOR OSI BASIC BASIC CROSS REF. GEN. PARALE PRINTER INIERFACE 32/64 CHAR. VID. MOD FOR CIP 2
3
10
13

Column One

This column has become an OSI/ ISOTRON observation post. as we all watch them put the company back together again after the recent near disaster. We are constantly amazed (and pleased) with the tenacity of OSI. They refuse to succumb to difficulties!

The long range good news from ISOTRON is that they are determined to be back at the leading edge of this industry with a new, you should excuse the expression, third generation, true l6-bit machine supporting intelligent work stations. It should be ready in 1984 . Equally important is that they firmly believe that there is a definite place for the current machines and thus nothing will be dropped in favor of the new machine. In fact. a new wrinkle for the 200 series might be unveiled very shortly.

PEEKers will remember that we had called for a machine with the architecture of the current multiprocessor machines for some time before they were announced. We still believe in this architecture. so we are delighted to hear that ISOTRON plans to continue making them.

We don't know what the new 16bit machine will be like. However, if it isn't IBM PC compatible in disk format and operating system, they will be missing the fastest moving bus in town. In fact. we believe the ideal machine would feature intelligent workstations which can run IBM PC programs, all networked into a larger system in much the same way the present 300 series machines work with CP/M. This
would produce something like the present PC-Net systems. but with better performance and lower cost.

Did I say lower cost? Now I am going out on a limb, but if the publisher leaves this paragraph in. you will know how I personally feel: one of OSI's major problems with the 300 machines was price. Dealers I know were ecstatic to see a CP/M compatible, multiprocessor machine with OSI's big disks. in a nice looking cabinet -- and dismayed by its cost They reported that Molecular, Micromation. ACE and a half dozen others had the same architecture. the same operating system compatibility at maybe $\$ 2,000$ less per system. Hard to compete under those conditions unless your initials are I.B.M.!

So let's all look for a resumption of delivery of the existing excellent machines. with a great increase in quality and quantity of advertising to the business community. and hope for a shiny new machine which will be compatible with the existing machines but run IBM software as a Christmas present.

Speaking of advertising, ISOTRON's national ad campaign is undergoing final revisions. and we should be seeing those new ads Real Soon Now. We should see ads in both major national publications and publications directed toward specific markets in line with the overtical market software packages which they will also advertise.

To go along with all this. first steps have already been taken to improve the availability of peripherals. DataSouth's DS-180 and DS-220 printers will be included at nice prices; we may even see Alloy back in the fold with cartridge and 9-track tape units, - all to be available through ISOTRON and your local dealer.

Unfortunately, the Source Book is not out yet: It is at the printers, though. so maybe soon... Mean while. the vertical market packages we discussed earlier are coming along nicely. By the time you read this. contracts should be signed. and we should see those packages announced in sets of three shortly.

If there is anything more important than price in selling a computer, it is the availability of quality software. Dealers have long known that most business users don't buy machines... they buy solutions to problems. Show them the programs which will do the job they need done. and they will buy the machine which runs the programs. So this last item about vertical software packages may be the most important of all.

If you want later information than we can give you. what with the inevitable delays of publication and mailing, see your dealer. He should be receiving new dealer kits and information momentarily. ae.

WBAT ELSE POR OSI BASIC?

Leo Jankowski
Otaio RD 1
Timaru, New Zealand
So you wanted structured OSI BASIC but were afraid to ask? Well here is a step in the right direction, :ELSE.

This is the kind of BASIC now made possible:

10 IF A=1 THEN PRINT "l" :ELSE IF $A=2$ THEN PRINT "2" : ELSE IF A=3 THEN PRINT "3"

And,
10 IF DS="MONDAY" THEN PRINT "PRUNES" : ELSE PRINT "RHUBARB"

20 PRINT "and CUSTARD"

: ELSE is implemented by making it an initial keyword; replace WAIT with ELSE in the table in ROM 1. The code for :ELSE goes in at SBEF5. See the Steve Hendrix article in the August ' 82 issue, on how to find over 200 free bytes in the BASIC 4 ROM. There is so much space that I put 4 routines in; ClS, OLD, CALL and :ELSE! And there are two bytes spare!

The : ELSE code is completely relocatable, but you will have to make address changes as indicated in Table 1.

Three changes in ROM are required:

1) At $\$ A 0 C 9$ change the word WAIT to ELSE. From 574149 D4 to 454 C 53 C 5.
2) At $\$ \mathrm{AO} 24$ change the address from 31 B4 to F4 BE. Notice that the first byte, $\$ F 4$, is one less than the actual address.
3) The final change is in BASIC 1 , at $\$ A 74 F$. Change 20 1D A7 to 20 FB BE.

This is how it works. At

Copyright © 1981 by PEEK (65) Inc. All Rights Reserved.
published monthly
Editor - Al Peabody
Technical Editor - Brian Hartson
Circulation \& Advertising Mgr. - Karin
Production Dept. - A. Fusselbaugh, Ginny Mays
Subscription Rates
US (surface)
Canada \& Mexico (Ist class)
So. \& Cen. America (Air)
Europe (Air)
Other Foreign (Air)
All subscriptions are for I year and are payable in advance
in US Dollars.
For back issues, subscriptions, change of address or other
information, write to:
PEEK (65)
P.O. Box 347
Owing5 Mills, MD 21117
Mention of products by trade name in editorial material or
advertisements contained herein in no way constitutes
endorsements of the product or products by this magazine
or the publisher.

\$A74F, if the expression following an IF is false, then the jump is to the REM routine at \$A71D. This is the point at which the code is intercepted and forced to jump to \$BEFB. If else is not the next statement then the jump to REM is taken as usual. If an ELSE token is found then the branch to SBFl6 is made, where everything following the token is parsed. The token for ELSE is $\$ 92$.

A few guidelines on how to use :ELSE. Precede ELSE with a colon. It is an initial keyword by definition. If :ELSE is not one of an IF..THEN statement, then it will be ignored: the first 6 bytes, at SBEF5, do that. But any BASIC that follows will be parsed. If you must use NEW and CLEAR with ELSE then write : ELSE : NEW and : ELSE :CLEAR. The second colon is necessary only with these two keywords.

BASIC overlaps the IF..THEN code with the REM code. This has implications for using REM with the new ELSE routine. REM on its own is now illegal, e.g.

20 REM
There must be at least one non-blank character following the REM, e.g.

20 REM X
When BASIC sees a REM token it jumps to $\$ A 74 \mathrm{~F}$ and then JSRs to the REM routine. Exactly the same JSR is taken if the expression following IF is evaluated as false. This is also the jumping off point for ELSE, to SBEFB. At SBEFB the code is parsed until either an ELSE token or a null is found. If the line

20 REM

is being parsed then the next null found is part of a line number. BASIC would then interpret the next four bytes as a pointer and a line number. Code following would not make sense giving SN ERROR. Placing at least one non-blank character after REM gets round this problem.

The code for WAIT can still be used. For example, this line will wait until the CTRL key is pressed (ClP)

10 POKE 11,50: POKE 12,180: $\mathrm{X}=\mathrm{USR}(\mathrm{X}) 57100,191,254$

Using IF..THEN..ELSE logic simplifies BASIC programming, but there are traps for the unwary. Experimenting with :ELSE FOR .. NEXT and :ELSE :FOR .. NEXT would be a good example.

:ELSE program - OSI BASIC.

BEFS 201 AA7 JSR \$A71A BEF8 4CS2A7 JMP \$A752

BEFB	20BCOO	JSR	\$008C
BEFE	C992	CMP	\# ${ }^{\text {¢ }} 92$
BFOO	F014	BEQ	t8F16
BFO2	c900	CMP	\#\$00
BF04	DOFS	BNE	\$ EEFB
BF06	4C1DA7	JMP	\$A71D
BFO9	68	PLA	
BFOA	68	PLA	
BFOB	68	PLA	
BFOC	68	PLA	
BFOD	2054A7	JSR	\$A754
BF 10	4 C 1 A 77	JMP	\$A71A
BF 13	4CCJA7	JMP	\$A7C3

BF16 20BCOO JSR \$OOBC
BF19 C99A CMP \#\$9A
BF1B FOFG BEQ \$BF13
BFID C9日D CMP \#\$日D
BFIF FOEG BEQ \$BFO9
BF21 C982 CMP \#\$82
EF23 FOE4 BEG SBFO9
BF25 C981 CMP \#\$81
BF27 FOEO BEQ \$BFO9
BF29 DOE2 BNE \$BFOD

Search for next BASIC statement/line. Do statement or next line of BASIC.

Get next character of BASIC.
Token for ELSE?
Branch if ELSE token found, else look for end of this BASIC line.
Keep looking for ELSE or a null.
Jump to REM, then return to \$A752.
Remove 2 unwanted return addresses.

Do a line of BASIC.
Find end of statement.
Nested IF THEN to do.
Get a character.
Check for IF token.
Check for RETURN token.
Check for NEXT token.
Check for FOR token.
Must be some other token.

TABLE 1

XREF: BASIC Program Cross Reference Generator

By: Rick Trethewey
 8. Duran Court
 Pacifica, CA 94044

How many times have you looked at a BASIC program and said to yourself "I can't make heads or tails out of this thing!"? No matter if the program is your own or someone else's, some BASIC programs are just indecipherable. Rather than harp on programming technique, I'll show you a utility I wrote that can help you debug and optimize any BASIC program. I call this utility XREF because it displays all line numbers that are referenced by GOTOs, GOSUBS, or IF.. THENs along with the line numbers on which the reference occurs. XREF also displays all variables and defined functions and the line numbers on which each variable is referenced.

The source code was written for the A/65 assembler which allows linking multiple files. For the OSI Assembler/Editor, all that need be done is to add the reference for "XRQ" to the first file, duplicate the externals table and add the references for "WARM" and "WARMNS" to the second file. With the OSI Assembler/Editor, if you have less than 48 K of RAM you should delete most of the comments. Since XREF is written to reside in the transient language processor area of OS-65D, you will need to assemble it with an offset to the top of your available memory. The object code is almost exactly eleven pages in length.

Once assembled, using XREF is pretty straightforward. To get to os-65D's "A*" prompt, call the object code into memory at $\$ 0200$ and enter "GO 0200". XREF will then display its menu. Option number 1 will display the directory of the currently selected drive. Option number 2 will execute XREF and provide your crossreferences. Two other options are available from XREF's menu. Entering "E" will exit to OS-65D. You can also issue a command to OS-65D by preceding it with an exclamation point.

When you select option 2 to cross-reference a file, you are asked for the name of the file and the drive the file is on. You are then asked for the output device number. If you respond with just a <RETURN> here, all output will

be directed to the console. You can also enter the OS-65D device number of your printer.

XREF will tell you if your program refers to a nonexistent line number. All line number references are documented. That is, if a
reference is made to a single
line number more than once on the same line, each reference is documented. Duplicate references to a single variable on the same line are suppressed.

One thing that surprised me about XREF was the sheer volume of the output even with
small files. Part of that is because I chose to double space everything for clarity. Just be forewarned that XREF Will eat a lot of paper. I know XREF will save you a lot of time and effort.

820	BS $\quad=\$ 08$		1520	INY	
830	CR $\quad=\$ 0 \mathrm{D}$		1530	CPY \#SC	
840	SP $\quad=\$ 20$		1540	BNE HEXDI	
850	SKIP2 $=$ \$2C		1550	LDA \#\$05	
860	ESC $=\$ 1 \mathrm{~B}$		1560	SIA PCWER	
870	DEL $=\$ 55$		1570	LDA FIFTH	
880	GOTOIK $=\$ 88$		1580	JSR HEXADD	
890	COSBIK $=\$ 8 \mathrm{C}$		1590	LDA RESHI	
900	RFMIT $=\$ 8 \mathrm{E}$		1600	JSR HEXADD	
910	ONIK $=\$ 90$		1610	LDA RESLO	
920	FNIK $=\$ 9 \mathrm{E}$		1620	JSR HEXADD	
930	THENIK $=$ \$ $A 0$		1630	LDX \#\$03	
940;			1640	LDY \#\$00	
950;			1650 HEXD2	LDA TOTAL, X	
960	* $=$ \$0200	TRANSIENT LANGUAGE AREA	1660	PHA	
970;			1670	JSR SHIFT	
980	JMP START	JUMP TO OOLD START OODE	1680	STA NUMBER,Y	
990;			1690	INY	
1000ESCBYT	. BYIE ESC	ESCAPE CODE	1700	PLA	
1010 CLSBYF	. BYTE \$1C	SCREEN CLEAR CODE	1710	AND \#SOF	
1020CURFIL	. BYIE 'XXCXO	XXX'	1720	STA NJMBER, Y	
1030 RESLO	. BYTE \$00	RESULT LSS	1730	INY	
1040 RESHI	. BYTE \$00	RESULT MLSB	1740	DEX	
1050 FIFTH	. BYTE \$00	RESULT MSB	1750	BRL HEXD2	
1060 STIX	- BYTE \$00	FILE START TRACK	1760	RIS	STIOPI NO PRINT!
1070 ENDIK	. BYTE \$00	FILE END TRACK	1770;		
1080BFEENPG	. BYIE \$ $\$ 00$	PAGE\# AFIER BUFFER	1780NUMOUT	JSR HEXDEC	CONVERT RESULT TO DECIMAL
1090 COUNT	. BYTE \$00	SECIOR NUMBER FOR DIRIN	1790	LDX \#\$FF	AND PRINT IT
1100 POWER	. BYTE \$00	NUMBER CONVERSION EXP.	1800	INX	
1110 NUMBER	. BYTE \$00,\$, $000, \$ 00, \$ 00, \$ 00, \$ 00, \$ 00$	1810	LDA NUMBER, X	
1120 TOTAL	. BYTE \$00,\$	\$00,\$00,\$00	1820	BNE HEXD4	
1130 TBLI	. BYTE \$01,\$16	\$16,\$56,\$96,\$36,\$76	1830	CPX \#\$07	
1140 TBL2	-BYTE \$00, $\$$	\$00, \$02, \$40, \$55,\$85	1840	BNE NUMOUT+5	
1150 TBL3	- BYTE \$00, $\$$	\$00, \$00, \$00, \$06, \$04	1850 HEXD4	LDA NUMBER, X	
1160 TBL4	. BYTE \$00, \$	\$00, \$00, \$00, \$00, \$01	1860	ORA \#'0	
1170;			1870	JSR OUTCH	
1180 HEXADD	PHA	SAVE ORIGINAL BYTE	1880	CPX \#\$07	
1190	JSR SHIFT	SHIFT 4 BITS	1890	BEQ HEXD5	
1200	JSR HADD	ADD FOR THIS \#	1900	INX	
1210	PLA	REIRIEVE ORIGINAL BYTE	1910	BNE HEXD4	
1220	AND \#\$0F	MASK TO LOW NYBBLE	1920 HEXD5	RIS	
1230	DEC POWER	ADJUST INDEX	1930;		
1240	JSR HADD	ADD FOR THIS \#	1940 SHIFT	LSR A	
1250	DEC POWER	ADJUST INDEX	1950	LSR A	
1260	RIS	QUIT	1960	LSR A	
1270 HADD	LDY POWER	GET INDEX TO TABLE	1970	LSR A	
1280	TAX	SET COUNIER	1980	RIS	
1290	BEQ HADD2	IF 0, NO ACTION NEEDED	1990;		
1300 HADD1	SED		2000 DECHEX	LDX \#\$00	RCOUTINE TO CONVERT
1310	CLC		2010	SIX RESLO	ASCII INPUPS TO HEX
1320	LDA TBLI, Y		2020	SIX RESHI	
1330	ADC TOTAL		2030 DECHI	LDA INBUF, X	
1340	STA TOTAL		2040	CMP \#'0	CHECK FOR LEGAL CHARACTER
1350	LDA TBL2,Y		2050	BCC DECDUN	
1360	ADC TOTAL+1		2060	CMP \#'9+1	
1370	STA TOTAL+1		2070	BCS DECDUN	
1380	LDA TBL3, Y		2080	AND \#\$F	MASK OFF ASCII
1390	ADC TOTAL+2		2090	STA T2	
1400	STA TOTAL+2		2100	LDA RESHI	
1410	LDA TBLA,Y		2110	STA T2+1	
1420	ADC TOTAL+3		2120	LDA RESLO	
1430	STA TOIAL+3		2130	ASL A	$\times 2$
1440	CLD		2140	ROL $12+1$	SHIFT CARRY'S INTO $12+1$
1450	DEX		2150	ASL A	$\times 4$
1460	BNE HADDI	LOOP 'TIL COUNTER ZEROES	2160	ROL T2+1	
1470 HADD2	RIS	QUIT	2170	ADC RESLO	$+1$
1480;			2180	STA RESLO	
1490HEFDEC	LDA	ROUTINE TO CONVERT HEX NUMBER	2190	LDA T2+1	
1500	TAY	IN RESULT REGISTER TO	2200	ADC RESHI	
1510 HEXDI	SIA POWER,Y	DECIMAL ASCII	2210	STA RESHI	ing cont. on

High Resolution Color Graphics

Our new Color Plus board provides 256×192 high-resolution graphics with 15 colors. Two 8 -bit resolution joystick interfaces are included. Software extensions to OS65-D BASIC provide a superset of APPLE $\|^{\circ}$ graphics instructions.

Color Plus connects to the standard 48-pin bus or the 16 pin bus.

Pricing:

CP-8 for C8 or C3 computers:
CP-4 for C4 computers (5 V only):
CP-bare Bare board with software:

Generos Operating System

Generos is a new operating system for OSI computers. Features include descriptive error messages, optimized disk usage, device independence, and:

- ASSEM - Fast disk based assembler generates relocatable code.
- BASIC - Basic Interpreter
- DDT - Machine language debugger with single step, trace, more.
- TECO - Most powerful and widely used text editor ever.
Currently available for 48 K 8 -inch systems. Call or write about availability for other configurations. Cost: $\$ 85$

Low Power Memory Board

Our popular MEM + board is ideal for:

- Partitions for multi-user systems
- 64 K CP/M systems when combined with the D\&N-80 CPU board
- Upgrading systems where backplane space, low power consumption, and/or low heat dissipation is required

Options include:

- OSI compatible floppy disk controller protects against disk crashes caused by power failures
- Real time clock/calendar - Date and time with battery backup
- Centronics parallel printer interface Supported by software that automatically patches OS65D and OS65U
- One year warranty

VISA, MasterCard, personal checks and C.O.D.s all accepted. Add $\$ 5$ per board for shipping and handling.

To order, or for more information, contact:
Fial Computer
5221 S.W. Corbett
Portland, Oregon 97201
(503) 227-7083

MEM + includes the following features:

- Memory chips in quality production sockets; high reliability machine screw sockets optional
- Low power consumption
- Uses $2 \mathrm{~K} \times 8$-bit memory chips - will accept 2716-type EPROMS.
- Versatile addressing

NEW LOW PRICES!!

Bare - Solder masked and silkscreened \$75 Software and documentation provided
16K $\$ 200$
24K $\$ 250$ Disk controller .. \$85
32K $\$ 300$
40K $\quad \$ 350 \quad$ Real time clock $\quad \$ 65$
48K $\$ 390$
52K \$415
$56 \mathrm{~K} \quad \$ 440$
$64 \mathrm{~K} \quad \$ 490$

High-rel sockets add 15\%
Generic Computer Products

From Gander Software

The Ultimate Personal Planner

TIME \& TASK PLANNER

30 day free trial - if not satisfied, full refund upon return

- "Daily Appointment Schedule"
- "Future Planning List" - sorted
- "To Do List" - by rank or date
- Work Sheets for all Aspects
- Year \& Month Printed Calendar
- Transfers to Daily Schedule
a simple but powerful tool for success
Put the two most elfective success techniques to work for you - every day of every year. Just five to ten minutes a day allows your mind and dreams to take charge of your life.

Set Your Goals: To reach a goal, you have to know where you are going. Just enter your goals or future appointments and let your computer remind you

Set Your Priorties: Success depends upon doing first things first. Assign priorities (1-99) to your "To Do" list, let the computer keep them ranked by date or priority, and then get to work. When the time comes, the computer will help you transfer items to your choice of time on the daily Appointment Scheduler.

Technicalitles - Appointment Scheduler: 18 time slots per day (you define) for 60 days. To Do List: 60 items ranked by date or priority. Future Planning: 60 long range items, date sorted; days to event or days overdue. Transfer to Scheduler: just tell it the date and time. Printed Calendars: Year on a page and one month box planning; any month, any year. System uses both Julian and Georgian calendars to handle dates from 1910-2399 and produce day of the week. Screen and menu driven; DMS Keybase compatible files. Detailed 38 page manual. Simple installation; FD to Multi HD. Files for 5 users $=5,400$ appointments. Unlimited Warranty.

HARDWARE: 48 K OSI, $8^{\prime \prime}$ floppy or hard disk, serial terminal system, OS-65U v. 1.3 or later.

FEATURES: package allows configuration to ANSI standard and almost all non-ANSI terminals, AND user specification of printer port.

PRICE: $\$ 150.00$ (User Manual, $\$ 25.00$. credited toward TTP purchase). Michigan residents add 4% sales tax.

DEALERS: Your inquiries are invited. This program should be on every 65 U machine, including your own. At deater prices, you could bundle this superior package as a sales incentive.

"The Ponds"
Hastings, MI 49058

"It Flies"

NEED OSI COMPATIBLE PRODUCTS?

We sell SCIENCE AZTEC'S full line of OSI compatible PC Boards \& Systems.

Prices available for Disk Subsystems as well as complete Computer Systems
BECTERM
12 Trans-Canada West Levis, Quebec G6V-4Z2 418-837-5894

4890	BCC D2-2	OR LOOP 'TIL DONE	5430; HEX TO	BCD COMVERSION	ROUTINE
4900 TK1	LDA \#SP	GET A <SPACE>	5440;		
4910	JSR OUTCH	PRINT IT	5450 HBCD	LDX \#SFF	
4920	JSR TKOUT	PRINT TRACK *	5460	SEC	
4930	JMP D3	AND LOOP	5470 HBCDI	InX	
4940 TK2	LDA \#'-	LOAD "-"	5480	SBC \#\$A	
4950	JSR OUTCH	PRINT IT	5490	BCS HBCDI	
4960	JSR TKOUT	PRINT END TRACK \#	5500	ADC \#\$A	
4970	INC PIFIH	BUMP ROW PRINT COUNT	5510	SIA HBCD2+1	
4980	LDA FIFIH	FETCH IT	5520	TXA	
4990	CPP \#\$04	DONE 4 ON THIS LINE?	5530	ASL A	
5000	BNE TK3	NO \Rightarrow TK3	5540	ASL A	
5010	LDX \#\$00	YES! INIZ	5550	ASL A	
5020	SIX FIFIH	RESET ROW COUNT	5560	ASL A	
5030	JSR CRLF	DO A <CR> $4 F\rangle$	5570	CLC	
5040	JMP D4	AND LOOP	5580 HBCD 2	ADC \#\$FF	
5050 TK3	TYA	FUT BUFFER INDEX IN ACC.	5590	RIS	
5060	PHA	SAVE ON STACK	5600;		
5070	JSR SIRCJT	PRINT THIS:	5610; FETCH	A BYTE FROM TEXI	
5080	. BYTE SP, SP, \$00		5620; THIS CO	OODE IS MOVED DOW	N TO
5090	LDX \#\$00	INIZ	5630; PAGE Z	ERO AT \$ 000 CO AND	
5100	PLA	REIRIEVE BUFFER INDEX	5640; CALLED	"CHRGET" THERE.	
5110	TAY	PUT BACK IN Y	5650;		
5120	JMP D4	AND LOOP	5660 CHR	INC IXTPTR	BUMP TEXT POINIER
5130 TKOUT	LDA DIRBUF, Y	FEICH TRACK \#	5670	BNE CHRS	WATCH PAGING
5140	JMP PRBYTE	AND PRINI IT	5680	INC TXIPIR +1	BUMP MSB ON PAGING
5150;			5690 CHRS	LDA SFFFF	FETICH CHARCTER FRCM TEXT
5160 QUIT	LDA COUNT	GET SECIOR COUNT	5700	RIS	AND QUIT
5170	CMP \#\$02	DONE BOTH?	5710;		
5180	BEQ QUITI	YES!	5720; LOAD S	SOURCE FILE FOR	UTPUT
5190	RIS	NO, CONIINUE	5730;		
5200 QUITI	JMP CRLF	DO CLEAN-UP \& QUIT	5740 LODFIL	LDY \#LODFIL-CHR	INII COUNIER \& INDEX
5210;			5750 LODF1	LDA CHR,Y	FETICH BYTTE OF CHRGET
5220; BCD TO	HEX CONVERSION	ROUTINE	5760	STA CHRGET,Y	MOVE IT TO Z-PAGE
5230;			5770	DEY	DECREMENT COUNIER
5240 BCDH	PHA		5780	BPL LODFI	LOOP 'TIL DONE
5250	AND \#\$FO		5790	JSR SWAP	* DOS CONIEEXT *
5260	LSR A		5800	LDA SITX	GET 15T TRACK OF FILE
5270	LSR A		5810	JSR HBCD	MAKE IT BCD
5280	LSR A		5820	JSR LOADER+3	LOAD FILE INIO WORRSPACE
5290	LSR A		5830	JSR SWAP	* LANGUAGE CONTEXTI *
5300	TAX		5840	LDA SRCSIR	GET START OF FILE ADDR
5310	LDA \#\$00		5850	SIA NLAL	SAVE AS NEXT LINE AD. LO
5320 BCDHI	CLC		5860	LDA SRCSTR +1	HANDLE MSB TOO
5330	ADC \#\$A		5870	STA NLAH	
5340	DEX		5880	LDA \#SRCSIR	SET UP PUTPPTR
5350	BNE BCDHI		5890	STA PUTPIR	
5360	STA BCDH2+1		5900	LDA \#SRCSIR/256	
5370	PLA		5910	STA PUTPTR+1	
5380	AND \#SF		5920	RTS	AND QUIT
5390	CLC		5930;		
$5400 \mathrm{BCDH2}$	ADC \# ${ }_{\text {PF }}$		5940 XR	JSR DRSEL	SELECT DRIVE
5410	RIS		5950	JSR FNDFIL	GET FILE NAME \& FIND IT
5420;					Continued on page 10

MnM Software Technologles, Inc.

416 Hungerford Drive, Suite 216 Rockville, Maryland 20850

INTRODUCING OUR NEW PRODUCT LINE

The missing tools for the OS-65U system. Our products are written in 6502 native code and are compatible with 65 U , single, timeshare or network modes. Floppy or hard disk systems.

Ky. ASM V1.1-ASSEMBLER (Virtual source files, superfast, many extra features including a label table) ... $\$ 129$ (manual $\$ 25$)(50 pgs.)
Ky. COM V1.5-COMPILER (Configures itself to V1.2 or 1.42 , dynamic variables and arrays DIM $A(N)$, supports machine language routines at hex 6000 , last 2 pages in high memory accessible, debug with interpreter and compile in $2-3$ minutes. Protect your valuable source routines, gain as much as 2-10 times on average programs in execution speed. Supports 'INPUT['and 'PRINT['on the 1.42 system. ... $\$ 395$ (manual $\$ 25$)(110 pgs.)

Ky. DEV I-ASSEMBLER AND COMPILER TOGETHER.... $\$ 474$ (manual $\$ 40$)
KEYMASTER I V1.0.The word processing missing link for OS-65U based systems. KEYMASTER I is screen oriented, menu driven, simple to use yet highly advanced. KEYMASTER I contains most of the best features only found in dedicated work processing systems. Ask for the features you have been looking for and the answer will most likely be "YES!" To be released in February...Introductory price $\$ 475$ (Manual \$25)

[^0]

XREF: BASIC FILE CROSS REFERENCE GENERATOR PART TWO NEXT MONTH
E.O.F. CHECK

RECHECK NEXT LINE LSB
GET LINE \# LSB
SAVE IT IN TABLE
GET LINE \# MSB
BUMP PUT FOINTER
BUMP PUT POINTER
INIZ
NO REFERENCES YET

BUMP PUT POINTER ADDRESS
SAVE IT

BUMP LINE COUNIER LSB
HANDLE PAGING
BUMP MSB
REFETCH NLAH

NO, ADD 3.3 OFFSET
SAVE RESULT
JUMP TO LOOP TOP
JUMP TO LOOK-UP

PARALLEL PRINTER INTERFACE FOR SBII OR ClP

by: Guy Vanderwaeren
Wilgenstraat 73
B-2800 Mechelen, Belgium
Printed listings can be a great help in debugging. Being able to print opens a whole new world of art printings, text editors and printed reports. The trouble begins with the SBII. It has two unused serial ports, but you have to populate them and they will need a complicated switch to select only one port at a time or the cassette port. Most printers come with a parallel port, which let you spend more money for a special, optional serial port. Why shouldn't we consider designing a parallel interface, which can be easily made to our needs? The interface here described is going to be it. It has a parallel output port for data, another for some control signals and an input port to read the status of the printer. It has also its own EPROM to keep the printer software permanently and a few bytes of RAM to remember some parameters. These memories are not strictly needed, but can be helpful sophistication. The idea came from an article in MICRO (October 1982), but was
changed a bit on the decodification of the locations and I added the memories. Because this circuit is not yet tested, I would appreciate any comments on eventual errors very much.

The interface is designed here especially for an EPSON MX80 printer, which has a CENTRONICS type interface. Most printers have this type of interface, but I will mention the signals that possibly could be different.

The whole interface occupies different memory locations. The $1 / 0$ ports are located at \$F3EA and \$F3EB, the EPROM at \$F300 to \$F37F and the RAM at \$F3DO to \$F3DF.

Let's have a look at the decodification of all those locations. The decoder consists of U1, U2, N1 to N5, N8, U4 and U5. A9 to Al5 are decoded, together with Nl and N 2 , in U1. A2 to A7 in U2, together with N3 and N4. U4 and U5 do the final decoding of the outputs of Ul and U2, the R / W line and the clock 02. Finally, N 8 and N 5 , together with the wired OR, formed by DD1 and DD2, decode the chip select for the RAM.

N11, N12 and N13 make the data direction signal DD. Nl2 and

N13 are added to get an open collector output with enough power.

The input port is formed by N7, Tl, N9 and N10. Tl is used as inverter. N7 and several printer status signals: BUSY, SELECT, PAPER END and ERROR. Any of these signals can be different on another printer. Some printers have more or less or may be inverted You will have to consult your printer manual to know how your particular printer tells its status.

The output port for data is U6. The output port for two control signals is U7. This last one is a double monostable multivibrator, which gives an output pulse of 1.5 microsec (strobe) and about 75 microsec (init). This could also be different for another printer. Consult your manual to see if the pulse widths are correct. The times in your manual will be minimal, so don't bother if the circuit gives a bit more. Another thing to check is if your printer needs these two signals as active low, otherwise you will have to use the inverted output(s) of the multivibrator

How does it work? This is a job for the software, which
will be resident in the EPROM as a subroutine, called from Basic by a USR instruction. The software should first send a pulse to $\$$ F3EB, which sends an initialize signal. Some printers need this to be able to do anything. Then you have to send the data to \$F3EA. At the same time, the circuit will generate the strobe pulse to tell the printer it can read the data. Next you have to read $\$ F 3 E B$ to get the printer status which tells you if the printer is still busy. has no paper, detected an error. or is not selected. It would be wise to check this also after sending the initpulse and before starting to print. This status is read from bit 7, which allows you to check it with a BMI command easily. After that, continue with the next data byte and another status check. etc.

Why did I add some RaM? The SBII has a normal number of 24
characters per line. If you are going to print, the computer will send, after each 24 characters, a carriage return and line feed. To be able to print longer lines, you can put the maximum length in a RAM location and use another one to count the characters already printed on the line. With the software, you can detect a CR code and not send it to the printer, but send one after it has printed the max. number of characters per line, controlled by a counter. It will make your program a bit more complex, but enlarges the possibilities.

There are only 128 bytes used and decoded by the EPROM. IF you should need more, you will have to change the decoding a bit and add an 8th address line to the EPROM. In RAM you have 16 bytes to use.

All connections to the left of the circuit are made to the 40
pin extension connector on the 600 board. Don't forget to put the two data buffers 8 T28 in $U 6$ and $U 7$ on the 600 board. It would also be a good idea to buffer the address lines, the R / W line and the clock line.

The connections to the right are going to the printer. It is up to you to find out at which pin on the printer connector must be connected. Your manual will tell you that.

Good luck.

Ed' Note:

Okidata, for one, supplies a line of printers called the Microline series which comes with both serial and parallel interfaces at no additional cost.

FIG.6.
PARALLEL PRINTER INTERFACE

COMPUTER

MICRO-80 COMPUTER
Z-80A CPU with 4 Mhz clock and CP/M 2.2 operating system. 64 K low power static memory. Centronics parallel printer port. 3 serial ports. 4" cooling fan. Two 8" single or double sided floppy disk drives. IBM single density 3740 format for 243 K or storage, double density format for 604 K of storage. Double sided drives allow 1.2 meg on each drive. Satin finish extruded aluminum with vinyl woodgrain decorative finish. 8 slot backplane, 48 pin buss compatible with OSI boards.
MODEL 80-1200
$28^{\prime \prime}$ Single sided drives
MODEL 80-2400
$\$ 2995$
$28^{\prime \prime}$ Double sided drives
MICRO-65 COMPUTER
6502 CPU with 2 Mhz clock and DOS-65 operating system. 48 K of low power static memory. 2 serial ports and 1 Centronics parallel port. $28^{\prime \prime}$ single or double sided drives. Satin finish extruded aluminum with vinyl woodgrain finish. 8 slot backplane, 48 pin buss compatible with OSI. Will run OSI 65D and 65U software.
MODEL65-1 \$2995
$28^{\prime \prime}$ Single sided drives
MODEL65-2
\$3495
$28^{\prime \prime}$ Double sided drives
BP-5808Slot Backplane..... . \$ 47
OSI 48 pin Buss compatible

MEM-CM9 MEMORYI FLOPPY CONTROLLER
24K memory/floppy controller card uses 2114 memory chips, 18 K and 1 16K partition. Supports OSI type disk interface
24MEM-CM9 $\$ 325$
16MEM-CM9 $\$ 260$
BMEM-CM9 $\$ 180$
BARE MEM-CM9 $\$ 50$
Controller on assembled unit
add.
\$ 90
BIO-1600 Bare IO card $\$ 50$ Supports 8K of memory, 216 bit parallel ports, 5 serial ports, with manual and Molex connectors.

PRINTERS
 Okidata

ML82A, $120 \mathrm{cps}, 10^{\prime \prime} \quad . \$ 409$
ML83A, $120 \mathrm{cps}, 15^{\prime \prime}$. . $\$ 895$
ML84 Parallel, 200 caps, 15 ' . $\$ 1150$
C. loth

8510AP Prowriter, parallel . . . $\$ 419$
120 cps , correspondence quality
8510APD Prowriter, serial $\$ 585$
F10-40PU Starwriter, parallel $\$ 1319$ Letter quality dalsy wheel
F10-40RUStarwriter, serial. . \$1319
F10-55PU Printmaster $\$ 1610$ parallel, Letter quality daisy wheel
F10-55RU Printmaster, serial $\$ 1610$ DISK DRIVES AND CABLES
8" Shugart SA801 $\$ 385$ single sided
8"Shugart SA851 \$585 double sided
FLC-66 ft cable from D\&N $\$ 69$ or OSI disk controller to 8" drive
51/4"MPI B51 disk drive with. . $\$ 450$ cable, power supply and cabinet. Specify computer type.
FLC. $51 / 4$ cable for connection . $\$ 75$ to $51 / 4$ drive and D\&N or OS। controller, with data separator and disk switch. Specify computer type

HARDWARE
 OSI COMPATIBLE

10-CA10X Serial Printer Port. . \$125
Specify Device \#3 or \#8
10-CA9 Parallel Printer Port . . $\$ 150$ CMOS-MEM
64K CMOS static memory board, uses 6116 chips, 3 16K, 18 K and 2 4K blocks, Partitionable for multiuser, OSI type disk controller, 2 IO mapped serial ports for use with D\&N-80 CPUU. Ideal way to upgrade from cassette to disk.

64K CMOS-MEM $\$ 490$	
48K	\$390
24 K CMOS-MEM	
16K CMOS-MEM $\$ 200$	
Controller add. \$90 210 mapped serial ports add. $\$ 125$ on assembled memory board	
Z80-IO2 IO mapped serial . . . \$160	
ports for use with D\&N-80 CPU	
card	
FL470 Disk Controller, $\$ 155$Specify $51 / 4$ or 8 ', drive	

D\&N-80 CPU CARD
The D\&N-80 CPU allows the owner of an OSI static memory computer to convert to Industrial Standard IBM 3740 single density disk format and CP/M operating system. Double density disk operation is also supported for 608 K of storage on an 8 " diskette. When used with a $51 / 4$ " disk system 200 K of storage is provided. Includes parallel printer and real time clock. Also available for polled keyboard and video systems. Compatible with C2, C3, C4 and 200 series OSI computers.

CP/M2.2............ $\$ 150$
64K CMOS-MEM with D\&N-80

HARD DISK DRIVER $\$ 140$ Allows D\&N-80 CPU board to control OSI 40 or 80 meg hard disk unit. WIII not destroy OSI files. Will also allow for a true 56 K CP/M system. Specify 40 or 80 meg drive.
BUSS TRANSFER
$\$ 135$
Allows for D\&N-80 and OSI CPU to be in the computer at the same time. Toggle switch provides for alternate CPU operation.
DISK TRANSFER $\$ 100$
Utility program to transfer OSI CPIM format disk to IBM 3740 single density format. Will also transfer IBM to OSI format.

SYSTEM HARDWARE
REQUIREMENTS
D\&N-80 CPU, D\&N FL470 or OSI 470 controller, 48 K memory at $0000-B F F F, 4 \mathrm{~K}$ memory at D000-DFFF, two disk drive cables.
FORMAT TRANSFER
$\$ 15$
You supply software on 8 ' diskette D\&N will transfer OSI CP/M format to IBM 3740 CP/M format. Can also transfer IBM 3740 CP/M format to OSI CP/M format. Original diskette returned.

By: David A. Jones 9226 N.W. 17th Street Coral Springs, fL 33065

Since publishing my article entitled EPROM BASIC in MICRO (Feb 1983), I have received more correspondence asking about my 32/64 character video modification to the ClP than requests for clarification on the subject of the article itself.

Suspecting there are other ClP owners who are interested in upgrading their system, I decided to submit the entire modification package to PEEK (65) for release to the public domain rather than try to answer any more individual queries myself. Bear in mind though, the modification was not designed to be a kit for hobbyists but rather to fulfill my personal needs.

It is definitely not for the inexperienced or casual tinkerer and certain parts may not be readily available, namely the crystal oscillator shown. I used a hybrid oscillator for the master clock as I had one at the right frequency on hand. Others may have to duplicate the original circuitry around U58 on the daughter board and use a crystal instead of an oscillator chip. The exact frequency is not critical, but 11.79648 MHz would be ideal. I used 11.750 MHz with good results.

It is possible to accomplish the task without the use of sophisticated test equipment. Both boards I modified were done at home with only a VOM and a flip-flop driving a LED (to check for presence of transitions) but I don't recommend this shoestring approach.

It would be nice if an OSI User's group would pick up on this. As a group effort, maybe some more improvements could be made and fedback to PEEK(65). I think there is still some life left in ClP's, but it requires more than someone working alone to get it. If anyone is interested, I'm offering my Superboard II for sale for $\$ 75.00$. Again, maybe a group would be interested in it to use as a model for modifications. It has all the mods installed (these and the Micro article's). I'll be left with my ClPMF.
Naturally, the new video display requires new firmware to drive it. This will be the subject of the next article.

For cassette users, a new monitor ROM is really the way to go. OS65D users can put the new firmware on disk. HEXDOS users can go either way. To save OS65D users the tedium of typing in the code, I'll install the patches and code on your bootable disk for $\$ 10.00$, source code included. Let me know if your system is other than 32K. I'd offer the same to HEXDOS users, but I chose to put the code in EPROM and run it from there when using hexdos.

A MONITOR

A 64 character per line display requires direct video input to a TV or a monitor. I had been using a converted black and white $12^{\prime \prime}$ TV and was quite happy with the resolution but just recently bought a Zenith Data Sytems 123 green monitor. Locally, they are discounted to around $\$ 95.00$. There is no comparison with the TV. The linearity is better, the contrast and brightness have greater ranges and the general design of the case is more pleasing. One minor complaint though. The screen is not as flat as the TV and some of the more expensive monitors, so a little optical distortion is present. didn't notice this point until after I got it home. I would recommend this model for anyone looking for an under $\$ 100$ monitor.

64/32 CHARACTER MODIFICATION

9 IC's are mounted on a daughter board interfaced to the 600 board by a 16 pin ribbon cable through U26. Additionally, the remaining 3 proto locations are used on the main board.
Not shown on the schematic are the 2 additional 2114 rams required to support the extra video locations. MCSI goes to the original pair and MCS2 to the new ones. I piggy backed them on top of the first two. Also, section E of inverter Ul6 is shown on the schematic as driving the input of U44B. This inverter is not available unless you have accomplished the EPROM BASIC modification mentioned in the MICRO article. If you have replaced your monitor ROM with an EPROM, then 018 section B should be available for this function. Replacing the monitor ROM is inevitable for cassette users if you are going to 64 characters per line as the screen update routines access a constant there to determine the width of the video display. More on this next month.

Selection between the 64 mode and 32 mode is made by writing to $\$ 5300$ (64) and $\$ F 700$ (32) (POKE 62208 and 63232 respectively). Also, observe the changes made to U20, U23, and U56. Compare with your original schematic.

All IC's with U numbers are original locations. IC's-with Z numbers are additions. $\mathrm{Z4}$ and 212 form a divider chain to generate horizontal and vertical sync pulses in place.
of the original chain U30-061 which is now used solely to generate video ram addresses. By making, the video ram addresses independent of the horizontal and vertical sync, the address counter can be stopped during the retrace interval thus allowing use of the 8 video locations on each line which were formerly blanked.

Flip-flop U44B halts the address counter after a count of 64 (or 32) and waits for a pulse from counter 25, which is acting as a precision one shot, indicating a horizontal sync. The exact timing of this clear pulse and thus the positioning of the horizontal line is controlled by selecting the appropriate output of Z5. This may vary depending upon the amount of overscan in the particular monitor used.
Counter 2l3, which is also acting as a precision one shot, clears the address counter during vertical retrace and controls the vertical positioning of the display. Fine positioning is controlled by selecting the output of 213 and coarse positioning by selecting the source of the input to 213.
Instead of using CMOS 4520 counters, TTL 74LSl63 counters could be used, but the package count would be increased by 2 IC's and the power requirements would go up. IC $Z 2$ generates the 5.875 MHz clock required for the 32 character mode and $Z 10 B$ is necessary because of the limited. frequency capabilities of CMOS when operated at 5 V . Since the other half of ZlO is used in another circuit, no extra packages are used.
The CPU clock must come from 210B as U30 now runs at a higher frequency and is halted during retrace, and the ACIA clock comes from Z4A for the same reason. On the schematic, arrows pointing up go to +5 v and those pointing down go to 0v.

LOCA.	IC	VCC	OV
Z1	Crystal Oscill	14	7
Z2	7492	5	10
Z3	74LS157	16	8
Z4	4520 CMOS	16	8
Z5	4017 CMOS	16	8
Z6	74LSO4	14	7
Z7 not used			
Z8	not used		
Z9	7492	5	10
Z10	74 LS74	14	7
Z11	not used	-	
Z12	4520 CMOS	16	8
Z13	4017 CMOS	16	8
U27	74 LS139	16	8
U28	74 LS157	16	8
U44	74 LS74	16	8

64 CHAR COTS AND JUMPERS

CUT U30-7	FROM/TO	Where	SIGNAL	
	5V BUS \&	1 PLACE BOTTOM		
	Rest of chain			
ADD U30-7	U44B-8		enable	
CUT U30-1,9	5V BUS	2 PLACES BOTtom		
CUT U59,60,	5 V BuS	1 PLACE BOTTOM		
61-1 \& 9			CLeAr	
ADD U30-1,9	U59-1			
$\begin{array}{cc} \text { ADD U59,60, } & 026-13 \\ 61-1 \& 9 & \end{array}$				
CUT U20-1	Al0 BAR	1 PLACE BOTTOM		
ADD 020-1	+5V			
CUT U20-15	U4-1,4,10,13	1 Place top		
	AND U5-1,4,10,			
	13			
ADD U20-14	AND U5-1,4,10,13		RKB BAR	
CuT U20-11	U21-11	1 Place bottom		
ADD U20-10	U21-11		WKB BAR	
CUT U56-2	Al0 BAR	1 PLACE TOP		
ADD U56-2	+5V			
CUT U60-14	U41-8	1 PLACE TOP		
ADD 060-14	U28-3,5		C8	
ADD U60-14	U26-6			
ADD U28-7	U41-8		C9/C8	
CUT U60-13	U41-7	1 PLACE TOP		
ADD U60-13	U28-6,11			
ADD U28-9	U41-7		Cl0/C9	
CUT 060-12	U41-6	1 PLACE TOP		
ADD U60-12	U28-10,14		C10	
ADD U28-12	U41-6		C11/Cl0	
ADD U59-11	U28-2			
ADD U60-11	U28-13		Cll	
ADD U60-11	U26-7			
ADD U44-10,	+5v			
12				
CUT U17-5	U16-11	1 PLACE BOTTOM	NOTE	
ADD U28-4	U16-11		C8/C7	
ADD U16-10	U44-11		C8/C7 BAR	
ADD U26-12	U44-13			
CUT U18-1	$\begin{aligned} & \text { U15-13\& } \\ & \text { W4 CENTER } \end{aligned}$	1 PLACE BOTTOM		
ADD 061-11	U18-1		C15	
ADD U18-2	U44-3		Cl5 bar	
ADD U44-6	U44-2		Cl6 BAR	
ADD U44-6	U55-13			

At this time the 600 board should still function normally. Test to ensure that no mistakes have been made and that the board does in fact still work. The following steps must be completed in their entirety before additional testing can be accomplished.

CuT U54-6	060-11		
ADD U26-9	U54-6		C8/C11
CUT U55-10	0 V	1 PLACE BOTTOM	
CUT U55-11	02	1 PLACE TOP	
ADD U55-11	U21-9		Al0
ADD U55-14	U21-8		AlO BAR
CUT U8-37	U30-13	1 PLACE BOTTOM	
ADD U26-3	U8-37		PHASE
CUT W9	U58-3	PLACE TOP	
ADD U26-16	W9 \& U30 ETC		CLK
CUT U65-1	U61-11	1 PLACE TOP	
ADD U26-11	U65-1		HORIZ
CUT U65-9	059-11	Place top	
ADD U26-10	U65-9		VERTICAL
ADD U26-2	U28-1		64/32
ADD U26-4	U27-11		32 BAR
ADD U26-5	U27-9		64 BAR
ADD U27-15	017-9		
ADD U27-14	U21-2		All
ADD U27-13	U21-8		AlO BAR
CUT U59-14	U57-2	1 Place top	
ADD U26-14	U57-2		acta clk
ADD U55-12	PIGGY BACK		MCS2 BAR
	U39 \& U40-8		

NOTE 1: ROMS MUST HAVE BEEN REPLACED WITH EPROMS IN ORDER TO FREE THIS INVERTER.

3 users- 80 mega Bytes _s 9990 00* ODUCTORY SPECIAL WITH DUAL FLOPPIES

ALSO AVAILABLE WITH Centronics Parallel Printer Port at

8" HARD DISK SYSTEMS

SINGLE BOX TABLE TOP WITH IMPROVED COOLING 10 M/B HARD DISK AND 8" FLOPPY DISK 2 USERS AND 2 SERIAL PRINTER PORTS $\$ 5990.00$

AS ABOVE WITH 2 MULTI-PROCESSOR 64K DENVER BOARDS PLUS CENTRONIC PARALLEL INTERFACE ${ }^{\mathbf{5}} \mathbf{6 9 9 0} \mathbf{0 0}$

OR INSTALLED IN CABINET AS ABOVE
WITH DUAL FLOPPIES PLUS 10 M/B.
$\begin{array}{ll}\text { STD. } & 1 \text { USER } w / \text { Centronics Printer Port } \\ \text { BOARD } \\ \text { TYPE } & 2 \text { USER } w / 2 \text { Serial Printer Ports }\end{array}$

DBI 2 USER w/Centronics Printer Port
MULTI
PROC. 3 USER $w / C e n t r o n i c s ~ \& ~ S e r i a l ~ P r i n t e r ~ P o r t s ~$
${ }^{5} 6490.00$
${ }^{5} 6990.00$
${ }^{5} 7790.00$
\$8990.00

mULTI-PROCESSOR
DEVELOPMENT SYSTEM SPECIAL

- 5 M/B Hard Disk-1 8" Floppy
- 1 Centronics Parallel Printer Port
- 1 Serial Printer Port, 1 Modem Port only $\$ 5990.00$
- 2 DB-1 Multi-Processors
- Complete Programmer Manual and Software Overlays

DEALERS - We have lots of OSI machines and can build virtually any combination you need. Appropriate dealer discounts.

WHERE WE STILL LOVE OS-65U - AND SUPPORT IT! order today [714] 951-4648 some quantities limited

DJONES 1-25-82, REV 4-30-.83

LETTERS

ED:

The odd's and ends below are my way of trying to pay back for all the help I have received from PEEK(65) in the past.

I am using a C3 with a CD-36 under 65 U version. 1.43, so this information should work on versions 1.40 and later.

Here is a map of the FLAG's under 65 U VI .43 and the program used to create it. Thanks to the great article by Greg Stevens in the Dec. 1980 issue of PEER(65), I have been able to add some of my own FLAG's. As you may have noticed, OSI has cleaned up this table as well as leaving about 30 bytes at the end of the table.

I came across the syntax for an input statement I have not seen in any manual:

INPUT\#A,"STRING: ";\#B,ST\$

The string is printed to device A and input comes from device B. Are there some more odd syntax forms?

In response to the question by Daniel J. McDonald in the June issue about making a VALPTR command, a good place to start would be Tech. newsletter 21.

The article by Colin Law in the June issue prompted me to put my two cents worth in about DIRectory programs. Since the more you add to the DIRectory, the more time it takes, I have three DIRectory programs. A fast one to print just the names, the normal one that comes with the system and an extended, listing one that has some extra information.

If you are changing over to Vl.43, you will have to change any THEN's with a variable (IF X THEN GI) to GOTO (IF X GOTO Gl).
For those who have a CD-72/36 and are thinking of converting to an s-100 computer, you can get a disk controller from Gifford Computer Systems, 1922 Republic Avenue, San Leandro, CA 94577.
If you are like me, you spend a lot of time working on your computer and every little annoyance becomes maddening after a while, so here are a few ways I got rid of some that were annoying me.

I hate having to use a control Q to continue an output so I removed the test in the OS by putting NOP's in 16095 , to 16098, so any key will continue output. Now if I could only find out how to get control C to work on an input!

Sometimes I want to do something special. If after a set time, the terminal has not been used and I don't want to leave the program, I change the RUN"RTMON" in the OS to a GOTO 999 at the start of the program so that when the count down timer hits zero it goes to line 999 where I do whatever it is I want to do on a time out. Then before any input, I set the timer and turn it on. Then after the input I turn off the timer. The RUN"RTMON" is at 55905 to 55913, just poke in whatever commands you want and space allows.

Here are a few questions for anyone who knows and cares to answer:

Why did OSI find it necessary to require extended input and print variables to be a string even if a number is to be entered, and why are multiple variable inputs disallowed?

With extended input on, you can input up to 255 characters, so why does the EDITOR still limit you to 71 characters?

Does anyone know of any free space under 650 Vl.43?

How do you get Input/Output and handshaking on the CA-10 board?

How do you get a UF error? If I call a function that has not been defined, I get a NF error!!

What is the 16 byte file header used for?

I haven't had a chance to try this yet, but I was wondering if arranging the BASIC's tables, the dispatch and reserved word tables, into a different order would speed up a program? I sometimes change the reserved word table when I get tired of seeing the same commands (e.g. PRINT to WRITE, etc.).

Here are a few things that I think would be nice to have.

Hint! Hint!!

How about date stamping for files, maybe using the same setup as CP/M plus where the date info is kept as a DIR entry, or on the file header? I consider date stamping a must for a good automatic back-up program.

A second high level language that works under level III and is file compatible.

FLAGS

10 dv=6: ad=18919

1010 Printifv, "Low Add"; Tab (34);"Bigh Add";Tab (45);"Basic"; Gosub 2010
1020 If Peek (ad) 2555 Then Gosub 2010: Print¥dv: End
1030 If Peek (ad) $=254$ Then Gosub 2000: Goto 1020
1040 Print \ddagger dv, Tab(11); [4, "R"]Str\$(Peek(ad)Andi27); Tab (19);

1080 Print\$dv, Mids (Str \$(Peek (adtl)), 2): adnad+4: Goto 1020
1090 admad+4: Goto 1020

2010 Gosub 3000: Printidv, 17, "R"IStrs (ad) I: Retura

:
${ }^{9} 10^{\circ}$ Go
30 : REM
PAGE HEADING

pgapg+i:Frint\&dv,Tab (84); "Page";pg: Gosub 360

70 Print ${ }^{2} d v$, Source Type ---- Iist\$;
80 Print\&dv,"Source Title --- "its;

120 Print\#dv, Offset"; Tab (53);"Used";Tab (62);"Ba-Addr";Tab (72);
130 Print \ddagger dv, "Sec Len"; : If st\$"Floppy Tnen 250
140 Print\#dv, Tab (82);"日/D Addr";
150 If dv=i Then Print\&dv: Goto 170
160 tmapos (dv): Printidv, Chr $\$(13)$;
170 for loop=i To tm: Print\#dv,"; Next loop: Printiav: Return
200 :
REM LOWER CASE TO UPPER CASE
Ifaw $\$=$ " \quad ThenReturn

aw $=a w \$+C h r \$(z z+(32 *(2 z>96$ Andzz<123))) : Nextxx:Return
:
REM
GETSYSTEM DATE
:
$x=55922$: If $1 v<2$ Then $x x=24569$

$d t \$=d t \$+M i d \$(S t r \$($ Peek $(x x+2)), 2):$ Return
: REM
GETSSYSTEMTIME
R
0
tisw": If lv<2 Then Return

ti\$nti\$+Rignts("0n+Mids(Str $\$(\operatorname{Peek}(55920)), 2), 2)+n: n$
ti $\$$ ati $\$+$ Right $\$\left({ }^{\prime \prime} 0^{n}+M i d \$(S t r \$(P e e k(55919)), 2), 2\right):$ Return 0 :
REM XFR SETUP
0 :
0 Poke 8778,192: Poke 8779,36: REM pnt USR tp interf subr
Poke 9435,232: Poke 9436,40: REM interf subr GET\$
ram9970: REM scrbuf
cb=9889: REM xfr control block
Poke cb+5,0: Poke cb+6,i: REM xfr 256 bytes
Poke cb+7,ra-Int (ra/256)*256: Poke cb+8,ra/256: REM ram adr
$a=9899$: REM loc of dir da
ea=256* (Peek (a) +256* (Peek (a+i) +256*Peek (a+2)))
s=9902: REM loc if dir size
$e s=256 *($ Peek $(s)+256 *($ Peek $(s+i)+256 * \operatorname{Peek}(s+2)))$
en=eates: REM end of dir da
en=ea+es: REM end of dir da
bamen: REM highest file adr found
Return
0 :
REM SETUP FOR READ
$\mathrm{dh}=\operatorname{Int}(\mathrm{ea} / 16777216): \quad \mathrm{rm}=e a-d h * 16777216$
$\mathrm{dm}=\mathrm{Int}(\mathrm{rm} / 65536): \mathrm{rm}=\mathrm{rm} \mathrm{m}$ dm*65536
$\mathrm{dl=Int}(\mathrm{rm} / 256): \mathrm{rm}=\mathrm{rm}-\mathrm{dl} * 256: \mathrm{db}=\mathrm{rm}$
Poke $c b+1, d b:$ Poke $c b+2, d l:$ Poke $c b+3, d m: ~ P o k e ~ c b+4, d h$
el=Peek (134)*Peek(135): er=Usr(0): If erく>0 Then 50130
0 Return
900 :
1000 Gosub 10030: REM init
1010 Gosub 2030: REM get setup data
1020 Gosub 5030: REM do it
1100 Goto 30030: REM exit
2000 :
2010
2020
2030
2030 Print css;Tab(20);fgs;"EXTENDED DYRECTORYE;bg\$: Print
2040 aws=dds: Input Device: "; [i, "A"] aws: If aw ${ }^{\prime \prime}={ }^{\prime \prime}$ " Then aw $\$=d \mathrm{~d}$
2050 Gosub 230: If aw $\$=^{\circ} A B O R T "$ Then 30030
Continued on page 1

How about a "RAM disk" to
speed things up! The RAM
should be a self contained
external unit to save space
and to prevent power supply
problems.

Hark, what error breaks upon yonder terminal? I hear bells and it isn't Avon, so I guess I had better quit for now.

Mike Fowler
San Bernardino, CA 92412
Mike:
Re your question. Does anyone know of any free space under 650 V1.43? There are reported to be a few bytes, but sparce few AND as many users may confess, it is mighty disheartening to upgrade to a new version and find the space used. For that reason it's not recommended.

You ask, how do you get Input/Output and handshaking on the CA-10 board? It can, and is done regularly by shop people, but a bit much to describe here. We hope to have an article on this soon.

PEER(65) Staff.

2070 df $\$$ =aw $\$$: Print: Print
2080 dv=5: REM print device
2110 Print: Print
2120 t\$""*: Input"Title for Printout: "; [40, "A"]ts
2130 Dev df\$: Open"DIREC*","PASS",1:Close i
2140 :
2150 REM determine current system size
2160 :
2170 If df\$く"E" Then cd=74: hs=275967: cs=3584:- Boto 2190
2180 Open"BEXEC*","PASS",1: Index〈i>=16: Input\%i,cd,ns,cs: Close i
2190 se=0. nOS="
2200 If lve 2 Or $1 \mathrm{v}=4$ Then noseChrs (Peek (57199) +75)

2212 REM check for level I, TS or TSNET local access
2220 If lvai Or $i v=3$ Or (lva4 And sa) then Goto 2280
2222 REM TSNET remote or workstation remote
2230 If lv=4 Or (lv=2 And Not sa) Then Goto 2420
2235 REM workstation local
2240 Goto 2480
2250 :
2260 REM level I, TS or TSNET local
2270 :
2280 If cd<>36 And cd<>74 Then 2320
2290 hsaPeek (13651) +Peek (13655)*cs
2300 hsahs-(Peek (13314) +Peek(13315)/128)*cs: Goto 2520
2310 :
2320 If cd $\langle>23$ Then 2360
2330 hs=Peek(13634))*cs: hsmhs-((Peek(13314)+(Peek(13315)/128))*cs
2340 Goto 2520
2350 :
2360 If cd<>28 And cd<>7 Then 2380
$2370 \mathrm{hs}=($ Peek $(13637)+($ Peek $(13639) * 256)) * \mathrm{Cs}$
2380 hs ahs-($($ peel $(13314)+($ Peek $(13315) / 128)$) cs: Goto 2520
2390 :
2400 REM TSNET remote or worksiation remote
2410 :
2420 hs=Peek (18152)*256+Peek (18153)*65536
2430 hs=hs+Peek (18154)*16777216: t=Peek (18146)*256
2440 tat + Peek (18147)*65536+Peek (18148)*16777216: hs=hs-t: Goto 2520
2450 :
2460 REM workstation local access
2470 :
$2480 \mathrm{hs}=$ Peek $(18149) * 256+$ Peek (18150)*65536+Peek (18151)*16777216
2490 tapeek $(18143) * 256+$ Peek $(18144) * 65536+$ Peek $(18145) * 16777216$
2500 hs=hs-t
2510 :

2530 Gosub 290: REM get date
2540 cy=(Peek (13314)*cs)/cs+Peek(23315)*2*Cs: Return
3010 REM \quad READ Listing continued

DBI
 ANNOUNCES
 ANOTHER FIRST FOR THE OSI ${ }^{\dagger+}$ MACHINE

the same people who brought you the revolutionaty DB-1 multiprocessing enchancement INTRODUCES THE

DS-1 SCSI HOST ADAPTER

WITH
BATTERY BACKED REAL TIME CLOCK, 100 YEAR DAY DATE CALENDAR AND 5K RAM

The DS-1 allows for many new disk technologies. For example, the IOMEGA ${ }^{\dagger}$ Alpha 10, a 10 megabyte formatted removable disk, or the $5 \frac{1}{4}$ inch Winchestors.

The combination of the DS-1 and Alpha 10^{\dagger} are a perfect upgrade for all OSI "' machines using the 48 pin bus and OS-65 $\mathrm{U}^{\dagger \dagger}$ Operating Systems. This combination can also be used for additional storage and backup on hard disk models.

For Further Information Contact:

- alpita 10 and iomega are trademarks of iomega corp

3020
3030 of＝16：REM skip header
$3040:$
3045 Gosub 830：REM read p of dir
3050 rtrratof：REM ram adr cur ent
3060 ec＝ecti：REM entry no．
3070 If Peek（rt）＝0 Then Return：REM empty de
3070 If Peek（rt）＝0 Then Return：REM empty
3075 If fithen er＝8：el＝3500 ：Goto 50130
3075 If fi Then er＝8：el＝3
3080 ：read name
3090 REM
3090
3100

$\begin{array}{ll}3120 & \text { REM } \\ 3140 & \text { read dir bi } \\ 3150 & \text { REM }\end{array}$
$3160:$
3170 ＇tm＝Int（ $($ Peek $(r t+8)$ And 28）／4）：tys＝＂Other＂
3180 If tm＝0 Then ty $\$=^{\text {＂Data＂}}$
3200 If（ tm And 128 ）$<>0$ Then ty $\$=$＂Direc＂
3210 ：
3220 REM read access
3230 ：
3240 tm＝Peek（rt＋8）And 3：ar $\$=$＂None＂
3260 If till 1 Then ar $\$=$＂Read＂
3270 If $t m=2$ Then ar $\$={ }^{\text {h}}$ Wite＂
3280 If tm＝3 Tnen ar $\$=^{\circ} R / W^{\circ}$
3290 ：
3310 ：
3320 da $=256^{*}($ Peek $(r t+9)+256 *($ Peek $(r t+10)+256 *$ Peek $(r t+11)))$
3330 ：
3340 REM read size
3350 ：
3360 sz＝256＊（Peek $(r t+12)+256 *($ Peek $(r t+13)+256 *$ Peek $(r t+14)))$
3370 ：
3380 REM password
3390 ：
$3400 \mathrm{pl}=($ Peek $(\mathrm{rt}+6)$ And 240）／16：p2＝Peek（rt＋6）And 15
$3410 \mathrm{p} 3=($ Peek $(r t+7)$ And 240）／16：p4＝Peek（rt＋7）And 15
$3420 \mathrm{pl}=\left(\mathrm{p} 1+(65 * \mathrm{Abs}(\mathrm{p} 1\langle 16))): \mathrm{p}^{2}=93+(\mathrm{p} 2=15)\right.$
$3420 \mathrm{pl}=(\mathrm{p} 1+(65 * \mathrm{Abs}(\mathrm{p} 1<16))): \mathrm{p} 2=93+(\mathrm{p} 2=15)$
$3430 \mathrm{p} 3=(\mathrm{p} 3+(65 * \mathrm{ADs}(\mathrm{p} 3<16))): \mathrm{p} 4=93+(\mathrm{p} 4=15)$

3472 REM
3474 ：
3480 dn＝256＊（Peek $(r t+25)+256 *($ Peek $(r t+26)+256 *$ Peek $(r t+27)$ ））
$3490 \mathrm{dx}=\mathrm{da:} \mathrm{If} \mathrm{df} \mathrm{S}^{\prime \prime} \mathrm{D}^{\prime \prime}$ Then dx＝da＋Peek（13314）＊cs＋Peek（13315）＊2＊cs
3500 sn＝dn－da：If sn＞ele9 Or sn＜sz Tnen sn＝sz：f\％e－i
3510 ：
3512 REM pack check
3514 ：

3522 ：
3530 If n\＄＂＂DIREC＊＊Then ty $\$={ }^{*}$ Data＂：Goto 3570
3532 ：
3534 REM offset and bytes used
3536 ：
3540 sa＝ea：ea＝da：Gosub 830：eansa
3550 os $=\operatorname{Peek}(9986)+\operatorname{Peek}(9987) * 256: \operatorname{bumPeek}(9988)+\operatorname{Peek}(9989) * 256$

3562 ：
3564 REM
3566 ：
3570 If Peek（14457）＝Peek（15908）Then Gosub 50
3572 Print\＃dv，n\＄；Tab（9）；ty\＄；Tab（16）；ar\＄；Tab（23）；pw\＄；Tab（27）；

3600 If st\＄〈＞Floppy＂Then Print\＃ov，Tab（80）；（10，＂R＂］Str\＄（ox）；
3620 Printłdv：If Peek（15006）$=0$ Then 3660

3640 If Lefts（aws，i）$={ }^{\prime \prime} N^{\prime \prime}$ Then Return
3650 Print Chrs（13）；Spc（70）；Chr\＄（13）：：Poke 15006，0
3652 ：
3654 REM
repeat until done
3656 ：
3660 If da＋sz＞ha Then ha＝da＋sz：REM update nignest adr
3670 If Peek（rt）＝i Then reare＋sz：dc＝dc＋i
3680 of $=0 f+16$ ：REM pat to nxt
3690 If of＜240 Then 3050
3700 earea＋240：REM da of next page of dir
3710 of $=0$ ：REM offset in scrbuf
3720 If ea＜en Then 3045
3730 ：
3740 Return
5000 ：
5010 REM MAIN
5020 ：
Gosub 630：REM Xfr setup subr
5040 Print $\ddagger \mathrm{d} v, \mathrm{Chr}$（27） Cnr （56） Chr （13）；
5180 Gosub 3030：REM prt data
5190 Printity：Print\＃dv，＂System Size＂；Strs（hs）；＂，Bytes Freen；
5200 Printidv，str\＄（hs－ha）；＂，Bytes Used＂；${ }^{\prime \prime}$
5210 If dc＞0 Then Print\＄dv，＂File（s）Deleted＂；Strs（dc）；＂，＂；
5220 If re＞0 Then Print ${ }^{2} d v$, ＂Bytes Recoverable＂；r e

5240 Print $\ddagger \mathrm{dv}, \mathrm{Chr}$（27）＋Chrs（54）；
5250 Flag 101：Printłdv！：Return
Listing cont．on page 21

ED：

The OS65D3．2 version of WP6502 that I have（circa 4／82）has manifested several annoying problems：1）When using the View mode with material con－ taining referenced blocks of text，if a block extends ac－ ross a page break garbage is displayed（or printed）follow－ ing the end of the block；2） Backwards scrolling through the text in L／Edit mode occa－ sionally locks up，particular－ ly when using the 24 character video display on the Clp． Wider screen formats rarely encounter this problem；3）The polled keyboard routine alters lower case characters that are entered immediately following any depression of the CTRL key．Interestingly this oc－ curs even if a CTRL character is not entered，i．e．the CTRL key is merely pressed and released．This problem does not occur in systems where a serial keyboard is used．This problem is particularly annoy－ ing when one is trying to edit in＇Move this＇markers．

I have developed the following solution to these problems：

1）Boot up the system using a standard OS65D3．2 disk．

2）EXIT to the DOS kernal and load the Extended Monitor by typing EM．

3）Exit the EM by typing EX．
4）Remove the OS65D3．2 disk and insert a copy of the WP 6502 disk．

5）Type LO WP6502．
6）Type RE EM to re－enter the Extended Monitor．

7）Enter the following com－ mands to correct problem \＃l： 03769 ＜cr＞
3769／20 will be displayed enter 4C＜cr＞

8）Enter the following com－ mands to correct problem \＃2： ＠3D65〈cr＞ 3D65／20 will be displayed enter $2 \mathrm{~F}<\mathrm{cr}>$

9）Enter the following command
to correct problem \＃3： M40B0 $=40 \mathrm{~B} 3,4109\langle\mathrm{cr}\rangle$ and then the following：

Command	Display	Enter
＠ 4106 ＜cr ${ }^{\text {¢ }}$	4106／AD	8D＜lf ${ }^{\text {c }}$
	4107／17	00＜lf＞
	4108／02	10＜cr＞
［40A8＜cr＞	40A8／3D	3A＜cr
040 AB ＜cr＞	$40 \mathrm{AB} / 11$	0E＜cr $>$
$040 \mathrm{B5}$＜cr＞	40B5／El	E4〈cr＞
＠ $40 \mathrm{E} 2<\mathrm{CR}>$	40E2／9D	A0＜CR＞
	ontinued	age 2

10000
10010 REM
10020
10030 Flag 25: Flag 23: Plag 27: i=1: Poke 23721,255
10030 Flag 25: R1ag 23: Flag 27:
10040 If Peek(18959) >2 Then 10070
10050 Print: Print"Extended input required for this programll"; Chr $\$(7)$
10060 Print: ere-2 Goto 30030
10070 Gosub 63010: ulsr=peek (8778): u2sr=Peek (8779)
10080 ddaPeek (9832): If dd>127 Then ddadd-124: If dd>63 Then dd=dd-58
$10090 \mathrm{~d} d \$=\operatorname{chr} \$(d d+65): 1 v=$ qeek (16317)
10100 Return
30000 :
30010 REM EX I T
30020 :
Flag 24: Poke 23721,0: If ere-2 Then 30060
30040 Print \ddagger dvi: Poke 8778, ulsr: Poke 8779,u2sr: Dev dd
30050 If er=0 Then Plag 28: Plag 26: Run"BEXEC*
30060 Print: Input"Hit <cr> to continue " 1 aws: Gosub 230
30070 If aw $\$={ }^{\prime \prime} A^{\prime \prime}$ Then Run
30080 Flag 28: If aw\$n"STOP" Then glag 26: End
30090 If er And er<>-i Then Flag 26: End
30100 Flag 26: End
50000 :
50010 REM User Programmable Error Recovery
50020 : \qquad 50030 el=Peek (11774) +256*Peek (11775): REM Get Error Line
50040 er meek(18176): If er=23 Goto 50120: REH BASIC or Disk
50050
50060
$50070 \mathrm{z} \$ \mathrm{Chr}$ (Pecode BASIC Error $)+\mathrm{Chr}$ (Peek (868+er) Andl27)

50090 Goto 50170
50100 :
50110 REM
REM Decod
50120 er Peek (98326)
50130 z=Peek(9832): If z>127 Then z=z-124: If z>63 Then zaz-58

50150 er \$=er $\$+{ }^{\prime \prime}$ in line" + Str $\$(\mathrm{el})$
50160 :
50170 Print: Print erstChr (7) : Print : Goto 30030
63000 :
$63010 \quad z=6345$

63040 REM Fetch Cursor Codes Erom System
63050 zlapeek (z): If z1>127 Then ara2:zl=zl-128
63050 z1apeek (z): If z13127
63060 adsadsthrs(z1) : REM - cursor address
63070 zezti: $2 l m P e e k(z):$ If $z 1<128$ And $z 1$ Goto 63060
63080 If zlimo Goto 63120
63090 zl=21-128
 63110 If $21=0$ Goto 63120

I H S Computer Services Introduces ALPHA/OMEGA Series Software

ALPHA/OMEGA Business Management System

* Integrated Accounting System for hard disks -- G/L, A/R, A/P, Inventory, P/R, POS. * File locking on all Inventory and A / R functions for multi-user systems. * Many advanced features, such as Departments (up to 99), Automatic Billing, Budgeting, Comparison with Previous Year, Detailed cust/Vend/Inven records. * Fully screen formatted -- Uses OSI's CRT File to adapt to any terminal. * OS-DMS Type 10 File Structure. Extensive use of Key Files for rapid access. * Ideal for almost all types of businesses. Easily integrates with specialized applications.

ALPHA/OMEGA Agricultural Management System

```
* Comprehensive System for all fertilizer (liquid and dry) dealers.
* Comprehensive Crop Management from Lab Analysis to Field History. Complete and attractive reporting system for customers.
* Communications package for customers who have a computer. Runs on their computer and allows downloading of data over phone line.
* Completely integrated with Alpha/Omega Business Management System.
* Includes EPA reporting for restricted chemicals and MORE.
```

63120 de\$ $\mathbf{N a n e}^{\mathrm{n}}$: Goto' 63140
63130 z=z+i:zlePeek (z)
63140 If z1 Then des=des+Cnrs(z1):Goto 63130
$63150 \times f$ Peek ($z+i$):yfrPeek (z+2): If xz>127 Tnen xfexi-128: araart2
63160 2"z+3:cs\$n" : REM - clear screen
63170 z1aPeek (z):2=2+1:If z1 Then cs\$=cs $\$+C n r \$(21):$ Goto 63170

63190 zlaPeek (z):zzz+i:If zl Then ces=ce\$tCnr\$(zl):Goto 63190
$63200 \mathrm{cl} \mathrm{sa}^{-=}$: REM - clear to end of line
63210 zlapeek (z):z=z+i:If zl Then cismelstCnr (zl):Goto 63210
63220 fg\$n": : REM - foreground
63230 zlapeek (z):z=z+i:If z1 Then fgsafystCirs(z1):Goto 63230
63240 bg\$a": \quad : REM - background

63250 2l=Peek
63260 Return
63260 R
63270 :
63999 Save"BIGDIR", "ANAN"

CONTINUED FROM PAGE 20
e40Fl〈Cr> $40 \mathrm{Fl} / 8 \mathrm{E}$ 9l〈Cr> that the address listed
10) Exit the EM by typing EX.
11) TYpe PU WP6502.

You now have a corrected version of WP6502.

Jim Hays
Seattle, WA 98116

* * * * *

ED:
Re: Larry Horst's letter: November 183 issue PEEK(65). Several possible things come to mind.

The first is that the $10-1600$ board is addressed at \$CEOO, not $\$ C F 00$. The address given in the letter, 52992, is for . $\$$ CFOO. BUT, the IO-1600 board comes wired for $\$ C E 00$ (52736). This is OK generally, because the Io-1600 usually supports $0 S 650$, which requires the \$CEOO address. The board isn't normally used with a ClP!

To check how the board is wired, place it in front of you, with the 48-pin connector to the right, and components up. Along the edge next to you, just to the right of center, is a 24-pin chip (a 74154). Between that chip and the one to the left is a pad pattern like this:

> ○ (WI 4)
$\begin{array}{cccc}(W l 8) & 0 & & \\ & & 0 & \text { (Wl3) } \\ & 0 & \text { (Wl 7) } \\ \text { (Wl 9) } & 0 & 0 & \text { (Wl 6) } \\ & & 0 & \text { (Wl } 5 \text {) }\end{array}$
(The numbers aren't marked!) If, on the back of the board, Wl 8 and Wl 4 are connected with a trace, the address is \$CE00 (52736). To change the address to $\$ C F O 0(52992)$, cut the trace and put a jumper between W18 and W13.

Another possible problem is
(52992) is for the CONTROL register of the ACIA of the serial port... not the DATA register. It may be that the only change needed is to POKE 52993 instead of 52992!

About software: OS65D3.2 supports the cluster ports as device \#8. BUT... since a cluster port can't be put on a Clp, the $1 / 0$ vectors are arranged to point to a 'null' routine and not the actual $1 / O$ code. It is still there, however, and can be used if the I / O vectors are reset. To reset the vectors, change $\$ 230 \mathrm{~F}$ to $\$ A F ; \$ 2310$ to $\$ 24$ for the input, and change $\$ 231 \mathrm{~F}$ to \$BC; \$2320 to \$24 for output. (POKE 8975,175: POKE 8976,36: POKE 8981,188: POKE 8982,36)

The ACIA's are initialized by cold-boot code, so it shouldn't be a problem.

One last point regarding device \#8 w/OS65D. The cluster port software always operates on a "base address" + "offset". The base address is $\$ C F 00$ (52992). The offset is contained in address \$2323 (8995). EVEN offsets point to CONTROL registers, while ODD offsets point to DATA registers. OS65D initializes this offset to $\$ 00$. You have to change it to use the device \#8, such as PRINT\#8, "xxx". With two ports installed, the value of the offset must be between 0 and 3 .

If Mr. Horst isn't using OS65D, its harder. I recommend using OS65D!

To use the cluster port without OS65D, you have to initialize the cluster ports, and do all the work yourself for input or output. The BASIC program shows a way to do output, but a word of warning: My IO-1600 IS NOT on my ClP. Therefore, I don't KNOW that this will work. It should.

ACIA $=52992$
RST = 3:REM RESET ACIA VALUE
SET $=17: \operatorname{REM} / 16,8 \mathrm{BIT}$,
2STOP, EVEN
PORE ACIA,RST:REM PORT 0
PORE ACIA,SET
POKE ACIA+2,RST:REM PORT 1
POKE ACIA+2,SET

.......

PROGRAM
REM TO OUTPUT, SOMETHING LIKE THIS WILL WORK
OUTS = "ANSWER"
FOR I = 1 TO LEN(OUT\$)
PORE
ACIA+1, ASC (MID\$ (OUTS,I, 1))
WAIT ACIA,I
NEXT I
This routine assumes that the device at the output can accept the data as fast as it is sent. If it can't, you're in trouble. It's a LOT harder!!!

Oh, one other thing. Make sure that $S W 3$ is set correctly. It provides clock to the ACIAs. No clock, no work. The D\&N instructions explain how to set the switches (it's just like that for the serial port).

I have a fully populated D\&N ro-1600 board on my C2. Hardware has been no problem. I'm only using the Centronics port, and the serial port, so I don't know from experience of any problems with the cluster port. D\&N has always been good stuff, and the people very responsive and helpful.

If Mr. Horst wants to talk to me, my 'phone number is (612)-781-1359. After 10 PM , or before 10 AM on Saturdays and

OSI REPAIRS
BOARD LEVEL SERVICE ON C2, C3 \& CD SERIES, INCLUDING POWER SUPPLIES, 8" FLOPPY DRIVES, CIRCUIT BOARDS (GOLD UPGRADE)

ONE WEEK TURN-A-ROUND
TYPICAL
SOKOL EIECTRONICS, INC. 474 N. POTOMAC ST. HAGERSTOWN, MD $2174 \square$
(301) 791-2562

Sundays I'm a bit surly! Any other time, I'm just my usual nasty self. I'm not sure that I could help, but I'm willing to try if he thinks that he could benefit from a discussion.

Good luck.
Donn Burke Baker
Minneapolis, MN 55418

* * * * *

ED:
Enclosed is a note from an Australian newsletter (KAOS) pointing out a bug in OSI ROM Basic. I happened to run across both the bug and this article in the same week!

A CORRECTION TO ROM BASIC By: Rodney Eisfelder

After many hours of hard thinking, the solution to another bug in ROM BASIC can now be revealed. The problem occurs in systems with more than 8 K of RAM. When an INPUT statement is between $\$ 2000$ and $\$ 20 \mathrm{FF}$ then the first character typed in response to the INPUT is ignored as well as the first non-space character. The problem is described in the 'Dear Paul' column in KAOS 3.6.

The solution is to change two bytes of the second BASIC ROM. The two bytes are \$A969 and \$A9CD (or in English, 43369 and 43469) which currently have the value $\$ 12$. This is the address used to save the high byte of the BASIC program counter and is also immediately before the BASIC line input buffer.

The problem occurs when the high byte of the BASIC program counter is the same as an ASCII space i.e. \$20. When BASIC starts processing an INPUT line, the buffer pointer points one byte before the start of the buffer. that is it points to $\$ 12$. The get-cur-rent-character routine ($\$ 00 \mathrm{C} 2$) is called to detect end of line. For the first INPUT variable this is not meant to do anything because a special test is made for zero length INPUT lines. However, if the byte before the buffer is a space, then the pointer will be moved on and the first character skipped. BASIC even goes to the trouble of writing $\$ 2 \mathrm{C}$ (a comma) into $\$ 12$ before overwriting it with the program counter.

The solution is therefore to change the two bytes mentioned above so that a harmless lo-
cation is used to save the BASIC Program Counter. Any location not used elsewhere by BASIC is obviously 'safe' to use and I would suggest \$D8 as a contender. People who suffer from this problem should note that my solution is not tested and is therefore as reliable, complete and correct as any untested program can be.
Earl D. Morris
Midland. MI 48640

* * * * *

ED:

You may be interested to note that the TAB(x) function on the Cl sends actual spaces to the ACIA. That means my Selectric will respond to TABs in PRINT statements. Sure saves a lot of $\operatorname{SPC}(x)$ calculations!

Bruce Showalter
Abilene, TX 79601

* * * * *

ED:
Our group purchase of the Grafix SEB-3 80 column video board/floppy controller has been a success (see PEEK July 1983). Because of the number of OSI users getting boards, the price was lowered from $\$ 59$ to \$35. There are a few more bare boards left at this price. Please contact me if you are interested.
Earl Morris
3200 Washington St.
Midland. MI 48640
BDG FIX
FOR ALLOY/OSBU BACK-UP OF PLANNER PLUS
(older versions)
Problem:

If Planner needed a larger data file, it created a new file with the same name but a different password. Fine until you want to back-up. These utilities will ignore the new file as it assumes it is a duplicate (no password check is made).

Newer versions of Planner add a "q" or "\&" to the file name, thus eliminating the problem.

Fix:

Program OSBU
1430 Poke RT,l:Poke 9467.141:
Poke 9468,42:GOTO 1340

AD\$

32K ClPMF - Includes disk copy program and several programs OSI 65 Operating System. Also
has PICO DOS operating system. $\$ 500$ or best offer. Will consider any offer. 801-544-9826. M. G. White. 1322 E. 1225 N., Layton, UT 84041 .

Send for free catalog, Aurora Software, 37 South Mitchell, Arlington Heights, IL 60005. Phone (312) 259-3150.

Ohio Scientific C3D (6502, 280A). l0M hard \& $8^{\prime \prime}$ floppy drives, $C P / M 2.2$, Basic, 56 K RAM. $\$ 1800$ or best offer. 607-273-5011 or Nan Stalnaker 217 West Ave., Ithaca. NY 14850 .

FOR SALE: OSI C3C' running at 2 MHz with 36 MB hard disk. Three user system (152K RAM), 3 extra serial ports plus 1 parallel port. Three terminals also available (2 Televideo 920B's and one ADDS Viewpoint). Lots of software, OSU Vl.43, OSD, CP/M, MBasic, FORTRAN, COBOL, WP-6502, OSDMS, Brown/Collinson EDITV4, FIND and MONTIR. Software Consultants Fig-FORTH and REF. Complete set of documentation. Will nelp get started if needed. Will accept bids for all or part of system. Write or ask for Mike Fowler at Ctr for Behavioral Medicine, 155 W. Hospitality Lane, Suite 123, San Bernardino, CA 92408. (714) 889-0526.

OHIO SCIENTIFIC C8P-DF, \$3000 or offer. 6502a cpu (2.5mhz), $48 k$ static memory, 16 color video and Centronics printer boards. Two $8^{\prime \prime}$ ss sd floppies (IBM 3740 format). RS-232, printer, game and I/O ports. OS-65-D v3.2, v3.3, Microsoft BASIC, WP6502, MDMS and games. Documentation, Technical notes, diskettes, magazines. Separately, four years of PEEK(65), OSIO, MICRO 6502, Okidata 82A (\$450), Novation D-CAT (\$150). Contact Max Munger, 8639 Reseca Lane, Springfield, VA 22152, (703) 451-7627.

* * * * *

C2-OEM (two cases) with 48R RAM, dual $8^{\prime \prime}$ floppies, includes Centronics interface, RS232C board, OS-65D, OS-65U, plus miscellaneous software. Almost brand new. No documentation. Must sell. $\$ 1500$ (includes shipping) or offer. Rick Brown, 316 California \#712, Reno, Nevada 89509, 702-322-9936.
P.O. Box 347

Owings Milis, Md. 21117

DELIVER TO:

GOODIES for [5l Lsers!

P.O. Box 347 • Owings Mills, Md. 21117 • (301) 363-3268

() C1P Sams Photo-Facts Manual. Complete schematics, scope waveforms and board photos. All you
need to be a C1P or SII Wizard, just
() C4P Sams Photo-Facts Manual. Includes pinouts, photos, schematics for the 502, 505, 527, 540 and 542 boards. A bargain at
() C2/C3 Sams Photo-Facts Manual. The facts you need to repair the larger OSI computers. Fat with useful information, but just
(; OSI's Small Systems Journals. The complete set, July 1977 through April 1978, bound and reproduced by PEEK (65). Full set only
$\$ 15.00$ \$ \qquad
() Terminal Extensions Package - lets you program like the mini-users do, with direct cursor positioning, mnemonics and a number formatting function much more powerful than a mere "print using." Requires 65 U .
\$50.00 \$ \qquad
() RESEQ - BASIC program resequencer plus much more. Global changes, tables of bad references, GOSUBis \& GOTOs, variables by line number, resequences parts of programs or entire programs, handles line 50000 trap. Best debug tool l've seen. MACHINE LANGUAGE - VERY FASTI Requires 65 U Manual \& samples only, $\$ 5.00$ Everything for
$\$ 50.00$ \$ \qquad
() Sanders Machine Language Sort/Merge for OS-65U. Complete disk sort and merge, documentation shows you how to call from any BASIC program on any disk and return it or any other BASIC program on any disk, floppy or hard. Most versatile disk sort yet. Witl run under LEVEL I, II, or III. It should cost more but Sanders says, "... sell it for just.:."
$\$ 89.00$ \$ \qquad
() KYUTIL - The ultimate OS-DMS keyfile utility package. This implementation of Sander's SORT/MERGE creates, loads and sorts múltiple-field, conditionally loaded keyfiles. KYUTIL will load and sort a keyfile of over 15000 ZIP codes in underthree hours. Never sort another Master File.
$\$ 100.00$ \$ \qquad BOOKS AND MANUALS (while quantities last)
() 65V Primer. Introduces machine language programming.
() C4P Introductory Manual
() Basic Reference Manual - (ROM, 65D and 65U)
() C1P, C4P, C8P Users Manuals - (\$7.95 each, please specify)
() How to program Microcomputers. The C-3 Series
(.) Professional Computers Set Up \& Operations Manual - C2-OEM/C2-D/C3-OEM/C3-D/C3-A/C3-B/ C3-C/C3-C'
\$7.95 \$ \qquad
$\$ 15.00$ \$ \qquad
\$30.00 \$ \qquad
\$4.95 \$ \qquad
\$5.95 \$ \qquad
\$5.95 \$ \qquad
$\$ 7.95$ \$ \qquad
\$7.95 \$ \qquad
$\$ 8.95$ \$ \qquad
\qquad
MD Residents add 5\% Tax
\qquad

[^0]: All software comes with license agreement, registration card, manual, binder, diskette holder and 8° diskette.
 Manuals are available by themselves and are deductible from full purchase price of software within 60 days after purchase Foreign orders must be paid in U.S. dollars and drawn on a U.S. bank or international money order.

