INSIDE

Column One

This column has lately begun to look like the Isotron, Inc. PR department. Please be assured this will not long be the case. However, since we are all very curious as to the future, survival, plans and prospects of OSI/Isotron, for the nonce we will continue reporting what we hear. Herewith this month's batch of announcements and information:

During the month of March, two new machines will be announced as a part of the national advertising campaign which will soon start: each will be a 3user machine, one running os650 level 3, the other a multiprocessor Turbodos machine. Old Peekers will remember that we very much like the idea of multiprocessing since it means that each user has his/her own CPU, sharing only. the expensive stuff like hard disks and printers.

Both these machines will run DMS. There will also be other software bundled as is the practice of the industry today. However, these machines will go beyond the usual prattice by bundling hardware as well as software. The very reasonable prices will include one terminal and a letter quality printer as well as the software. The prices are not finalized yet, but should be very competitive.

In case the national ad campaign isn't enough to stir up some interest, we are told Isotron will be at Comdex/ Spring with a 35 ft (!) booth. That should get some atenlion.

So what, you ask, does all this have to do with your ClaP? Simply that if the company had folded, you would be left to your own devices (and those of PEEK (65)) for support and encouragement. With the commany still in business, there is at least some support and assistance from headquarters..

Now to the stuff I really like to write about, what is in this month's issue, and what it means.

If there was ever any doubt that PEEK (65) is the hackers' bible, this issue should put it to rest. There is hardly... a line here that other magazines would publish, with a few notable exceptions. "Too technical," the editors would say:"Too 1 limited in audience." Translate that to mean that if 300,000 mindless video-game players don't understand it at a quick scan, it won't sell enough copies of the magazine to print it.

Here at PEER (65) we feel diffferently. We can read various other 2.7 lb. computer magazines for nontechnical information about computers we don't own (and do read them), but our particular corner of the information business is to spread technical information among users/enthusiasts with OSI computers. We have sf un doing it, and make our living at other things...

It has not always been so. For a long time there, we tried very hard to follow the lead of the company and become a business-computer magazine. However, you our readers told us by your response to our calls for articles and your letters that you were more interested in the technical stuff. So be it. We will pubdish what you want to read!

Of course, that means if you change your collective minds and decide you want more anticles on business systems, we will print them. In short, we are running a service here, and will print what you want to read. This month, obviousby, the interest is in hardware articles and program listings, the kind of stuff you just won't find anywhere but good ole PEEK (65).

If you disagree with this mix of articles, write to us. We are at your service, and will print what you want to read.

'OLD' POR OSI BASIC-IN-ROM

By: L. Z. Jankowski
Otaio RDl Timaru
New Zealand
'OLD' enables the recovery of BASIC programs which have been inadvertently NEWed, or lost as a result of a crash of zero-page. 'OLD' can be placed in BASIC 4, or alternatively can be loaded and run in RAM.

Ever typed NEW and wished you hadn't? Or, POKEed into RAM and wiped zero page? No need to despair, use 'OLD'!
'OLD' is a machine language program that can be placed either in RAM, or in EPROM in a new BASIC 4. (See listing). If the former choice is taken, routines STORE and CHECK are not required.

BASIC 4 code is full of superfluous messages and contains code for running a non-existent serial port! Available RAM that could be put to better use ranges from \$BE39 to SBF2C. Some of this RAM space is required for the cold start messages which if shortened, add to available RAM. Over 200 bytes are freed! See PEEK (65), Aug. 82 issue, for a fuller explanation.
'OLD' is simple to use. If recovery from NEW is required, enter the Monitor and run the code from the point at which the routine RUNOLD begins. If zero-page has crashed and 'OLD' is in BASIC 4 then do the following: COLD start and type OLD in response to MEMORY SIZE. Answer TERMINAL WIDTH as desired and the BASIC program is ready for LISTing.

If the code for 'OLD' has been placed in RAM, then answer MEMORY SIZE with a number: 8192 for 8 K of RAM, 16384 for 16 K of RAM, etc.. Then, enter the Monitor and run the code which begins with the routine

Copyright 0198 why PEEK (65) Inc. All Rights Reserved. published monthly
Editor - Al Peabody
Technical Editor- Brian Harison
Circulation \& Advertising Mgr. - Karin Q. Gieske
Production Dept. - A. Fusselbaugh, Ginny Mays
Subscription Rates
US (surface)
Canada \& Mexice (1st class)
So. \& Cen. America (Air)
Europe (Air)
Other Forcign (Air)
$\mathbf{\$ 1 5}$
$\$ 23$
$\$ 535$
$\$ 35$
$\$ 40$
All subscriptions are for 1 year and are payable in advance in US Doliars.
For back issues, subscriptions, change of address or other information, write to

PEEK (65)
P.O. Box 347

Owings Mills, MD 21117
Mention of products by trade name in editorial material or advertisements contained herein in no way constitutes endorsements of the product or products by this magazine or the publisher.

RUNOLD. Jump to WARM start is automatic. If PRINT FRE(X) is now required, enter CLEAR first to speed up garbage collection.

Placing the program in BASIC 4 requires three changes to be made to BASIC 4 code.
(1) Contents of BD83 are changed from 41 (A for Author) to 4 F (0 for OLD). If the 'OLD' option is taken, the code branches to BDOA. This is where the second change is made.
(2) At BDOA, change A9 4 E A0 to 4C A4 BE. Address BEA4 is the entry to STORE. Finally,
(3) At BE36, change 6C 0100 to 4C AD BE. Address BEAD is the entry to CHECK which, if completed successfully, leads to RUNOLD and complete recovery of the lost BASIC program.

The change in (1) intercepts COLD start. The second change enables the jump to STORE that sets the OLD flag on zero page. The jump from STORE to

SBDBA bypasses the RAM test which would normally destroy any BASIC in RAM.

The third change is the crucial one. When BASIC arrives at \$BE36, it has reset all pointers as if there was no BASIC program in RAM. The jump at \$BE36, originally to WARM start, is now intercepted and forced to jump to CHECK. If CHECK discovers that the flag on zero-page has not been set then the jump to WARM start is taken immediately.

If the flag is set, then RUNOLD takes over. The first search made, is for the null marking the end of the first line of BASIC. The second search is for the three nulls marking the end of the BASIC program. When this search is successful, the appropriate pointers are calculated and placed in their addresses on zero page. The BASIC program has now been recovered and the jump to WARM start is made.
'OLD' can only recover 'undamaged' programs. If, on

LIST, you see a screen full of garbage, then you have been successful in not only destroying zero-page contents, but have also run amok in RAM!

INSTALLING A NON-OSI SIMGLE SIDED 40 TRR DISR DRIVE ON TEE C1P

By: David L. Kuhn
109 Shaw Avenue
Lewistown, PA 17044
There are two issues of the now defunct Aardvark Journal, that contain articles on installing non-OSI disk drives on your Clp. For those of you that have all the back issues, refer to the February 1982 and the October 1981 issues. I am writing this article for those who already have an OSI 610 expansion board, or the equivalent. If you do not, buy or steal the February 1982 issue of the 'Journal'. In that issue, there are plans for building a disk controller.

For the last three years, I had already been running a disk drive on my ClP. About a month ago my standard MPI drive started to 'go West' on me. I tried cleaning the heads and correcting the disk rotational speed. That helped but I still ended up with disk errors creeping up on me.
figured the drive needed to be realigned. A friend said that he could probably fix it, but until I got the drive to him, I wanted to experiment with other drives. So I picked up an almost new Siemens FDD $100-$ 5B that was left over from a Heath H89 computer when it was upgraded with better drives. The price was right ($\$ \$ 100$) and it is a 40 track drive that is almost OSI-MPI compatible.

The two differences, and they are not small, is that the Siemens drive doesn't have a DATA SEPARATOR and the tracktrack step speed is slower. The latter difference can be handled by changing the software. The first one though, I thought, was a tough one. remembered that I read an article in one of the issues of the 'Journal' that dealt with adding a 35 track Shugart SA400 drive. My final work is a combination of those two issues and careful planning. These two problems were overcome.

My solution to the DATA SEPARATOR is really independent of what kind of drive we
are dealing with. I used a circuit similar to the one shown in the 'Journal'. The two I-C's used are a 74LS221 and a 74 HOO . The 74LS22l is a dual monostable multivibrator. The circuit uses only $1 / 2$ of the chip. You can use the 74 LSl 21 if you can get it. I didn't have immediate access to one, so I used the dual chip version, which for me was easier to get. NOTE: The pin outs of the chips are different, but function similarly. I used the 'H' version of the 7400 for the same reason.

To build the DATA SEPARATOR, you can wire it together on a piece of small perfboard using wire-wrap wire or some small hookup wire (I used wire split out of a scrapped 40 wire flat computer jumper cable). Miniature push-in terminal pins that you can buy at a Radio Shack store can act as a hookup spots when you are ready to install the board. Double check all your wiring and then you are ready to hook it up!

Find a place fairly close to the Jl connector on the disk drive and mount the separator. Wire the ground and $+5 v$ lines to the separator by soldering your wires to the power connector on your drive. Watch out! There is ground, +5 volts and +12 volts at this connector. Pin 4 of the power connector is usually +5 v and pin 3 is usually ground, but please double check with your drive manual and drive power supply. Next, follow the copper land coming from PIN 32 of J1. On the Siemens FDD 100-5B, it doesn't go anywhere, but if it does on your drive, cut it. Follow the land coming from PIN 30 of Jl back about $1 / 2$ inch from the connector, and cut it. Scrape a little of the paint insulation off each side of the cut land. On the connector side of the cut, solder a wire COMING from the RECEIVE CLOCK OUTPUT of the data separator to this land. On the side of the cut coming from the drive circuitry, solder a wire from this point TO the composite data input of the separator. On the land coming from PIN 20 of Jl, solder a wire GOING to the STEP NOT. INPUT of the data separator. Solder the wire FROM the RECEIVE DATA OUTPUT of the data separator to the land coming off of PIN 34 of J1. PIN 34 of Jl is the spare pin that OSI uses. The land from PIN 34 of Jl should not go anywhere on your drive. Hardware modification is complete!

Once the circuit was built and
installed, I adjusted it by putting a write protected disk in the drive, and then tried booting the system while adjusting the pot on the DATA SEPARATOR. There is a wide range adjustment of the pot that will allow the separator to work. Center it in the middle of that range.
Ahh, but how could the Siemens drive boot a disk when it has a slow step speed? I found that for a short period it will step beyond its rated speed. I wouldn't trust it to do it all the time, but for me it did work at the faster OSI step speed long enough to boot OS65D V3.3. When it did boot the first time, OS65D3.3 went directly to the RERNEL. It shouldn't have done that! Amazingly enough, the KERNEL commands still worked!l! I tried booting it again, and this time it booted to the BEXEC*. You should then immediately EXIT BASIC to the RERNEL. Give the command: 'EM'. This will put you into the Extended Monitor. If the Extended Monitor doesn't load, keep trying until it does. On my system it worked the first time, but with some slower drives it may take a couple of tries. Immediately after entering the EM, type 'EXIT' to return to the KERNEL. Type command: 'CA 0200=06,4' if you are using OS65D V3.3 or type command: 'CA 0200=13,1' ONLY if you are using 0565D v3.1. Then type 'GO 0200'. The Track zero/Copy Utility will appear. If you are using V3.l a menu will be the first item displayed, select option 2 . Version 3.3 of the DOS doesn't have this menu and goes directly to the Track zero utility. When you are at the Track Zero Utility, type: R4200. The drive will hum. Exit to the KERNEL. Type: 'RE EM' (You are once again in the extended monitor). Type: '@46A3' (The '@' sign is the 'shift-P'). The monitor should then respond with: 46A3 08. Type: 20 then a <CR> (carriage return). Type: 0467 B <CR>. The : monitor should respond with: 467B 31. It may also respond with: 467B C7. If C7 isn't in location 467B, put it there by typing: C7 and then <CR>. Type 'EXIT'. You will then again be at the RERNEL. Type: 'CA $0200=06,41$ (CA $0200=13,1$ for V3.1). Get to the Track Zero Utility and type: 'W4200/ 2200,8' to store the newly modified track zero on your disk. Do this with a back-up disk if possible and make sure it IS NOT write protected. That should give you a modified OS65D disk. Use this
disk to modify your other ones by using the Track Zero Copy Utility. With this disk you could even modify a PICO-DOS disk! It seems that PICO-DOS uses the same boot track that OS65D does. Keep in mind that you still need one of the versions of OS65D to modify PICO-DOS as the simpler DOS does not have a KERNEL or Extended Monitor.

If you can't get your disk to boot due to the drive not stepping fast enough, you will either have to get together with a friend that owns a ClPMF or make sure that the drive you are buying has a fast step speed (somewhere around 6 ms). The faster drives are becoming more popular and less expensive. If you have a friend that owns a ClPMF then you will not have any problems modifying your diskettes on his/her system.

SCHEMATIC OF DATA SEPARATOR

INTERFACE SIGNALS

SIEMENS MODEL
EDD 100-5B DRIVE

OSI 610 BOARD EQUIVALENT DISK CONTROLLER

J1-2	SPARE	
J1-4	SPARE	
Jl-6	DRIVE SELECT 0	
J1-8	INDEX/SECTOR	J3-17
J1-10	DRIVE SELECT	J3-3
J1-12	DRIVE SELECT	J3-18
J1-14	DRIVE SELECT 3	J3-
J1-16	MOTOR ON	J3-
Jl-18	DIRECTION SELECT	J3-6
J1-20	STEP	J3-5
J1-22	COMPOSITE WRITE	J3-9

| J1-24 WRITE GATE | J3-8 |
| :--- | :--- | :--- |
| J1-26 TRACK 00 | J3-23 |
| J1-28 WRITE PROTECT | J3-19 |
| JI-30 RECEIVE CLOCK* | J3-10 |
| J1-32 SIDE SELECT** | |
| J1-34 RECEIVE DATA* | J3-11 |

ALL ODD PINS ARE GROUND

* - After modification.
**- CUT, NOT USED!

EXPANDING THE ClP/SBII
PART 3
By: David Tasker
111 Bass Highway
Tasmania, Australia 7303
Adding the lst 8 K continued
8K STATIC RAM BOARD PARTS LIST

INTEGRATED CIRCUIT SOCKETS
$\begin{aligned} 2 & \times 14 \text { pin. } \\ 7 & \times 16 \text { pin. } \\ 16 \times 18 & \text { pin. }\end{aligned}$
INTEGRATED CIRCUITS
I.C. Number- 1.2,3.. 74 LS 367
or 74 LS365 or 8 T 97 or 8097
I.C. Number- 4.. 74LS138.
I.C. Number- 5.. 74155.
I.C. Number-6.. 7400 .
I.C. Number-7. 7412.
I.C. Number-8.9.. 8T28. (8 T2 26 may be used if also fitted on ClP) (8 T 26 for C4P)
I.C. Number- 10 thru 25.. 2114 Static RAM. 45 हns or faster. RAMS increment in pairs e.g. 10 and 11.

CAPACITORS
Disk Ceramic preferred for physical size. Polyester may be used.

Capacitors. Cl-C6,C9 all 0.647 or D.lue Disc.
Capacitors C7.
3.3uf Tantalum.

Capacitor C8.
47 uf 16v. Electrolytic.
RESISTORS RI-R4.
All lKohm, $1 / 4$ watt.
The printed circuit board comes coated with an antitarnish coating which acts as a soldering flux aid. It is not necessary to clean the board. Except that when the board is fully assembled you will have to clean the copper area which plugs into the Motherboard edge connector. To clean, hold the board in such a way that the copper is facing up and the component side of the board is supported only underneath the edge connector area, e.g., place the
board at the edge of a table or workbench. A non metallic scourer padis preferable to steel wool to clean the edge connector area as steel wool tends to scratch heavily but. more importantly, also leaves fine particles of steel which must be carefully cleaned away from both sides of the board.

Avoid touching the cleaned area with fingers as this will cause tarnishing. Once testing of the board is complete, give this area a final rub over with your cleaning pad and once plugged into the Motherboard try to avoid too many insertions and removals.

ASSEMBLY INSTRUCTIONS

Begin by inserting as many straps on the board as possible. Do not yet insert the 7 straps which run zig-zag between the RAM Integrated circuits (I.C.'s 10 to 25) as these are best put in after the 18 pin RAM sockets are inserted. If you work from the edge connector end of the board, left to right, you will have the board orientated to the diagrams. There are two component placement sheets but one of them does not show any sockets at all. This sheet is straps, resistors, and capacitors only.

You can use bare wire for all straps if you like but it is a good idea to alternate bare with insulated wire where there are many straps running along side one another.

Make certain the straps underneath the integrated circuits are in.

Insert the 4 Resistors.
Do not insert the capacitors until AFTER the sockets as these will forever be in the way each time you turn the board over to solder.

Once you have inserted all the sockets, check carefully that there are no solder bridges between tracks. If you have a multi-meter you could check for shorts between tracks particularly in the RAM area where tracks and soldering are very close together. You could also check continuity of the finer tracks with your meter.

BEFORE PLUGGING_IN INTEGRATED CIRCUITS

If you have a multi-meter or logic probe you could insert the board onto the bus and check that +5 volts (1) and

ISOTRON, INC.

INCREASES SOFTWARE SUPPORT

ISOTRON has opened two regional OSI Software Support Centers, increasing access time to its Support Staff.

Our skilled people are anxious to answer questions regarding our Ohio Scientific software products including: OS-65U and TurboDos operating systems, KeyWord, KeySort, KeyBasic and utility programs.

FOR ASSISTANCE CALL:

From USA, Eastern and Central time zones, Europe, Africa, South America, Central America, the Caribbean and Eastern Canada:

ISOTRON SUPPORT EAST (616) 451-8435
(8:30 A.M. - 5:00 P.M., EST, Monday through Friday)
From USA, Mountain and Pacific time zones, Australia, New Zealand, Asia, Far East and Western Canada:

ISOTRON SUPPORT WEST (503) 796-1018 (9:00 A.M. - 5:00 P.M., PST, Monday through Friday)

THIS SERVICE IS ANOTHER INDICATION THAT ISOTRON IS COMING THROUGH FOR YOU.

ISOTRON

140 SHERMAN ST. FAIRFIELD, CT 06430
(203) 255-7443

TLX-756436
earth (0) are connected to the respective supply pins of the I.C. sockets.

INSERT CAPACITORS

Insert all capacitors and pay attention to the polarity markings of C7 and C8. Tantalum capacitors are usually marked with one lead positive (+), however, if not, then the longest lead is positive. Electrolytic capacitors have the negative lead marked.

ZIG - ZAG STRAPS

Insert the seven straps that run between the 18 pin sockets. You can do this just after the insertion of the sockets. Insert and solder the strap at one end, then using the sockets as corner posts, run the strap to the other hole. Do not pull the strap too tight as they may cut in under the socket and could cut into one or more of the socket pins.

TESTING:

Check once more for any shorts on the board. Insert all I.C.s at this point. It is a good idea to only insert the first pair of RAM chips to start.

BOÚNDARY SELECTION
Each 8Kmemory board can be divided: up into two 4 K memory blocks. These two memory blocks may be anywhere within the lower 32 K of your computer's memory. If you need the RAM in the upper 32 K , then refer to the circuit diagram and the, note regarding. address line Al5.

From the strapping sheet which shows the RAM selection table, select the straps which suit your application. In most cases, the 4 K blocks will follow each other. For example, if you own an Ohio ClP or 4P, then these computers have provision on their main boards for the lst 8 K of memory. If this memory board is the first one used for expansion. then both 4 K blocks will follow on from the computer's memory and thus will provide the second 8 K of RAM (total of 16 K).

RAM TEST

Make sure all power is turned off. Insert the memory board onto the bus. If you have a memory board which has the 40 pin expansion socket. then make sure you refer to the assembly sheets for that section of the board. You will

Reset line is optional and is a hardware reset for input/output board.

For power on reset, connect this line as:

either be connecting this 40 pin socket directly into the computer or cutting the expansion off and plugging both into a motherboard.

Turn on the computer. If you hit the BREAR key, the computer should respond with the usual D.C.W.M?. If it does not then you have a fault on your new board. There are three most likely areas for trouble at this point and during the subsequent testing stages.

1. Address lines open, shorted, or buffers reversed.
2. Data lines open, shorted, or buffers reversed.
3. Control lines are faulty, e.g. KW or 02 wrong. DD (data direction) reversed.

Check that the buffers are correctly inserted. With a logic probe or oscilloscope. check that the address lines and data line are changing from to 1 at a fast rate. Check that DD is high (l means write to memory).

If you have D.C.W.M.?, then proceed with a cold start in BASIC. If all is well and you have only one pair of RAMS inserted, you should have 8447 BYTES FREE. For the complete 8 K RAM inserted you should get 15615 BYTES FREE.

Next month, the Motherboard.

More schematics on page 7

8K - 4K BOUNDARY RAM CARD, 2 mhz STATIC RAM BOARD

* 7412 for OSI Boards with 1 K pull up Resistors Rl,2,3 capacitors Cl-C6 . 047 pf OR .lpf (l@buf) as required.

40 PIN - RIBBON EXPANSION - ClP/SBII - TASKER MOTHERBOARD
D. Tasker $1 / 81$

PC PATTERN AS VIEWED FROM COMPONENT SIDE

THIS CARD IS NORMALLY PROVIDED AS AN INTACT PART OF THE 1st USED 8K- 2114 RAM CARD, i.e., it is electrically \& physically joined at the 36 way edge connector. This enables an $8 K$ MEM card to be used on the CIP/SBII via the 40 pin expansion socket without the need for a motherboard.

WHEN additional boards are required, i.e., a motherboard to be added, then a cut is made through the edge connector to separate the 40 pin socket section as shown.

NOTE: When used on a motherboard - all component sides of boards face towards the address buffer ICs on the $M / B d$. This card plugs into Slot "A" only.

READ	LDA	1 500	LOAD LSS
	STA	ADPLX	GIVE TO 65D
	LDA	tBuFPEs/256	LOAD BUFPER MSB
	SIA	adrax	GIVE TO 65D
	LDA	: ${ }^{\text {S }}$	INI2
	STA	SECT	SET 65D TO SECTOR 11
	JSR	load	LOAD HEAD
	JSR	CALLX	READ SECTOR
	JTP	UNLOAD	UNOAD HEAD AND QUIT
X 0	LDA	STIK	GET FILE START TRACX
	STA	TrakX	GIVE TO 65D
	JSR	Swap	* DOS CONTEXT *
	JSR	SEEXX	MOVE HEAD TO TRACR
	JSR	READ	READ IN 1ST TRACK OF FILE
	JSR	SWAP	* Language context *
	LDA	BUFFER	FEICH PILE START LSB
	SEC		
	SBC	\#SRCSTR	SUBTRACT SCURCE START
	STA	SOF	SAVE HEADER CPFSET LSB
	LDA	BUFPER+1	hantice mib 100
	SBC	\#SRCSTP/256-9	-9
	STA	SOP+1	NOTE 3.3 FIX ABOVE
	BED	XFO3	OPPSEINSB = 0 ? mm
	SEC		
XPO1	LDA	SOP +1	FEICH OFFSET MSB
	SBC	SRCSI2	SUBIRACT ONE TRACR
	BCC	XR02	LESS THAN 1 TRACR ? \Rightarrow
	STA	SOF+1	nol Save result
	INC	TRARX	SHOW MOUE TO NEXT TRACR
	BNE	XRO1	AND LOOP!
XFO2	JSR	SWAP	* dos comrext *
	JSR	SEEXX	SEEX PROPER TRACK
	JSR	Read	READ SECTOR INTO BUFFER
	JSR	swap	* langunge contiext *
	LDA	TrALX	GET RESGLTAMT TRACX -
	STA	STIX	save as new sitx
XFO3	LDA	SOP	GET OPPSET LSB
	${ }_{\text {ac }}$		
	${ }_{\text {ATA }}$	\#BuFFER	ADD BUFFER ADDRESS LSB
		INDEX SOF	gIVE TO INDEX

460	LPA SOF+1	GET CFFSET MSB
470	ADC \%BUFFER/256	ADD BUFFER ADPRESS MEB
480	STA TXTPTR +1	GIVE TO TXIPIR
490	STA SOF+1	SAVE POR PASS 2
500	LDA PUTPIR	SAVE LAST PREE EATRY AS
510	STA Refbot	REFERENCE table botiom
520	LDA PUTPIR+1	HANTLE MGB 700
530	STA REPBOT+1	
540	LDA 1500	nNI2
550	STA TXIPIR	CLEAR TXIPIR
560	JIP XREE	Jup to haniling coos
570		
580 GETCHR	LDY INDEX	PEICH BUFFER PAGE INDEX
590	LIDA (TXIPIR), Y	PETCH CIARACIER
600	INY	BUMP INDEX
610	BEQ GEICI	PAGE? $=\mathrm{P}$ CEICI
620	STY nidex	NO: SAVE DIDEX
630	RTS	AND QUIT
640 GEICL	INC TXTPIR +1	BUAP TXIPIR MSE CN PAGES
650	STY INDEX	RESET BUFPER INDEX
660	LDY TXTPIR +1	PETCA NEW MSE
670	CPY betere	AT END OF BUFPER?
680	BED GEIC2	YESI \Rightarrow GEIC2
690	RIS	AND QuIT
700 GETC2	pria	SAVE PEICHED CBARACTER
710	TXA	PUT X In ACC.
720	Pria	SAVE IT 700
730	LIA \% ${ }_{\text {BUFPER }}$	PEICH BUPF. ADDR, LSB
740	SIA TXIPIR	RESET TXIPTR
750	IDA \ddagger BUFFER/256	PEICH BUFF. ADDR. MSB
760	STA TXIPTR +1	RASET TXIPIR MSB
770	JSR ENAP	* dos comitexr *
780	LDA TRARX	PEICA CURREMT TRACR -
790	OPP ENDIR	E.O.F. ?
800	BEO GEIERR	YESI ERRCRI ma
810	InC tratex	NO, BLMP IT CNE
820	JSR SEEEX	MOVE HEAD TO TRACS
830	JSR READ	PEND IN TRACR
840	JSR SNAP	* language context *
850	PLA	Reirieve X
860	max	FUT IT BACR
870	PLA	REIRIEVE 'IEXT' CAARACTER
880	RIS	ARD OUIT
890;		
	Jar straj	Continued

Get "What If" answers for up to 10 displayed problems in:

- Loan/Annuity Analysis
- Annuity ‘Due’ Analysis
- Present/Future Value Analysis
- Sinking Fund Analysis
- Amortization Schedules
- Interest Conversions

HARDWARE REQUIREMENTS: 48 K OSI, $8^{\prime \prime}$ floppy, serial terminal system, OS-65U v. 1.2 or later.

FEATURES: package allows configuration to almost all non-ANSI terminals, AND user specification of printer port.

PRICE: $\$ 300.00$ (User Manual, $\$ 25.00$, credited toward Planner purchase). Michigan residents add 4% sales tax.

DEALERS: This program, of great value to lawyers, bankers, insurance people, and real estate people, will help you sell hardware! Inquiries invited.

A POWERFUL TOOL FOR EVALUATING ALTERNATIVES!
The first four programs alf: allow you to solve a named variable after changing another variable, let you net the difference between any displayed problems, provide selective saves to disk, give you very informative printouts based on the problems solved, and much, much more.

The "Amortization Schedules" program provides more flexibility than any other schedule known to GANDER. It lets you deal with balloon payments, early pay-offs, annual payment increases (by percentages or dollars), keeps a running total of your entire transaction to pay off, schedules payments by both month and year, and reports YTD totals based on user selected calendar OR fiscal years.
"Interest Conversions" lets you key in any nominal rate and reports the true effective rate for compounding semi-annually, quarterly, monthly, daily, and continuously, and allows the print out of interest tables (your choice of rate and increments). It also includes a simple catculator, which can be used without disturbing other problems displayed, and which contains three separate user addressable memories.

Finally, to aid pianning, the Menu program will generate a calendar for any month/year between 1901 and 2399, and accurately accounts for leap years!

"'It Flies"

1990 FNLLI2	LDA NR	PETCH OP Reperrajczs
2000	ASL A	
2010	STA T2	SAVE IT
2020	LDA $\# \$ 00$	
2030	RCL A	
2040	STA T2+1	handle msb
2050	LDA 12	FETCH LSB
2060	CLC	MUST CLEAR CARRY 1ST!
2070	ADC RJTPTR	ADD POINIER LSB
2080	STA PUTPTR	SAVE IT
2090	LDA PUTPIR+1	FETCH MSB
2100	ADC $\mathrm{T}_{2}+1$	ADD ANY CARPY
2110	STA PUTPIR+1	SAVE MSB
2120	LDA TFLAG	CHECR MATCH FIAG
2130	BED FNTLI6	NO MATCH? m
2140	JSR MENEJP	MARE RCOM POR EPMIRY
2150 FNDITS	LDY $\# \$ 00$	INI2
2160	LDA LNLO	GET REF. LINE * LSE
2170	STA (PUTPIR), Y	pur in table
2180	InY	BUMP INDEX
2190	LDA LNHI	GET MSB
2200	STA (PUTPIR), Y	gave it too
2210	[DY	INIZ
2220	LDA (CLDPIR), Y	GET CLD NR
2230	CLC	
2240	ADC	+1 1
2250	STA (CDPIR), Y	SAVE UPDATED PIGURE
2260	fas	AND guts
2270;		
2280 FNTLI6	LDA REFBOT	GET TABLE boition adoress
2290	OPP PUTPTR	SAME AS PUTPIR?
2300	ENE PNTLT	NOI LOOPI m PNILIT
2310	LDA REFBCI4]	maybe, chica msb
2320	OPP FUTPIR+1	SAMET
2330	beq FNDERR	YESI ERPROR! $=$ =
2340 FNLLI7	JMP FNELII	CONIINUE! ma
2350 FNDERR	JSR SIRCOT	
2360	. BYTE CR, LF	
2370	. BYTE 'TUS ERRCO	(', \$00
2380	JSR NUMOUT	
2390	JSR STPCOT	
2400	- BYTE ' In LINE	',\$00
2410	LDA LNLO	
2420	STA Resto	
2430	LTA LNHI	
2440	STA RESHI	
2450	JSR MUMOUT	
2460	JTP CTLF	
2470;		
2480 DISLIN	LDA *SPCSTR	RESET To table top
2490	STA FITPIR	
2500	LDA $\operatorname{sSRCSIR} / 256$	
2510	STA PUTPTR+1	
2520	JSR STROUT	
2530	. BYTE 'LINE MJe	BRRS', CR,LP,LP,\$00
2540 DISLI2	LDY $\# \$ 00$	
2550	STY COUNT	CuEAR LINES
2560	LDA (PUTFIR), Y	GET LINE \% LSS
2570	STA RESTO	SAVE IT
2580	INY	
2590	LDA (RUTPTR), Y	GET MSB
2600	SIA PESHI	SAVE IT
2610	INY	
2620	LDA (PUTPTR), Y .	GET Of REFERENCES
2630	STA NR	SAVE IT
2640	LDA PUTPIR	GET CORRENT POINIER
2650	CLL	
2660	ADC \ddagger \$03	ADD HEADER CPFSET
2670	STA FUTPTR	SAVE IT BACC OTT
2680	LDA PUTPIR+1	GET MSB
2690	ADC $\$ 500$	ADD ANY CARRY
2700	STA FUTPIR+1	SAVE IT BACK OTT
2710	LDA NR	GET OP REFS.
2720	BED DISLI6	$0 ? \Longrightarrow$ DISLI6
2730	JSR SIPCOT	DISPIAY TEXT
2740	. BYTE 'Line '	, \$00
2750	JSR Numart	display line
2760	JSR CTAF	DO <CR>〈LP> PAIR
2770	JSR CriF	DO ANOTHER
2780 DLSLI3	LDY \#\$00	DNI2
2790	LDA (PUTPIR), Y	fetch rep. Line \# Lsb
2800	STA Resto	SAVE IT
2810	DY	BUNP INDEX
2820	LDA (PUTPTR), Y	FEICH REP. LINE \# MSB
2830	STA RESHI	SAVE IT
2840	JSR NIDSUT	distlay ref. LINE
2850	IPA PUTPIR	GET CURREAT PONTER
2860	CIC	\{
2870	ADC ${ }^{\text {S }} 02$	add reference lengit
2880	STA FUIPIR	UPDAIE POINIER
2890	LDA PUIPTR +1	FETCH MSB
2900	ADC \$ $\$ 00$	ADD ANY CARRY
2910	SIA PUIPIR+1	SAVE TT TOO
2920	InC Count	bunp outrur Counr
2930	LDA COUNT	FETCH \% PRINTED CN LITE
2940	OPP \#SOA	DCNE 10 ?
2950	BCC DISLI4	$\mathrm{NO} \Rightarrow$ DISLI4
2960	JSR Crep	YESI DO A <CR> $4 . F$ ¢
2970	LDA 1500	INIZ
2980	STA count	CLEAR COMNIER
2990	BED DISLI5	AND SKIP A BIT
3000 DISLI4	LDA 4 SP	GET A SPACE
3010	JSR	PRINT IT
3020	JSR OTICH	TWICE, IN PACT
3030 DISLI5	DEC NR	SHOW WE DID A Regeraxce

3040	BNE DISLi3	LOOP 'TIL DOAE
3050	JSR CRLF	DO FINAL <CR> (LP)
3060	JSR CPLP	DO TMO
3070 DISLI6	LDA Rerbot	GET BOITCM ADDR.
3080	OPP PUTPIR	SAME AS FUTPTR?
3090	BNE DISLI7	NO! CONTINUE1 En>
3100	LDA REFBOT41	MAYBE, CHECK MSE
3110	OPP PUTPIR +1	SAME ?
3120	BED DISLI8	yesi go to variables
3130 DISEI7	JTP DISLI2	NOT DONE! m DISLI2
3140 DISLI8	JTP VAR	GO DO VARLABLES NOW
$3150 ;$		
3160 MOVEJP	LDA Rerbot	GET TABLE BOITIOM ADDR.
. 3170	STA FETPIR	GIVE 40 PETPIR
3180	LDA REFPOT41	
3190	STA FEIPTR +1	
3200 MOVEI	LDY $\$ \$ 00$	TNI2
3210	LDA (PEIPTR), Y	PEICH A CAARACIER
3220	LDY ${ }^{\text {P }} \mathbf{0} \mathbf{0 2}$	+2
3230	STA (PEIPRR), Y	MOVE TT UP Two bytes
3240	LDA FEIPTR	GET PEIPIR
3250	CIP PUTPIR	AT INSERTION POINT?
3260	bne mover	NO $=1$
3270.	LDA FEIPIR +1	MAYBE, GET MSB
3280	OMP PUTPTR +1	SAME ?
3290	BED MOVE4	YESI mal MOVEA
3300 HOVE2	LDI FEIPTR	NO, FETCH LSS IN Y
3310	bne movez	NOT \$00? mer Moves
3320	DEC FEIPIR+1	YESI DECPREMENT MSB
3330 HOVE	DEY	decrement lis
3340	STY FEIPTR	SAVE TT BACR OTP
3350	JTP MOVED	and coninue
3360 MOVEA	IDA REFBOT	GET BOTICM ADER. LSB
3370	CLC	
3380	ADC $\$$	ADD 2
3390	STA REFBOT	SAVE IT
3400	BOC MEVES	WATCH FOR PAGING
3410	INC ReFrom +1	biMP MSB CN PAGING
3420	LDA REFBOT+1	FETCH RESULT
3430	CTP MAXYEM	AT MEFORY TOP?
3440	BEg MOVES	$=$ ¢ OK mal MOVES
3450	bcs CaERr	PASTI \Rightarrow ERRCR
3460 MOVES	RIS	AND QUTT
3470,		
3480 CNERR	JSR SIPCUT	TELL USER
3490	. BYTE CR, $^{\text {L }}$	
3500	.byte 'alt of me	EMORY', CR,LP, SOO
3510	ISA DEPAJILI	GET CONSCLE DVt
3520	STA CuFiAg	make it Current
3530	JTP WARMNS	REIURN TO MENU
3540;		
3550 VRR	LDA STIX	LOAD 1ST TRACR OF TEXT
3560	OPP TRAEX	COMPARE TO CURRENT TRACR
3570	BEQ VARA	YES 1 NO RE-READ \Rightarrow
3580	STA TRAKX	GIVE IT TO 65D
3590	JSR SNAP	* DOS CONTEXT *
3600	JSR SEERX	MOVE HEAD TO TRACR
3610	JSR READ	READ TRACK
3620	JSR SWAP	- language coniext *
3630 VARI	IDA SOF	GET START OF TEXT
3640	STA INEEX	GIVE TO INDEX
3650	LDA SOF+1	
3660	STA TXTPIR+1	
3670	IDA \#SRCSTR	
3680	STA REFBOT	RESET BOTTCM OF
3690	LDA \$SRCSIP/256	REPERENCE table
3700	STA REFBOT+1	
3710	LDA $\geqslant 500$	
3720	STA TXTPIR	RESET TXIPTR TO BUPFER
3730	STA TYPE	INI2 INITIAL TYPE
3740	JSR SIRCOT	
3750	. BYTE CR,LP, 'VA	RIABLES', CR,LF,LF,S00
3760,		
3770 XVAR	JSR GEILIN	GET A LINE CP TEXT
3780	LDY $\$ \$ 00$	nN2
3790	LDA NLAH	CHDCR FOR E.O.F.
3800	ERE XVARI	
3810	LDA NLAL	
3820	ENE XVARL	
3830	JIP disvar	DONEI PRINT TPBLE
3840 XVARL	Lat txburp, Y	LOOK AT CHARACTER
3850	Bm XVAR	E.O.L. 77 mm XVAR
3860	OMP	RDYARK?
3870	bEC XVAR	YES! SRIP TO NEXT LINE
3880	CXP	SIRING LITERAL?
3890	BED XVAR3	YESI $n>$ XVAR3
3900	JSR CASECR	CORRECT ANY LOWER CASE
3910	OPP \#'	CHECK POR LETIER
3920	BCC XVAR2	NO $=1$
3930	CPP \#'z+1	
3940	boc geivar	YESI \Rightarrow
3950	OPP \#FNIS	FUNCTION?
3960	bige xVant	NO $=3$
3970	LDA $\$ 110$	YESI SHOW FUNCTICN
3980	STA TYPE	SAVE IT
3990 XVAP2	TNY	bLuTP TXBUFF Index
4000	bene XVARI	AND LOOPI
4010 XVAF3	nY	BLAPP TXBUEF INDEX
4020	LDA TXBUPF, Y	FEICH NEXT CAARACTER
4030	BED XVAR	E.O.L. ${ }^{\text {and }}$ (XVAR
4040	OP ${ }^{\prime \prime \prime}$	FIND TRAILING QUOIE?
4050	BRE XVAR3	NOI LOOP! $n \Rightarrow$ XVAR3
4060	BED XVAR2	YESS BUNP \& LCOP ma
4070,		
4080 GEIVAR	STA VARNAM	SAVE AS IST CHARACIER
4090	LDA \#SP	GET A SPACE
4100	STA VARNA 41	CIEAR 2ND CAARACTER
4110 GETVAL	INY	BUMP INDEX

4120	LDA TXBUFF, Y	get next character	
4130	BED GETVA2	E.O.L. 3 mm GETVR2	
4140	OPP I'8	INIERGER?	
4150	bed SEITNT	YESI m>	
4160	CMP \ddagger ' $\$$	SIRING?	
4170	BED SEPSIR	YESI m	
4180	CMP \#'	ARRAY ?	
4190	BED SETARR	YESI m	
4200	CPP \#S80	TOREN?	
4210	BCS GEIVA2	YESI ${ }^{\text {m }}$)	
4220	CaP ${ }^{\text {'0 }}$	Chica for mourric	
4230	BOC GEIVA2	NO \Rightarrow	
4240	CIP \#'9+1	CHECK AgAns	
4250	BOC GEIVAO	YESI $=$ - ${ }^{\text {P }}$	
4260	JSR CASECR	CORRECT FOR LONER CASE	
4270	CRP \#'A	VITCS POR ERT OP NaME	
4280	BOC GEIVA2		
4290	OTP ' $2+1$		
4300	BCS GETVA2	ENOI \Rightarrow	
4310 GETVA0	LIX VARNAM 1	CHECX 2ND CHAR.	
4320	CPX 4 SP	Clear?	
4330	ENE GETVAI	NOI LOOPI	
4340	STA VARNAM+1	YESI SAVE 2ND CHAR.	
4350	JMP GEIVAL	and Locpl	
4360 SETINT	LDA	SHCW IMTERGER	
4370	. BYTE SKIP2		
4380 SEISTR	LDA	SHOW SIRENG	
4390	CRA TYPE	COMBENE WITH CURPRMT	
4400	STA TYPE	SET TYPE	
4410	bne geival	AND LOCPI	
4420;			
4430 SETARR	LDA TYFE	GET OURRENT TYPE	
4440	ORA ${ }^{\text {S }} 80$	ADD ARRAY TYPING	
4450	STA TYPE	SAVE AND PALS THPCUGH	
4460 GETVA2	STY TMPPTR	SAVE TXBUFP INDEX	
4470	IDA SSRCSIR	INIS LOOK-UP POINIER	
4480	STA FUTPTR	RESET TO TOP OF TABLE	
4490	LDA \#Grcstr 256		
4500	STA PUTPTR +1		
4510;			
4520 GEIVA3	LDA PUTPTR	CHECK FOR END 15T	
4530	CMP Refict		
4540	ERE GEIVAA	NO m ${ }^{\text {\% }}$	
4550	LDA PUTPIR +1		
4560	CPP REFEOT41		
4570	bie getva	NO m	
4580	JMP NEWVAR	YeS! NEWI ma	
4590 GEIVA	LDY \$ $\$ 00$	nNIZ	
4600	STY Tflag	Clear match plag	
4610	LDA (PUTPTR), Y	FEICA 1ST CHARACTER	
4620	CMP VARTMM	SAME AS CURRINT?	
4630	bne geivas	$\mathrm{NO}!=$	
4640	${ }^{\text {nI }}$ I	Yes! CHECR 2 ND	
4650 4660		${ }_{\text {FEICH }}$ 2ND ${ }^{\text {c/PARE }}$	
4670	GNE GEIVA5		
4680	INY	YES! BCIPP INDEX	
4690	LDA (RUTPTR), Y	ALso chica type	
4700	CMP TYPE		
4710	BNE GETVA5	$\mathrm{NOL}=\square$	
4720	INC TELAG	yesi ser match flagl	
4730 GETVA5	LDY \ddagger S03	INIZ	
4740	LLAA (PUTPTR) , Y	PETCH OP REFS.	
4750	STA NR	SAvE IT	
4760	ASL A	* 2	
4770	STA TI	SAVE IT	
4780	LPA $\ddagger 500$	CLEAR	
4790	RCO A	ROTATE ANY CARRY IN	
4800	STA T1+1	SAVE AS MSB	
4810	LDA PUTPTR	FEICH PUTPTR	
4820	STA CDIFIR	SAVE POR LATER	
4830	CLC		
4840	ADC 1504	ADD HEADER CFFSET	
4850	STA PUTPIR	SAVE IT	
4860	LDA FUTPIR+1	FETCH HSB	
4870	STA CLIPPTR +1	SAVE IT POR LATER 100	
4880	ADC	ADD ANY CARRY	
4890	STA PUTPret1	SAVE MSB	
4900	LDA PUTPTR	REFEICH NEW LSB	
4910	CL		
4920	${ }_{\text {ADC }}$ TI	ADD NR * 2	
4930	STA PUTPIR	SAve iT	
4940	LDA EUTPIR+1	FETCH HSB	
4950	ADC T1+1	ADD MSB OF NR * 2	
4960	STA PUTPTR+1	SAVE IT	
4970	IDA TFLAG	FETCH MATCH FLAG	
4980	BEQ GEIVA3	CLEAR TRY NEXTI $m>$	
4990	LDA NR	OHECK NR AGARs	
5000	beg geivab	01 INSERT!	
5010	STA TI	Save it	
5020	IDA CIDPTR	GET CADPTR	
5030	CLC		
5040	ADC \$504	ADD HEADER CFFSET	
5050	STA FETPTR	Save resilf	
5060	LDA CI.DPIR +1		
5070	ADC \$ $\$ 00$		
5080	STA FETPIR +1		
5090 GETVA6	LDY	INIZ	
5100	LDA (FEIPIR), Y	FETCH Reperince	
5110	CMP LNLO	to Curreat line	
5120	BNE GEIVA7	NO1 m	
5130	INY	YES! BUMP INDEX	
5140	LDA (PEIPIR), Y	Check msb	
5150	CMP LNHI		
5160	bne getval		
5170	JMP GETVA	MATCH! SKIP ENIRY!	
		Listing continued	

I H S Computer Services Introduces ALPHA/OMEGA Series Software

ALPHA/OMEGA Business Management System

* Integrated Accounting System for hard disks -- G/L, $A / R, A / P, ~ I n v e n t o r y, ~ P / R, ~ P O S . ~$
* File locking on all Inventory and A / R functions for multi-user systems.
* Many advanced features, such as Departments (up to 99), Automatic Billing,

Budgeting, Comparison with Previous Year, Detailed Cust/Vend/Inven records.

* Fully screen formatted -- Uses OSI's CRT File to adapt to any terminal.
* OS-DMS TYpe 10 File Structure. Extensive use of Key Files for rapid access.
* Ideal for almost all types of businesses. Easily integrates with specialized applications.

ALPHA/OMEGA Agricultural Management System

```
* Comprehensive System for all fertilizer (liquid and dry) dealers.
* Comprehensive Crop Management from Lab Analysis to Field History. Complete and
                attractive reporting system for customers.
* Communications package for customers who have a computer. Runs on their computer
            and allows downloading of data over phone line.
* Completely integrated with Alpha/Omega Business Management System.
* Includes EPA reporting for restricted chemicals and MORE.
```


ClP CORNER

By: David A. Jones
9226 NW 17 St.
Pompano, FL 33065
Part II of a 2 part series on the 64 character modification.

For cassette and HEXDOS users, the simplest 64 character display to start using is ROM BASIC's output routine located at SBF2D and called from \$FF69. When this code is executed, it checks location \$FFEO for the initial cursor position (\$65), location \$FFEl for the width minus one of one line ($\$ 17$) and \$FFE2 to determine the model ($\$ 00$). Programming a new PROM and changing these locations to $\$ 40$. $\$ 3 \mathrm{~F}$, and $\$ 01$ respectively forces the output to be 64 characters per line. The drawback here is you must give up 24 character ver line capability and compatibility with any existing ClP software that depends upon the normal print routine.

One could also write a new display driver for 64 characters and keep the old for 24 characters thus retaining unmodified ClP compatibility. The new driver could be stored on tape, (possible but not practical), stored in EPROM (possible and practical if you have access to a PROM programmer), or stored on disk if you have a disk based system (the easiest way to gol.

The following code is written for the second approach, EPROM, but can be adapted to either of the other by locating the code in RAM. OS65D users will need to use different addresses for the flags and scroll routine but can eliminate the boot changes. I used the top of memory for this function and modified track zero to skip over this section when checking for the amount of memory present.

To start up in the correct mode and allow for mode changes, the boot routine at SEEFO must be changed. Originally, there was a screen clear routine in this code as well as one in the monitor at \$FEOO. Eliminating the first screen clear and making the second a subroutine enables us to clear the screen with a JSR and use the now unused memory locations to zero the new flags and set the screen width.

The input vector, originally SFFBA, is changed to \$F9A0 where a check is made to see if the user wants to switch to the enhanied input routine.

By not switching unless directed, maximum compatibility with existing software is maintained (control B being the exception and the switch command). If the switch is executed then the input flow is through \$F9Dl.

When $\uparrow B$ is chosen, the mode is changed to 64 and the screen editor is enabled. The new display is 28 lines of 64 characters with a 29th line used for status. A "p" shows up here when the printer is enabled. a " T " when in the terminal mode, etc. The cursor positioning portion of this code was derived from Kerry Lourash's "Cursor Control for the $\mathrm{ClP}^{\prime \prime}$ which appeared in the May 1981 issue of Micro. His version was for a 24 character per line display and included more features than the enclosed code. Get hold of a back issue, especially if you're interested in implementing a windowed display.

Note that the default mode is 24, and the switch is made by TB. (PORING locations 536, 537, 538, and 539 accomplishes this task inside a program). Also. note that the code has provisions for a parallel printer interface routine for which the code after the

2100 FASF EEACO2
2110 FA42 18
द120 FA43 9039
2130
2140 FA45 C9EC
2150 FR4P DOOS
2160 FA49 $203 C F B$
210 FA 4 C 2048FB
2130 FA4F 13
2190 FR50 $902 C$ 2200
2200
2810
FF5S 26915
2220 FA54 Del3
C22 FR54 De13
2238 FR56 $203 C F B$
2240
FA59
2240 FAS9 ADVBD
2250 FASC 38
2260 FA5D E940
2270 FA5F 800802
2289 FA62 FO1A
2280 FR62 EQIA
2290 FAG4 CEDCOC
2310 FA67 DOI5
2310

2320	FA69
2330904	
FRG6	
20016	

2330 FRG6 0016
2340 FAED ZQBAFE

2360 FAT3 18
2380 FATG BDOBOR
susa fa>g gaos
E40G FATB EEOCOL
2404
2420 FATE 2 203FB
2430 FASI 4900
 2440
2450
247 F FHEG 4 CB 9 FA

2480 FR89 8002
2490 FABL 48
2500 FA8D 8R
2510 FABE 48
2520 FARF Y8

2550 FR94 DO13 2560 FA96 $28 A E F E$ 2570 FR99 A980 2580 FA9B BDAB82 2590 FASE A9DE 2600 FARO BOOCO2 SEIC FARS BOESAFR

INC CURS
BNE OUTI
INC CURS
$I N C$
$C L C$
$B C C$
BACK
BCC OUTI
CMP \#SEC
ENE UP
JER PRINT
JSR EACKUP
CLC
GLC OUTI
UP
CMP \#:15
BNE DOWN
JSR PRINT
JSR PRINT
LOA CURS
LDE
$5 E C \quad \$ 40$
SFA CURS
BCS OUTI
DEC CURS+1
DEC CURS+
DOWN CMP \#\$04
CMP \#SO4
BNE OUT2 GNE OUTZ LDR PRINT CLC CURS ADC \#540 sTA cURS INE CURS+1 JER PUTCUR LOA \#B IMP \#FDB?
;
NEWOLIT JMF NEWOUT 3 5) A TMP2 51A
PHR PHR
TXA PHR THR LDA CFL LDA CFLO
ENE FRIN ENE FRIN JSR CLEAR LDA \#\$80 SIA CURS
LDA \#\#DA LDA \#FOQ
STA CURS+1 JSR PUTIUR BRANCH RLWAYS CTRL \leqslant

CTRL U

CTRL D

NON-PRINTING CHARACTER
10 BASIC

TEMP SAVE

WATCH
 THIS SPACE IN APRIL FOR NEW PRODUCT ANNOUNCEMENTS

p.o. box 7276
denver, co 80207
(303) 428-0222

D\&N MICRO PRODUCTS, INC.
 TERMS $\$ 3.00$ shipping, Foreign orders add 15%, Indiana residents aca 5% sales tax.

MICRO-65 COMPUTER

6502 CPU with 2 Mhz clock and DOS-65 operating system. 48K of low power static memory. 2 serial ports and 1 Centronics parallel port: $28^{\prime \prime}$ single or double sided drives. Satin finish extruded aluminum with vinyl woodgrain finish. 8 slot backplane, 48 pin buss compatible with OSI. Will run OSI 65D and 65U software.

```
MODEL65-1
    28" Single sided drives
MODEL65-2
```

 \(28^{\prime \prime}\) Double sided drives
 BP-580 8 Siot Backplane. \$ 47
OSI 48 pin Buss compatible

[^0]
PRINTERS
 Okidata

ML82A, $120 \mathrm{cps}, 10^{\prime \prime}$
$\$ 409$
ML83A, $120 \mathrm{cps}, 15^{\prime \prime}$. . $\$ 895$
ML84 Parallel, 200 caps, 15 " . \$1150

C. loth

8510AP Prowriter, parallel . . $\$ 419$
120 cps , correspondence quality
8510APD Prowriter, serial . . . $\$ 585$
F10-40PU Starwriter, parallel $\$ 1319$ Letter quality daisy wheel
F10-40RUStarwriter, serial. . \$1319
F10-55PU Printmaster $\$ 1610$ parallel, Letter quality daisy wheel
F10-55RU Printmaster, serial $\$ 1610$ DISK DRIVES AND CABLES
8" Shugart SAB01 $\$ 385$ single sided
8"Shugart SA851 \$585 double sided
FLC-6 6 ft cable from D\&N . . . $\$ 69$ or OSI disk controller to 8 " drive
51/4" MPI B51 disk drive with . . $\$ 450$ cable, power supply and cabinet. Specify computer type.
FLC-5 $1 / 4$ cable for connection . $\$ 75$ to $51 / 4$ drive and D\&N or OSI controller, with data separator and disk switch. Specify computer type

HARDWARE

OSI COMPATIBLE
IO-CA10X Serlal Printer Port . . $\$ 125$
Specify Device \#3 or \#8
IO-CA9 Parallel Printer Port . . $\$ 150$ CMOS-MEM
64K CMOS static memory board, uses 6116 chips, 3 16K, 18 K and 2 4K blocks, Partitionable for multiuser, OSI type disk controller, 210 mapped serial ports for use with D\&N-80 CPÜ. Ideal way to upgrade from cassette to disk.
64K CMOS-MEM $\$ 490$
48K CMOS-MEM $\$ 390$
24K CMOS-MEM $\$ 250$
16K CMOS-MEM $\$ 200$
Controller add. $\$ 90$
210 mapped serial ports add. $\$ 125$
on assembled memory board
Z80-IO 210 mapped serial . . . $\$ 160$ ports for use with D\&N-80 CPU card
FL470 Disk Centrolier $\$ 155$ Specify $51 / 4$ or $8^{\prime \prime}$ drive

STANDARD

 CPIM FOR OSI
D $\& N-80$ CPU CARD

The D\&N-80 CPU allows the owner of an OSI static memory computer to convert to Industrial Standard IBM 3740 single density disk format and CP/M operating system. Double density disk operation is also supported for 608 K of storage on an $8^{\prime \prime}$ diskette. When used with a $51 / 4^{\prime \prime}$ disk system 200 K of storage is provided. Includes parallel printer and real time clock. Also available for polled keyboard and video systems. Compatible with C2, C3, C4 and 200 series OSI computers.
D\&N-80.P $\$ 349{ }^{\prime}$

CP/M2.2•........... $\$ 150$
.64K CMOS-MEM with D\&N-80

HARD DISK DRIVER $\$ 140$ Allows D\&N-80 CPU board to control OSI 40 or 80 meg hard disk unit. Will not destroy OSI files. Will also allow for a true 56 K CP/M system. Specify 40 or 80 meg drive.
BUSS TRANSFER \$135
Allows for D\&N-80 and OSI CPU to be in the computer at the same time. Toggle switch provides for alternate CPU operation.

DISK TRANSFER
 $\$ 100$

Utility program to transfer OSI CP/M format disk to IBM 3740 single density format. Will also transfer IBM to OSI format.

SYSTEM HARDWARE
REQUIREMENTS
D\&N-80 CPU, D\&N FL470 or OSI 470 controller, 48 K memory at 0000-BFFF, 4K memory at D000-DFFF, two disk drive cables. FORMAT TRANSFER \$15 You supply software on 8" diskette D\&N will transfer OSI CP/M format to IBM 3740 CP/M format. Can also transfer IBM 3740 CP/M format to OSI CP/M format. Original diskette returned.
branch is not shown. My parallel printer interface is unique to my surplus printer so the particular driver is not of general interest but the hook is. You could use the check to branch to any other routine for your unique system. In addition $\uparrow X$ causes a jump to the extended monitor relocation and residing in EPROM at $\$ 9800$, again something unique to my system but can be implemented on yours by installing an EPROM there. Refer to my article in Feb 1983 Micro.

Control A clears the screen (POKING 535,0 clears the screen from inside a program the next time an output statement is executed. Control H branches to a hexadecimal to decimal conversion routine. see my article in PEEK(65) June 1982 for comments on the code. Control z will cause a branch to a user routine located at $\$ 0222$ (546). Control Q, XON, and control S, XOFF, are also honored, see PEEK (65) Dec. 1980 for more information here.

The source code is divided into 2 sections, thus the separate declarations of labels and variables. Section 1 pertains to the new input/output routines and section 2 to the new boot mechanism.

The jumps at newin and newout are used to allow assembly without defining absolute addresses for the beginning of each of these routines.

To use the screen editor the cursor is positioned by using the control keys. Control U moves the cursor up, control D moves it down and control < and $>$ move it left and right respectively. Control/reads into the input buffer any character the cursor passes over. Either shift o or rubout will erase a character already entered and will move the cursor back one space.

Referring to those back issues again, you'll note that the Clp does not use any of the code from $\$ F 800$ to $\$$ FBFF. I previously suggested that a cassette load routine be located at $\$$ F800-F89F (March 81) and a cassette save routine be located at \$F8A0-F99F. This leaves SF9A0-FBFF free for our display driver. Not all of this space is required for this implementation so you can add some of your own enhancements.

2620	FRAG 301742		Sta cFlu	clear flaco
2640	FAAS A00402	PRIN	LDA PFLG	
2650	FAAC C950		CMP \#'P	CHECK FLAG
2660	FARE 1006		BNE CRET	IF NOT SET
2670	FAGO AD日20?		LDA TMPE	
2680	FHB3 4CRGFA		JMP CRET	WOULD JSR to printer routine here
2780	Frbe honzoz	CRET	Loh tmpe	
2710	FAbs 6980		CMF \#FOD	
2720	FABE 10014		bNE ERASE	
2730	FABD A9EO		LDA \#FEE	ERASE CURSOR IF CR
2744	FABF 800162		5 STA TMFI	
2750	FACP za3cfe		JSR PRINT	
2769	facs anames		LOA CURS	
2770	FACS 18		CLC	
2780	FACP 6940		A1C \#\$40	
2790	FRCE SDGBE2		STR curs	
2800	FACE 4CFCFA		JMP NEWL	
2820	FAD 1695	ERRSE	CRiP \#\$5F	SHIFT 0
2834	FADS DQ13		ENE CCHAR	
2843	FADS C60E		DEC SEE	
2850	FADC 7920		LDA \#SEO	ERASE CHAR UNDER CURSOR
2860	FAD9 S00102		STA TMP	
2870	FADC $203 C F E$ FADF $2048 F B$		JSR PRINT JER BACKUP	ERASE CURSOR
2899	FREE 2033 FB		JSR PUTI	OISPLAY CURSOR
2900	FRES 4CIDFB		JMP EXIT	
2920		CCHAR	CNP \#5E0	GUN'T FRINT CONTROL CHARRCTERS
2930	FAEA 3031		BMI EXIT	
2940	FAEC 808102	Letter	STA TMPI	
2950	FREF za3cFs		JSR PRINT	
2960	FAF3 EEOBAE		INC CURS	
2970	FRF5 ADQB02		LDA CURS	
2989	FAFS $293 F$		AMD \#\$3F	
2994	FAFA DOIE		bNE OUT	
3400			;	
3010 309	FAFC ADBRO2	NEWL.	LDA CURS	Stakt new line
3 za	Fbal sobsu2		STA CURS	
3040	Fe64 6989	,	CMP \#\$80	
3050	FB6G Deat		ene eloik	
3060	feas hotacaz		LOA CURS+1	
30,70	FEGE C90\%		CMP \#\#D;	
3480	FBED Duge		BNE OUT	
3690	F60F 2054FB		JSR SCRL	
3180	FBİ ADGBAE	block	Loh curs	
3120	Fbis 0403		BNE OUT	
3130	FbIT EEGCOE		INC CURS+1	
3140			;	
3159	fbla 2e28Fs	OUT	JSR PUTCUR	
3160			j	
31,0	FBID 68	EXIT	PLA	
3180	FBIE 78		TPY	
3190 3200	F8IF 68		PLA	
3200	FR20 A		TAX	
3210	FEE 68		FLA	
3229	FB22 208978		JSR XONF	
3239 3240	FB25 4CECFF		JMP OLDOUT	
3250			,	
3260	FB2S A9RD	PUTCUR	LIA \#\$AD	LOA
3270	Fber soliol		STA CURS-1	
3280	FB2D 206402		JSR CURS-I	
3290	FB30 s06102		STA TMFI	
3309	FB33 4980	PUTI	LOA \#\#8D	5TH
3310 3329			STA CURS-1	CURSOR CHAR
3330	FB3A 0008		BNE PRINTI	
3340				
3350	FB3C R980	FRINT	LDA \#\#SD	STA
3368	FBSE SDORA2		SIA CURS-1	
3379 3380	FB4 FB4 400102 2a0naz	PRINTI	LDA TMPI	
3399	FB4? 69	PRINT	RTS	
3409			;	
3419	FE4B ADes02	brckup	LOR CURS	
3429	F848 D803		BNE BKI	
3439	F840 CE0c02		DEC CURS +1	
344818	F850 CEOBO2	BKI	DEC CURS	
3459	F6:53 64		RTS	
3469 3470			:	
3489	FB54 R R 200	SCRL	LOY \# ?	
3499 3598	F8S6 896276	mave	LDA CODE-1, Y	CUDE TO EE RELOCATED
3509	F859 990602		STA SCFM-1, Y	TO RAM AT sazes
3529	FBSD DQF7		BNE MOVE	
3530	F65F 12007		LDX \#'	
3546	FB61 Da07		bNE LINE	skrp code to be relochted
3556 3560	F663 69C400	CODE	;	
3570	FE6E 99800	code	STA sinaso.y	SIARO MOVE If TO HERE
3583	F869 68		RTS	mino move if to here
3590				
3640	F86 zanaraz	LINE	JSR SCFM	
3619	FB6D 68		INY	
3629	F86E DaFA		BNE LINE	
3639	FEFO EE0902		INC SLFM 2	
3640	FB73 EE0Cu2		INC SCTO+2	
3650	FB76 CA		${ }_{\text {ONE }}$ SNE LINE	
36			BNE LINE LDA \#F2G	
3680	fbi'b hosf		Loy \#F3F	Listing continued

THE NEW CHALLENGER PERSONAL COMPUTER

By: Bruce Showalter
857 Cedar
Abilene, TX 79601
The Superboard II/ClP generated no small amount of enthusiasm when it was introduced in 1979. Even today it has a loyal following. Its big brother, the C4P, is an even more praiseworthy machine.

But times change. The competition learned by the Cl's example and went hard after the low-end user market. The
result was that the Challenger's market was choked off by the flood of $2 X-81 s . \quad T R S-80 \mathrm{~s}$, VIC-20s and Ataris.

The subsequent generations of OSI management have elected to continue pursuing the small business market. They evidently don't want to be burned at the personal market level again. But they don't have to, they can learn from the competition, just as the competition learned from them. Let's proceed, therefore, to propose a future version of the Challenger personal computer, the $\mathrm{C}-65$.

Almost every owner of the Cls has modified the hardware. This points to obvious inadequacies which should have been corrected by the designers early on. Their attempt to recover the fumble is indicated by the revised edition of the S.1l/Clp. So, let's build in the most desired features from the outset.

One of the most popular features of the Challengers was their changeability. The hardware hackers loved 'em. With that in mind, let's take a page from the Apple hardware design and build with multiple
plug-in boards. We can use either the KIM-44 boards or the OSI-48 boards. If we choose the latter, the size should be about half the original. The only exception would be the video circuit, about which more later. The purpose of using smaller boards is to divide the computer into modules. Each module can be owner-customized or replaced entirely. Implicit details include sockets for each and every IC and use of LS-TTL throughout the system.

The first module is the CPU board. It consists of the microprocessor and suitable line buffers. There is also a clock circuit which can be easily modified or by-passed altogether. This design permits the owner to substitute another CPU of his own choosing. The CPU module is configured for a l-mhz clock, but there is also a 2-mhz signal available for those who desire it. The WAIT circuit divides the clock speed in half. The CPU Reset line is connected to an R-C circuit which produces a Power -On-Reset pulse.

The MONITOR + BASIC module comes next. $\cdot 2716$ EPROMS are used to facilitate other 'operating systems and languages. We could use 2732 or 2764 EPROMS, but the 2716 is already well established. By putting firmware on a board by itself, the owner can change language and $O S$ by merely switching boards.

Next, we have the KEYBOARD ADDRESS module. This consists of merely the decoders and buffers. A cable joins this board to the keyboard itself. This module will most likely remain unchanged, unless a new location in the memory map is desired. As with the previous Challengers, we use a polled keyboard. However, significant improvements are made. A hexadecimal numeric pad is added. The RUBOUT key is relabeled CLS to incorporate that function. Since REPEAT is programmed into the OS, we relabel that key for BACKSPACE. And we replace the LINE FEED key with CAPS LOCK. ESCAPE becomes CANCEL (Shift P). More will be said about the keyboard when we discuss the OS.
The CASSETTE + RS-232 I/O is built on the next module. Not much is different from the Cl circuitry, except that the RS232 interface is installed. Note that the ACIA clock is derived from an on board source, rather than by dividing down a master clock
signal. There are provisions for changing the ACIA clock from 4800 hz to 9600 hz . Preferably, a high speed cassette I/O (such as a VIC Rabbit) could be installed in place of the existing circuit. This would probably require a entirely new module.

Choice of the VIDEO module may be left to the purchaser, since tastes vary on this subject. Some prefer an 80column display. while others are satisfied with 64 or 48. Some prefer color and hi-res grahics. Perhaps the best bet would be to offer a 540 video board (less keyboard/analog inputs) and have second source vendors provide alternates (such as the Orion SEB). The buyer could elect to omit the 54Ø module from the C-65 package at the time of purchase if he didn't want that version.

RAM modules would be fairly standard. I'd recommend CMOS 2K x 8 chips, with each module holding 16K.

The DISK module would be sold like before, either as an expansion option or in a full fledged disk system. As with the video modules. secondsource vendors could provide alternate configurations. ©

The foregoing implies a burden on OSI to offer hardware documentation and licensing to other vendors. This omission in the past, I believe, destined OSI's failure in the personal computer market. Software and alternate hardware from second-source vendors have contributed immensly to the success of Apple, Commodore, TRS, Atari, and IBM. Texas Instruments' recent failure in this market lends even more support to this argument.

Before we leave our discussion of hardware, we should take a look at the bus. Neither the KIM-44 nor the OSI-48 busses are completely satisfactory to me. A table gives the revised c-65 bus definitions I propose. No attempt is made to allow for 80-type or 68-type processor lines. We'll leave $C P / M$ to OSI's line of small business máchines.
Now it's time to discuss the Operating System. For the machine-code hackers, a versatile MONITOR is a must with an assembler/editor. The keyboard format, we touched on earlier. To continue, we interpret either Left SHIFT, Right SHIFT, or SHIFT LOCK exactly the same: all character keys input their upper case symbol. Otherwise, the case depends

DISK DRIVE

 RECONDITIONING
WINCHESTER DRIVES

FLAT RATE CLEAN ROOM SERVICE.
(parts \& labor included)
Shugart SA1002 5meg $\$ 390.00$
Shugart SA1004 10meg \$450.00
FLOPPY DRIVE FLAT RATES
Parts \& Labor Included (Missing parts extya)

$8^{\prime \prime}$ Double Sided Siemens	$\$ 170.00$
$8^{\prime \prime}$ Single Sided Siemens	$\$ 150.00$
$8^{\prime \prime}$ Double Sided Remex	$\$ 225.00$
$8^{\prime \prime}$ Single Sided Shukart	$\$ 190.00$
$8^{\prime \prime}$ Double Sided Shugart	$\$ 250.00$
51/4 M.P.I. Single Sided	$\$ 120.00$
51/4 M.P.I. Double Sided	$\$ 150.00$

ONE WEEK TURN AROUND TYPICAL You'll be notified of -

1. The date we received your drive.
. Any delays \& estimated completion date.
. Date drive was shipped trom our plant.
. Repairs performed on your drive.
2. Parts used (\# and description).

90 day warranty -
Write or call for detailed brochure
We sell emergency parts Phone: (417)485-2501
 FESSENDEN COMPUTERS 116 N. 3RD STREET OZARK, MO 65721

upon whether CAPS LOCK is depressed. This key shifts only the alpha characters into upper case. All other characters are lower case. None of the following keys are affected by case: RETURN, SPACE, BACKSPACE, CONTROL, CANCEL. The RETURN function scrolls the display, but doesn't send a LINE FEED command to the ACIA.

BASIC-IN-ROM could stand some improvements. Right away, we
fix the Garbage Collector. CLS is a must. Next, we incorporate a GET or INKEY statement. Another feature I consider especially useful is the handling of NULLS. I recommend that the number of NULLS be stored in RAM. So when we boot up, NULi: $=10$. But with a POKE, NULL could be set to anything from zero to 255. One more useful statement is PRINT AT. There are others which I will leave for you, the readers, to recommend.

KIM-44 TO C-65 BUS CONVERSION
PIN\#

1	GND		GND
2	SYNC	DISCONNECTED	
3	RDY	REDEFINED	WAIT
4	IRQ		IRQ
5	-15		-15
6	NMI		NMI
7	RST		RST
8	D7		D7
9	D6		D6
10	D5		D5
11	D4		D4
12	D3		D3
13	D2		D2
14	D1		D1
15	D0		D 0
16	BDSEL	DISCONNECTED	
17	+15		+15
18	DMA	REDEFINED	EXCLK
19	+8	DISCONNECTED	
20	+8	DISCONNECTED	
21	+5	. . .	+5
22	GND		GND.
A	GND		GND
B	A0		A0
C	Al		Al
D	A2		A2
E	A 3		A3
F	A4		A4
G/H	A5		A5
J	A6		A6
K	A7		A 7
L	A8		A8
M	A9		A9
N	Al0		Al0
P	All		All
R	Al 2		Al 2
S	Al3		Al3
T	Al 4		Al 4
U	Al5		Al 5
V	02		02
W	R/W		R/W
X	02	DISCONNECTED	
Y	+5		+5
Z	GND	-	GND

OSI-48 TO C-65 BUS CONVERSION
PIN\# OSI-48 MODIFICATION C-65

1	$\overline{\text { WAIT }}$		$\overline{\text { WAIT }}$
2			
3	NMIQ		$\overline{\text { NMI }}$
4	DD	DISCONNECTED	
5	DQ		
6	D1		DQ
7	D2		D1
8	D3		D2
9	D4		D3
16	D5		D4
11	D6		D5

12	D7		D7
13	D8 DI	DISCONNECTED	
14	D9 DI	DISCONNECTED	
15	Dl0 DI	DISCONNECTED	
16	Dll DI	DISCONNECTED	
17	RST		RST
18		REDEFINED	EXCLK
19	Al 9 DI	DISCONNECTED	
20	Al 8 DI	DISCONNECTED	
21	Al6 DI	DISCONNECTED	
22	Al7 DI	DISCONNECTED	
23	+12 IN	INCREASED	+15
24	-9 IN	INCREASED	-15
25	+5		+5
26	+5		+5
27	GND		GND
28	GND		GND
29	A6		A6
30	A7		A 7
31	A5		A5
32	A8		A8
33	A9		A9
34	Al		Al
35	A2		A2
36	A3		A3
37	A4		A4
38	A ${ }^{\text {d }}$		A®
39	$\emptyset 2$		02
40	R/W		R/W
41	VMA	TIED HIGH	+5
42	VMA-02	2 REDEFINED	02
43	Al 0		Al0
44	All		All
45	Al 2		Al 2
46	Al3		Al 3
47	Al 4		Al 4
48	A15		Al 5
READER PROFILE			
ED:			
I think it's time I wrote and			
supported this super journal.			
My contribution is a descrip-			
tion of a uniquely expand			
79.for \$330. Gradually, and I			
	mean g	gradually,	I pla
with hanging stuff onto the			
expansion port.			
Now, as depicted in the fig-			
ure, I've totally designed, engineered, and built a 44 pin			
bus card rack system, and it			
Technically:			
- the adapter / driver board connects the 40 pin DIP port to a 40 pin IDC header. This card generates signal DD and			
decodes slots in the rack.			
- a digital I/O card uses two			
$6522 s$ to do general purposestuff.			
- a complex sound generator card occupies its own slot where a 6821 drives into a GI AY-3-8910. An ASCII keyboard will also be connected to the I/O Port of the AY-3-8910.			

an 80 column card based on the 6545 CRTC. I've dedicated 16 K of CPU mapped memory to video. Scrolling is accomplished from a 20 key keypad hung on the digital I/O card. (Not used by OS 65D, though.)

- the floppy disk controller is a copy of the 470 design.

The system:

- runs C4 / C8 software
- has $28^{\prime \prime}$ Siemens SS / SD drives
- capability of 48 K memory, accomplished by disabling BASIC.
- printer OKIDATA 82A
- front panel switches:
* 300 or 1200 baud
* BASIC in ROM on-off
* CPU clock 1 or 2 Mhz
* Functional C4 or Cl enable switch
- US Robotics "Password" modem

The superboard has been totally modified to provide for more address decoding. I installed the video mod from Progressive Computing and I enabled BASIC device \#4 (parallel printer port).

I'd like to say that this has been a lot of fun, sweat, and tears. I've had to rediscover the meaning of much engineering design work. The more remarkable thing is that I've never had a formal course in electronics.

Coming shortly, I'll be adding a card designed by a Rockwell engineer. The card allows any 6502 machine to run CP/M. I will report my progress on that.

OS I REPA|RS
bOARD LEVEL SERVICE ON C2, C3 \& CD SERIES, INCLUDING POWER SUPPLIES, 8" FLOPPY
DRIVES, CIRCUIT BOARDS (GOLD UPGRADE)

ONE WEEK TURN-A-ROUND TYPICAL

SOKOL ELECTRONICS, INC. 474 N. POTOMAC ST. HAGERSTOWN, MD 21740
(301) 791-2562

I need to acknowledge my beautiful wife who has tolerated the money, time, and boring computer conversations. Shè can be considered a computer widow, but I really appreciate her.

LETTERS

ED:
Our firm runs a three user, ten megabyte Denver Board OSI (a converted C 2) with OS65U V.1.43 operating system.

We have been trying to use $W P$ 3.3 word processor; but unfor-

I know Y^{\prime} all would like to know how much I've spent. Well, not including the printer or modem, I think it's been under $\$ 1600$.

Gene W. Anderson Sunnymead, CA 92388
tunately the computer"freezes" immediately after the response to the question:
"Do you want Device 8 to be set up for a serial printer?"

We have entered two new lines numbers 211 and 212 as stated in the September issue of PEEK, but this does not make any difference!

Could you, or one of your readers, please help?

John S. Spry
Wellington, Australia
John:
See "Bug Fix" further on this issue.

Peek (65) Staff

* * * * *

ED:
This is the first program I have submitted to PEEK (65). I felt California should be better represented. I have a C24 PMF , but the program should certainly run on a C4 and I have been told it will run on a Cl, but I cannot confirm this.

The program, re-written for OSI, came from Projects in Machine Intelligence by D. Heiserman. When first run, you are asked for two inputs in ASCII code. The ${ }^{*}$, 42, makes a nice creature. (yes, I have withstood the impulse to title the program Creature Features). An entry of 32 for the trail will give you an invisible trail, while 161 will give a graphic symbol which makes a nice trail. The border is then drawn and the area within the borders is filled with 64 killable obstacles, randomly selected and placed. The creature or Alpha then zips around the screen at random, encountering obstacles and the border itself. Upon an encounter, there is a 50\% chance the Alpha will effect a kill and continue on in the same direction. In the case of the border, the creature

NEED OSI COMPATIBLE PRODUCTS?

We sell SCIENCE AZTEC'S full line of OSI compatible PC Boards \& Systems.

- 8550

Communications Interface (replaces 550)

- 8590 HD Controller (replaces 590/525)
- 8592 HD Interface
- 8588 Active Terminator
- 919

9 Slot back plane with active/ passive terminators

- 68000 Boards to be announced shortly
- BD 14" 80 MB Hard Disk, with controller, interface \& cable
- 8470 Floppy Disk Controller (replaces 470)
- $84728^{\prime \prime}$ or $51 / 4^{\prime \prime}$ Floppy Controller IBM Format
- 8516 GT 3.3 Mhz CPU, 64k Static DMA
- 8528 Up to 4 partition GT memory, Static RAM

Prices available for Disk Subsystems as well as complete Computer Systems

BECTERM

12 Trans-Canada West Levis, Quebec G6V-4Z2 418-837-5894
can try to take a bite out of the border - it can put a dent in the border, graphic symbol 153, but can never completely escape. After the program runs for awhile, you will find most of the obstacles gone and the borders badly chewed. If you use a visible trail and the Alpha becomes cornered by its own trail, it becomes rather nasty and chews its way to relative freedom. And the Alpha has no qualms about turning cannibal if it encounters a like creature. If you use a trail code number between 128 and 154, the trail becomes impenetrable and the Alpha soon becomes hopelessly entrapped by its own trail. In all cases, the program will run until it is stopped with a CTRL'C'.

Possible modifications include adding color to the program and varying the number of obstacles. The subroutine in line 1040 can be used to display scoring - how many times is the border hit, how many moves are "good", how many kills, etc.. For persons more interested in the theory of machine intelligence and psychology, I would refer them to Mr. Heiserman's book Tab \#1391.

If there is much interest in
this program, I have a number of other programs available. The Beta programs display a learning response and could apply to the programming of a robot.

I enjoy PEEK (65) very much and am looking forward to the articles on I / O as this area is giving me some problems, I think more so since I have an older C2. I would like to connect a modem and I also have an ADM-2 display terminal I would like to use. At one time there was a local OSI User's Group, but it has fallen on hard times.

30 REM**KILLER ALPHA DEMO,OSI V3.3**40 PRINT! (28)
50 PRINTI"SIRIKE 'R. SHIFT' TO START..."
60 IF PEEK (57iøの) <>3 THEN $\mathrm{N}=\mathrm{RND}(8): G O T O 60$
70 INPUT "SELECT A CRFAIURE CODE"; ${ }^{n}$
80 PRINT: INPUT "SELECT A
TRAII CODE";TT
90 PRINT! (28): PRINTTYOUR CREATURE LOOKS LIKE THIS--";CHRS(CT): PRINT
95 PRINT' "I'TS TRAII LOOKS LIKE THIS--"; CHRS (TT) : PRINT
100 INPUT "IS THAT WHAT YOU WANT (Y/N) ${ }^{n} ; \mathrm{S} \$$
105 IF S\$く>"Y" THEN 70
107 REM**ALPHA MAINLINE,OSI V3.3**
110 PRINT! (28):GOSUB 1000

112 D\$="KILLER ALPHA DEMO":D=55188: GOSUB 1940
$115 \mathrm{CP}=54328+\operatorname{INT}(5 * \mathrm{RND}(8))-2+64$ *
INT(5*RND(8))-2: POKE CP,CT
$120 \quad$ FOR $N=1063$
$125 \mathrm{TP}=53400+\mathrm{INT}(1500 * \mathrm{RND}(8))$: IF PEEK (TP) < > 32 THEN 125
126 IF TP>55039 THEN 125
130 POKE TTP, INT ($33 * \operatorname{RND}(8))+33$: NEXT N
$135 \mathrm{CI}=\operatorname{INT}(5 * \operatorname{RND}(8))-2$
$136 \mathrm{G}=\mathrm{INT}(5 * \mathrm{RND}(8))-2: I F \quad \mathrm{CI}=0$
AND $\mathrm{G}=0 \mathrm{~T}$ THEN 135
140 Gasub 2000
145 IF NOT(CX=32 AND CY=32)
THEN 165
150 POKE CP,TT
155 CP=NP: POKE CP, CT
160 GOIO 140
$165 \mathrm{KC}=\mathrm{INT}(2 * \mathrm{RND}(8)): \mathrm{IF} \mathrm{KC}=0$ THEN 135
170 IF PEEK (NP) >=128 AND PEEK (NP) <=154 THEN POKE NP, 153:GOTO 140
175 POKE NP, 32:GOIO 140
1 1006 REM**BORDER, OSI V3.3**
$1005 \mathrm{~F} \|=53376$
1006 Fl=53439
$1007 \mathrm{~F} 2=54976$.
1008 F3=55039 40
1010 FOR N $=\mathrm{F} 0$ TO Fl
1011 POKE N, 128
1012 NEXT N
1015 FOR N=F2 TO F3
1016 POKE N, 135
1017 NEXI N
1020 FOR $N=F 0$ TO F2 SIEP 64
1021. POKE N, 149:NEXT

1025 FOR $\mathrm{N}=\mathrm{Fl}$ TO F3 STEP 64: POKE N, 149:NEXT
1030 POKE FO,128:POKE F1,128
Continued

From Gander Software

The Ultimate Personal Planner

TIME \& TASK PLANNER

30 day free trial - if not satisfied, full refund upon return

- "Daily Appointment Schedule"
- Work Sheets for all Aspects
- "Future Planning List" - sorted
- Year \& Month Printed Calendar
- "To Do List" - by rank or date.
- Transfers to Daily Schedule
a simple but powerful tool for success
Put the two most effective success techniques so work for you - every day of every year. Just five to ten minutes a day allows your mind and dreams to take charge of your life.

Set Your Goals: To reach a goal, you have to kn ow where you are going. Just enter your goals or future appointments and let your computer remind you.

Set Your Priorities: Success depends upon doing first things first. Assign priorities (1-99) to your "To Do" list, let the computer kee; them ranked by date or priority, and then g эt to work. When the time comes, the computer will help you transfer items to your choice of time on the daily Appointment Scheduler.

Technicalities - Appointment Scheduler: 18 time slots per day (you define) for 60 days. To Do List: 60 items ranked by date or priority. Future Planning: 60 long range iteris, date sorted; days to event or days overdue. Transfer to Scheduler: just tell it the date and time. Printed Calendars: Year on a page and one month box planning; any month, any year. System uses both Julian and Gregorian calendars to handle dates from 1910-2399 and produce day of the week. Screen and menu driven; DMS Keybase compatible files. Detailed 38 page manual. Simple installation; FD to Multi HD. Files for 5 users $=5 ; 400$ appointments. Unlimited Warranty.
 OS-65U v. 1,3 or later.
FEATURES: package allows configuration to ANSI standard and almost all non-ANSI terminals. AND user specification ol printer port.

PRICE: $\$ 150.00$ (User Manual, $\$ 25.00$, credited toward TTP purchase). Michigan residents add 4% sales tax.

DEALERS: Your inquiries are invited. This program should be on every 65 U machine, including your own. At dealer prices, you could bundle this superior package as a sales incentive

GANDER SOFTWARE

3223 Bross Road "The Ponds"
Hastings, M1 49058
(616) 945-2821

Bug Fix for the WP-3 and WP-6502 Word Processing Programs
when using DBI's Denver boards.

WP-3 CHANGES
CREATE FILE - BASIC 425088 N PASS
WP-3 Program (WP-3)
24 IF $\operatorname{PEEK}(16317)=5$ THEN GOSUB $400 \emptyset$
115 IF PEEK (16317)=5 THEN GOSUB 4010 :GOTO 140
215. IF $\operatorname{PEER}(16317)=5$ GOTO 360

1070 IF PEEK $(16317)=5$ THEN GOSUB 4020 :GOTO 1080
1075 POKE8778,0:POKE8779, 152:X=USR(X)
4000 FLAG 52,3,0
4001 FLAG 52,5,0
4002 FLAG $52,6,0$
4003 FLAG $52,8,0$
4004 RETURN
4009 REM *** SET DV\#8 FOR PARALLEL PORT ***
4ø1Ø FLAG 57,0,4,8
4011 RETURN
4019 REM *** SET DV\#8 TO SERIAL PORT ***
4020 FLAG $57,0,1,8$
4021 RETURN
WP-3 Program (BASIC)
8Ø IF $\mathrm{X}=5$ THEN AS="BASIC4" : REM MULTIPROCESSING BASIC
WP6503 CHANGES
5 IF PEEK (65535) $=254$ THEN POKE 26885,76:POKE 26886,213: POKE
26887,104
WP6502 CHANGES
5 IF PEEK (65535) $=254$ THEN POKE $26876,76:$ POKE 26877,264:POKE 26878,104

Continued from page 20
1031 POKE F2,135:POKE F3,135
1035 REIURN
1040 FOR Y=1 TO LEN(DS):POKE D+Y,ASC
(MIDS (DS,Y, 1)) :NEXT:REIURN
200D REM**SEARCH AHEAD, OSI V3.3**
$2005 \mathrm{NP}=\mathrm{CP}: C X=32: C Y=32$
$2010 \mathrm{SI}=\mathrm{SGN}(\mathrm{CI}): \mathrm{SJ}=S G N(\mathrm{CJ}): A I=A B S$ (CI) :AJ=ABS(CJ)

2015 IF AI=0 THEN 2030
2016 AI=AI-1
2019 IF SI>0 THEN NP=NP+1
2020 IF SI>Ø THEN 2025
$2621 \mathrm{NP}=\mathrm{NP}-1$
2025 CX=PEEK (NP)
2030 IF AJ=ø THEN 2045
2031 AJ=AJ-1
2034 IF SJ>g THEN NP=NP+64
2035 IF SJ>0 THEN 2040
$2036 \mathrm{NP}=\mathrm{NP}-64$
$2040 \mathrm{CY}=\mathrm{PEEK}$ (NP)
2045 IF NOT ($\mathrm{CX}=32$ AND CY=32) THEN REIURN
2050 IF AI=Ø AND AJ=Ø THEN REIURN
2055 GOIO 2015
Robert Jents
El Sobrante, CA 94803

* * * * *

ED:
First, let me thank you for the software listings. I had no idea there was so much available.

In the November issue, Frank Glandorf mentioned that the locations for the comma and

MEM PLUS

BARE	\$ 75	32K	\$300	52K	\$415
16K	\$200	40K	. \$350	56K	\$440
24K	\$250	48K	. $\$ 390$	64K	\$490

MEM+ Options Include:

- OSI compatible floppy disk controller add $\$ 85$
- RTC - Real Time Clock - day, date and time with lithium battery backup
add $\$ 85$
- Centronics parallel printer interface with software for OS65D and OS65U
- High reliability sockets for memory chips add $\$ 65$
- RTC only (OSI CA-20 replacement) .

All boards feature solder mask, silkscreen, gold-plated edge connectors and a one year warranty.

> Generic Computer Products

High Resolution Color Graphics

Our new Color Plus board provides 256×192 highresolution graphics with 15 colors. Two 8-bit resolution joystick interfaces are included. Software extensions to OS65-D BASIC provide a superset of APPLE II graphics instructions.

Color Plus connects to the standard 48 -pin bus or the 16 pin bus.

Pricing:	
CP-8 for C8 or C3 computers:	
CP-4 for C4 computers (5V only):	$\$ 195$
CP-bare Bare board with software:	$\$ 245$

VISA, MasterCard, personal checks and C.O.D.s all accepted. Add $\$ 5$ per board for shipping and handling.

To order, or for more information, contact:
Fial Computer
5221 S.W. Corbett
Portland, Oregon 97201
(503) 227-7083

colon string terminators has been swapped. Well, those weren't the only ones! In the V3.3 reference manual, on page 21, is a table for the values to be poked for random file operation. The locations are 12042 and 12076. The table shows 12042 as the location for the number of records per track. This is wrong! 12076 is the right one. In using these pokes, the order is important. Poke 12042 first, then 12076. The values listed in the table are correct.

I recently bought and tried to use a modem on my C4P MF without any success. After fighting the program supplied by OSI (by the way, it works), I saw an ad by Aurora Software for an intelligent terminal program. I called and, while talking to them, I mentioned my problem. They told me that some C4s had the modem plug wired differently than others and to check that pin 5 was wired to ground (it wasn't). Maybe this will help someone else. I haven't received the program from Aurora yet. If no one else writes in about it, I'll let you know how it works.

Now, questions. Does anyone out there use a D\&N Micro $Z 80$ cpu card in their C4 or C8 system? I am interested in upgrading my system to something closer to a standard. Does anyone know of an 80column board for video systems? Orion Software was the only one I had heard of, and they're out of the business.

Norman Thorsen
Poulsbo, WA 98370
Norman:
To the best of our knowledge, D\&N Proxy Z 80 boards support video systems, but must be ordered with a video EPROM.

Readers, how about the 80column question?

Peek Staff

* * * * *

ED:

I am writing about the article that appeared in the Feb. 1984 issue by Guy Vanderwaeren. As the author of the article in MICRO that was referenced, I would regard it as only courteous to give the full reference ("Building a Parallel Printer Interface ${ }^{n}$, MICRO 53, \#lo (Oct 82), p. 23, by Rolf B. Johannesen.) With regard to Mr. Vanderwaeren's modifica-
tion, I have only a couple of comments. First, with regard to the EPROM, if your system has a disk, the EPROM is obviously unnecessary, since the print routine can be made to reference the printer port you have built; and you can then forget it. Even with only BASIC-in-ROM, my printer code requires only 21 bytes and I don't regard this as so onerous that I would add an EPROM in preference to poking this in each time I run. Secondly, there is a misunderstanding of the way the PRINT routine works in the Clp. When the Clp is first turned on, the user is asked first for the amount of memory, then the terminal width. If no number is entered to the width question, the value used by BASIC defaults to 72 , and this determines the number of characters sent to the printer port before the return-line-feed is sent. At turn-on, another number may be entered - I have entered a number as large as 150 and had the program run correctly. Since BASIC already counts the number of characters before sending a return-linefeed to the printer port, it is quite unnecessary for the programmer to do this again. All of this is quite independent of the screen display routine, which does indeed send a return-linefeed (but only to the screen) after every 24 characters.

Rolf B. Johannesen
Rockville, MD 20853

AD

Send for free catalog, Aurora Software, 37 South Mitchell, Arlington Heights. IL 60005. Phone (312) 259-3150.

* * * * *

WANTED: C4PMF System. Prefer C4P DMF with 48K. Also mailing and word processing software. Send description to: Norman Thiel, 2021 Grismer \#37, Burbank, CA 91504 or call 818-847-4664(day) 818-954-0549 (evening).

* * * * *

FOR SALE: LIKE NEW OSI C8PDF; 2-8n drives, 48 K . Includes UCSD PASCAL \& FORTRAN, Word Proc's WP6502 Vl. $2 \& V 1.3$, WP$2 \& W P-3,65 U V 1.2,65 D V 3.2 \&$ V3.3, DAC, Plot Basic, Home Cont, OS-DMS Nucleus. Sort. Educa, Inv-I, Inv-II, A / R, $A / P, G / L, \quad$ Purchasing, Query, Bill of Materials, Quote Estimation. 5 Game, 8 MDMS, includes Planner \& Plotter, 3

Educational, and 8 Misc. Program Diskettes, over 100 disks total. Also, many manuals for above, Tech Notes, PEEK(65)'s, video l $0 \emptyset$ Monitor \& disk caddy. $\$ 250 \emptyset$ or best offer. Jim Jansen, 12 Cedar. Great Falls, MT 59405, (406) 727-2110.

EPROMS: *BASIC3: fully corrected garbage collector, eliminates string bug. *BASICl /BASIC4: one key 24/48 video on Series $2 \mathrm{ClP} / \mathrm{SB}$, one key screen clear, true backspace. more. *MONITOR: corrected keyboard, screen editor, BASIC shorthand, terminal, machine code dump, more, \$l5 ppd. each EPROM. SASE for information. SOFTWARE SOLUTIONS, BOX 3753, Seattle, WA 98124.

FOR SALE: 32 K OSI Challenger C3 with dual $8^{\prime \prime}$ drives. Okidata CPllo Printer with Centronics Interface. ADM-3A Terminal and Standard OSI Software. \$1500 for everything. (313) 736-3923 leave message.

* * * * *

C2-OEM (two cases) with 48K RAM, dual 8" floppies; includes Centronics interface. RS232 C board, OS-65D, OS-65U, plus miscellaneous software. Almost brand new. No documentation. Must sell. \$1500 (includes shipping) or offer. Rick Brown 316 California \#712, Reno, Nevada 89509, 702-322-9936.

FOR SALE: C8P with 48 K . Includes Anadex DP-800ø bidirectional printer and interface, many diskettes, joysticks. Well maintained --all records. Available immediately. \$960. 860-4915 Reston, VA evenings.

FOR SALE: ADM-3A Lear Seigler CRT/Modem with acoustic coupler. Hardly used. Over $\$ 1300$ invested. \$400. Reston, VA 860-4915 evenings.

```
* * * * *
```

SUPER SALE: ClPMF w/24K, full documentation, Sams Manual. Cassettes \& Diskettes Sof tware \& OS-65D. Computer in excellent condition, $B A D$ IC in drive. $\$ 500$ complete. $12^{\prime \prime} \mathrm{mon} /$ tv if you pay shipping. Oscar Frontera, Box 3517 Mayaguez, P.R. 90709. (809) 834-1950.

DELIVER TO:

GOODIES for CSI Users!

 The Unotficial OSI Users Journal
 P.O. Box 347 • Owings MIIIs, Md. 21117 - (301) 363-3268

1) C1P Sams Photo-Facts Manual. Complete schematics, scope waveforms and board photos. All you need to be a C1P or SII Wizard, just
$\$ 7.95 \$$ \qquad
1) C4P Sams Photo-Facts Manual. Includes pinouts, photos, schematics for the 502, 505,527,540 and 542 boards. A bargain at
() C2/C3 Sams Photo-Facts Manual. The facts you need to repair the larger OSI computers. Fat with useful information, but just
() OSI's Small Systems Journals. The complete set, July 1977 through April 1978, bound and reproduced by PEEK (65). Full set only
$\$ 15.00 \$$ \qquad
$\$ 30.00$ \$ \qquad
$\$ 15.00 \$$ \qquad
() Terminal Extensions Package - lets you program like the mini-users do, with direct cursor positioning. mnemonics and a number formatting function much more powerful than a mere "print using." Requires 65 U .
$\$ 50.00 \$$ \qquad
$(1) R E S E Q$ - BASIC program resequencer plus much more. Global changes, tables of bad references, GOSUBis \& GOTOs, variables by line number, resequences parts of programs or entire-programs, handles line 50000 trap. Best debug tool l've seen. MACHINE LANGUAGE - VERY FAST! Requires 65U. Manual \& samples only, \$5.00 Everything for
$\$ 50.00 \$$ \qquad
() Sanders Machine Language Sort/Merge for 0S-65U. Complete disk sort and merge, documentation shows you how to call from any BASIC program on any disk and return it or any other BASIC program on any disk, floppy or hard. Most versatile disk sort yet. Will run under LEVEL I, II, or III. It should cost more but Sanders says, "...sell it for just..."
$\$ 89.00$ \$ \qquad
() KYUTIL. The ultimate OS-DMS keyfile utility package. This implementation of Sander's SORT/MERGE creates, loads and sorts multiple-field, conditionally loaded keyfiles. KYUTIL will load and sort a keyfile of over 15000 ZIP codes in under three hours. Never sort another Master File.
$\$ 100.00 \$$ \qquad
BOOKS AND MANUALS (while quàntities last)
() 65V Primer. Introduces machine language programming.
$\$ 4.95 \$$ \qquad
) C4P Introductory Manual
$\$ 5.95 \$$ \qquad
) Basic Reference Manual - (ROM, 65D and 65U)
() C1P, C4P, C8P Users Manuals - (\$7.95 each, please specify)
() How to program Microcomputers. The C-3 Series
$\$ 5.95$ \$ \qquad
\$7.95 \$ \qquad
$\$ 7.95$ \$ \qquad
$\$ 8.95 \$$ \qquad
() Protessional Computers Set Up \& Operations Manual - C2-OEM/C2-D/C3-OEM/C3-D/C3-A/C3-B/ C3-C/C3-C'

TOTAL

MD Residents add 5\% Tax
C.O.D. orders add \$1.65

Postage \& Handling
TOTAL DUE
POSTAGE MAY VARY FOR OVERSEAS

[^0]: MEM-CM9 MEMORYI
 FLOPPY CONTROLLER
 24 K memory/floppy controller card uses 2114 memory chips, 18 K and 1 16K partition. Supports OSI type disk interface
 24MEM-CM9 $\$ 325$
 16MEM-CM9 $\$ 260$
 8MEM-CM9 $\$ 180$
 BARE MEM-CM9 \$ 50
 Controller on assembled unit
 add. $\$ 90$
 BIO-1600 Bare 10 card. $\$ 50$
 Supports 8K of memory, 216 bit parallel ports, 5 serial ports, with manual and Molex connectors.

