

on the

o

MICRO INK
P.o. Box 6502

Amherst, New Hampshire 03031

MICRO on the 051

Technical Editor: Kerry Lourash
Contributing authors: Michael J. Alport, Matt Asay, Lester Cain, David
Cantrell, Leo Jankowski, Rolf Johannesen, Michael J. Keryan, John Krout,
Kerry Lourash, Collin Macauley, Jeff Macauley, Michael M. Mahoney,
Yasuo Morishita, Earl Morris, John S. Seybold, Charles L. Stanford, Terry
Terrance, Richard L. Trethewey.

Copyrigbt © 1983 by MICRO INK
P.O. Box 6502
Amherst, New Hampshire 03031

All rights reserved. MICRO on the OSI is intended for the private use of its purchasers and
reproduction by any means is prohibited. Use of information herein is for the single-end use
of purchaser and any other use is expressly prohibited. All programs herein are distributed in
an "as is" basis without warranty of any kind whatsoever.

MICRO on the OSI ISBN: 0·938222·12·0

jj

Table of Contents
Warm Start Under OS-650 5

by Richard L. Trethewey
Delete 9

by Earl Morris and Yasuo Morishita
Two Fixes for ROM BASIC 13

by Earl Morris
Getting BASIC to Behave with OS-650 15

by Richard L. Trethewey
PRINTAT .. 23

by Matt Asay
Line Editor for OSI 540 Board•...•...................... 31

by Earl Morris
Auto Line Numbers for OSI Disk BASIC 37

by Lester Cain
Autonumber Plus for Cursor Control 43

by Kerry Lourash
ON ERROR GOTO for OSI ROM BASIC •............. 49

by Earl Morris and Kerry Lourash
Cross-Reference Generator for OSI BASIC-in-ROM 55

by fohn Krout
Extended 051 BASIC , . , . , 65

by Collin Macauley and feft Macauley
BASIC STEP and TRACE 77

by Richard L. Trethewey
Extended Trace•.•..... 83

by Kerry Lourash
Symbol Table Lister. 93

by Rolf fohannesen
Smart Lister 10S

by Kerry Lourash
Surchange , . , 109

by Kerry Lourash
An Improved Breakpoint Utility•....................... 125

by fohn S. Seybold
Polled Keyboard for CIP/ Superboard 133

by Michael f. Alport
Something for Nothing , 139

by Leo fankowski
Saving Time with Your CIP•..................... 143

by fohn S. Seybold
Extended I/O Processor .. 149

by Michael f' Keryan
Enhanced Video for CIP 163

by David Cantrell and Terry Terrance
Programmable Reverse Video 169

by Charles L. Stanford
OSI C1/C2 ROM BASIC Memory Map 179

by Michael M. Mahoney
• • • U~ __ L-____________________________ ~

arm Start
Under 05-650

Warm Start Under OS·65D 5

by Richard L. Trethewey

0 5-650 users have had to live
with the fact that you can't

warm start 05-650. So if your pro
gram suddenly locks up or (with a
pre-19Bl vintage 051 system) if you
accidentally touch the < BREAK>
key while typing in your program,
you have to start over. Most of the
time this problem only means re
typing a few lines of code. But if
you're like me and prone to program
ming " on the fly" without periodi
cally saving to disk, it could mean
hours of work lost. In this article I
will show you a way to recover that
lost time with a minimum of effort.

Usually when you touch the
<BREAK> key while in BASIC, you can

recover your program by entering the monitor
ROM by pressing " M" and then " G" (for GO) . This can

warm start BASIC, but not completely. At this point you can
neither run your program nor save it to disk . If all has gone well so

far, you can LIST your program to the indirect file and re-boot the system
and recover it. This method doesn't always work and does no good if
you're using the Assembler/ Editor and not BASIC. Also, when you re
boot the system, the BEXEC* program writes directly over your old pro
gram. Therein lies the key to our success. If the BEXEC. program isn't
called into memory, your old program will remain pretty much intact
unless you turn off your system.

05-650 uses a slick method to run the BEXEC. automatically when
you boot up . On cold start, the input flag is set for memory input and the
memory pointers are set to the command 'RUN"BEXEC*/I " which is
called into memory with the rest of OS-65D . Also on cold starting, BASIC
checks the I/ O flags to see if a console device has been selected. If so, it

6 MICRO on the OSI

says' 'Hello, " tells you how much memory you have, and awaits instruc
tions. Should this not be the case, BASIC runs the BEXEC' or executes
whatever other instruction was stored on disk. Our task, then, is to
change the I/O flags on cold start.

My suggestion for having a reliable method of recovering your pro
grams involves the use of the TRACK 0 Read/ Write utility. If you have
never used this program, I strongly advise you to consult your manual
before proceeding. The prompts in that program are very terse; without
further explanation, you won't know what's happening.

To begin, make a duplicate of any OS-650 diskette . If you used the
copier program from track 1 (track 13 on mini-floppies) the TRACK 0
utility is still in memory . If you didn't, call it into memory now. Enter
"GO 0200" at the "A·" prompt and select #2 from the menu displayed.
Now enter "R4200". This will call the contents of track 0 to memory
location $4200. Type "E" for exit and at the" A." prompt type "RE M"
to enter the monitor ROM . Now enter" .4321/". The slash at the end of
that sequence puts the monitor in the data entry mode so you can change
memory . Now type "02 <RETURN >02.". The period puts you back in
the addressing mode. Now type "2547G". You should see the "A'"
prompt again. Note that the 02's above should be 01's on serial systems
because you are setting the I/ 0 flags to your console device number on
cold start.

Run the TRACK 0 utility again by typing "GO 0200" and again select
option 2 from the menu. This time, however, you are going to write track
o and the instructions are a little more complicated than before . Enter the
command "W420012200,8". This makes the changes current on the
disk. When you boot the disk it won't run the BEXEC. anymore but will
start up BASIC as if you had entered " BA" at the "A'" prompt .

To recover a program press <BREAK>, if you haven't already . Press
" M" to enter the monitor ROM and enter" .3A79" for all sizes of OS-
650 V3.3. If you are running 3.2 enter" .3179" on 8-inch systems and
".3279" on 5 \4 -inch systems instead of the above. This is where the file
header starts. The file header holds the addresses of where your program
starts and ends. This information may not be current if you have altered
your program since it was stored on disk, but that won't matter. You
need to record the next eight bytes for later so write down the number
displayed after the address. Press the" / " key and a <RETURN>. Now
write down the number for the next location. Copy down the information
through address $1180. Put the diskette just made in the "A" drive and
boot it up. BASIC should say "Hello", etc., and " OK" . Type "EXIT" and
"RE M" as before. Press" .3A79" lor your system's header address as
described above) and then the "/" key . Replace the eight bytes of infor-

Warm Start Under OS·6SD 7

mation that you copied down by entering the numbers, followed by a
<RETURN>. Now type" .2547G" and you're back at the "A'" prompt.
Type "RE BA" to re-enter BASIC.

If the file you are working on is an assembly program, instead of
typing "RE M" at the "OK" prompt from BASIC, type "AS" first to
invoke the assembler and then "RE M". Replace the eight bytes as de
scribed above and type "RE A" instead of "RE BA". List the program to
the indirect file . Under BASIC this is done with "LIST < SHIFT> 'K' ".
With the assembler it's "P<SHIFT>'K' ". Now clear the workspace
with a "NEW" or "I" and then enter a < CTRL > 'X'. This will reload the
entire program into the workspace and update the resident language.
Your program is now intact and you can run it andlor save it to disk.

The special recovery disk just made does not need to be devoted to
this single purpose. It is still a standard OS-650 disk and you can put
whatever you like on it. As you can see, this technique doesn't really cost
anything and could save quite a bit of time and effort.

•

•

Delete
Delete 9

by Earl Morris and Yasuo Morishita

N ormally only a single line of
BASIC can be deleted by typing

in the line number followed by a car
riage return. This is tedious if a large
block of lines must be removed; for
example, when programs are merged
or a utility program is run with
another program also in memory.
The "DELETE" program creates a
USR routine that is called by

Z = USR (first line)(last line)

All the lines of BASIC with line
numbers inside the specified range
are then deleted.

When OSI ROM BASIC is called to
delete a single line, two major routines are used.

The code at $A2A2 finds the line to be deleted and then
shrinks the program by the number of bytes found in the of-

fending line. Another routine at $A31C is responsible for refixing the
pointers that rechain each line to the next. Unfortunately these routines
are not written as subroutines and therefore cannot be used by "outside"
programs. However, the DELETE program copies these routines from
ROM into RAM and creates the needed subroutine. The main line
DELETE program accepts the first line to be deleted and calls the copied
ROM routine to do the work. Then the line pointers are used to find the
line number of the next BASIC line. This is checked for end-of-program
and to see if it exceeds the upper limit for deleting. Then the copied
routines are called again and the process is repeated until completed.
Lines are still deleted one at a time, but the computer, rather than your
busy fingers , is doing the work.

The BASIC program listed here will create the DELETE program on
page two below the start of BASIC program space. This memory is nor
mally unused in OSI machines . If you are using this space, then the
delete program can be relocated by changing the value of "M" in line 14.

10 MICRO on the OS!

Listing 1: Source Code for Main Delete Program

0235 20 00 B4
11,12 (STAAT)
0238 20 M) AA

02lB 20 31 B8
023E AS AF
0240 85 30
0'242 ~ }I.E

0244 85 31
0246 20 32 1'.4
0249 BO IB

024811.0 01
0240 B1 M.
024F FO 11'.

0251 M 0 3
0253 91 AA
0255 85 12
0257 B8
0258 Bl M
02511. 85 11

025C A6 30
025E AS 31
0260 E4 11
0262 ES 12
0264 90 05
0266 20 75 02
0269 PO DB
0268 "9 92
0'260 11.0 AI
0 26F 20 C3 AS
0272 4C 19 A3
0275
0275

,

,

INA

uua

Tmc

• •

000 $235

JSR .B40B
JSR $AAAD

JSR $BB31
ID\ .I\P
S'n'I. $30
ID\ .AE
S'1'/\ $31
JSR $1'.432
a::s lma

IDl 1$01
ID\ (.AA).Y
B!O INC

U1{ 1$03
I.llA. ($AA.), Y
~ $12
DE'{

"" (.AA).Y
STA $11

IJl($30
I.llA. $31
CPX $11
SOC: $12
ocr: TmC
JSR $0215
B&) larA
lJJ>. '$92
Wi ,$Ai
JSR $1\80'
JMP $A319

: 1ST AIGM!NT TO BIN1U« INTO $

; CE t 2ND A1G.MEN'l' (IAST LINE •)

:CXNJERr TO BIN1\RY

:S'iU<B FmJU. LINE • IN $30,31

:FIND ADtRESS (R BASIC LINE
; BRAlCi IF RXND, Cmil!1tWISE UP
t'ATB POIN'IEk AT $11,12

:Tcx:l< AT POIN'ti!Jt TO NEXt' LINE
; IP NYu. MUST BE mo (J! PRXiiAM
so QUIT

:GEt NiX'!' LIN! I HI BitE

~ GE'I' NiX'l' LINE I to

~U"'D X,A WI'IH PINi\L LINE

: $Al92 IS ADDU!SS (R " (;II:;"
; PRnn' "Cl<"
:00 BVl{ ro BASIC

Delete 11

Line 16 sets up the USR vector and line 18 builds the main program from
the DATA statements. Line 20 moves the "memory close" routine from
ROM . Line 22 calculates an absolute)SR address and POKEs it into the
main program. Line 24 copies the rechaining routine from ROM and line
26 adds an "RTS" to convert it to a subroutine.

After running the BASIC program, it can delete itself with

Z = USR (10)(44)

Note that the USR function now requires two arguments and will give an
" SN" error if both are not present. Everything is deleted by Z=USR(l)
1- 1 J. which is the same as a NEW command. The form Z = USR IAIIB) is
also helpful to figure out which lines to omit.

The source code for the main program is listed with comments for
those readers interested in how the program works . The code is
relocatable with the exception of the)SR at $026E. This is a jump to the
copied ROM routines . The BASIC set-up program automatically fixes
this absolute address .

Listing 2: BASIC Program to Set Up USR Delete Function

10 REM BASIC LINE DELETE
12 REM FORr1AT: Z""USR(START LINE 4t)(ENO LINE 4t)
14 M;565 :REr1 START AODRESS-$0235 RELOCATABLE
16 A=INT (M/256) :POKE12~A:POKE11 , M-A*256
18 N=64 I FORX;MTOM+r-l-l : READJ I POKEX, J I NEXT
20 A::4163 4 :r1=11+N IN-68 :OOSUB28 :REM DELETE=$A2A2
22 A~INT(M/256) :B=M-256*AIPOKEM- 13 , AIPOKEM-14 , 8
24 A~41 756 : f1=M+N ; N"'4 7 : OOSUB28 : REM REeLi I LD =$A31 C
26 POKEr1+15~96:END: REM "RTS"
28 FORX""0TON-l IJ=PEEK(A+X) IPOKEM+X ... JINEXT:RETURN
30 DATA32 . 8
32 DATA180 .32.173,170 ,32, 49 , 184 ... 165,175,133
3 4 OATA48 , 165.174.133 ... 49 ... 32 ... 50 ... 164
36 DATA176,27.160 ... 1 , 177 , 170,240,26, 160,3
38 DATA177.170,133,18 , 136, 177, 170 , 133,17
40 OATA166 , 48 , 165 , 49,228,17 , 229 , 18
42 DATA144,5,32,125,2,240,219,169 ... 146 , 160
44 OATA161 ,32, 195,168 ... 76 ... 25,163

Two Fixes for ROM BASIC 13

Two Fixes for
ROM BASIC

by Earl Morris

H ere are two patches for OSI
BASIC-in-ROM. The shorter

patch fixes the error message
printer; the longer one cures the
dreaded garbage collector bug. These
are not add-on programs, but are
direct replacements for the code in
the BASIC ROMs. To install these
patches you must bum an EPROM
replacement for the BASIC ROM.

Error Message Patch
BASIC uses two-character error

messages with the high bit of the
second character set. Before the
graphic chip came along, error
messages were printed correctly

because the old character ROM decoded
only the lower seven bits of a letter. The graphic

chip translates the letter as a graphic character, since it
decodes all eight bits, and an odd-looking shape appears in the

error message. This patch fixes the small but irritating problem.

Garbage Collector Patch
When a string is manipulated, the resultant string is stored at the top

of free memory. If enough of these strings are created, they fill the free
memory space. At this point, the garbage collector routine is called to
find the strings that are still valid and pack them at the top of free
memory. Unfortunately, OSl's garbage collector has a bug in it that
causes the screen to flash and the computer to "hang" if complicated
string manipulation is done. Many partial solutions have been published,
but this patch seems to be one of the best answers to the problem.

14 MICRO on <he OS!

Listing 1: Error Message Patch

A160
A170
A180

o 1 231 5 6 7 8 9 ABC- 0
~9 4~ A4 00 4E 46 53 4£ 52 47 4F 44 46 43
4F 40 55 53 42 53 44 44 2F 30 49 44 54 10
53 54 43 4E 55 46

Listing 2: Garbage Collector Patch

0 1 2 3 1 5 6 7 8 9 A B C 0
E:l10 A9 80 85 60 68 00 00 A6 85 AS 86 86 81 85
8150 00 84 90 AS 7F A6 80 85 AA 86 AE: A9 68 85
E'160 72 C5 65 FO 05 20 09 Bl FO F7 A9 06 85 AD
8170 A6 7C 85 71 86 7Z E1 7E DO 01 C5 70 FO 05
B180 Bl FO F3 85 A1 86 A5 A9 01 85 AD AS A1 A6
8190 80 DO 07 C5 7F DO 03 1C 18 82 85 71 86 72
B1AO Bl 7 1 08 C8 81 71 65 A1 85 A1 C8 81 71 65
81E'0 AS 28 10 07 C8 Bl 71 AD 00 OA 69 05 65 71
B1CO 90 02 E6 72 A6 72 E1 A5 00 01 C5 A1 FO Cl
8100 Bl FO F3 C8 Bl 71 10 30 C8 81 71 FO 28 C8
81EO AA C8 E'l 71 C5 82 90 06 DO lE E1 81 BO lA
B1FO 90 16 00 01 E1 AA 90 10 86 AA 85 AE: A5 71
8200 85 9C 86 9D 88 88 8 1 A2 A5 AD 18 6S 7 1 85
8210 02 E6 7Z A6 72 AD 00 60 C6 AD A6 90 FO F5
8220 18 E'l 9[; 65 AA 85 A6 A5 AB 69 00 85 A7 AS
8230 82 85 A1 86 AS 20 D6 Al A1 A2 C8 AS A1 91
8240 E6 AS AS A5 C8 91 9C 1C 1B Bl EA EA EA

E F
1F 56
"1C 53

E F
82 AD
71 81
A'-,) 7B
20 03
A5 E1
AD 01
A5 85
85 71
20 09
Bl 71
C5 AB
A6 72
71 90
A1 A2
81 A6
9C AA

Editor's Note: The original version of the garbage collector patch was written
by Dick Stibbons and published in the OSIIUK User Group Newsletter, Vol. I,
NO.4. The original code has been modified to correctly collect strings with a zero
subscript like A$IOJ.

GetUng BASIC to Behave with OS-6SD IS

Getting BASIC to
Behave with 05-650

"'e,t!10 .' OSI I' .

8,1'1: "

by Richard L. Trethewey

T he Microsoft BASIC provided
on MA/ OSI systems was writ

ten in 1977 and lacks many of the
niceties of newer systems. While the
actual source code for BASIC isn't
available from either Microsoft or
MA/OSI, Aardvark Technical Serv
ices in Walled Lake, Michigan, sells
a disassembled listing of OS-6SD's
BASIC. Using this listing as a guide,
I was able to make BASIC do some
things that otherwise would have
been impossible. In under one page
of RAM, I was able to make BASIC
understand hex (in most places),
allow named GOSUBs and GOTOs,
and provide a limited IF . .. THEN ...

ELSE. This code easily fits behind the
" HOOKS into OSI BASIC" I wrote (see MlCRO

46:431 and does not interfere with the normal operation
of the system. All your old programs will still run with it

in place.
Aardvark sells the BASIC source code listing for $24.99 - one of the

best bargains around. The 110 + -page booklet is well commented and
easy to understand. Aardvark also sells listings of OS-6SD and ROM
BASIC at reasonable prices.

There is a small price to pay for these additions . Since BASIC is an in
terpreted language it is slow, and adding patches makes it slower. For
most applications, the additions I discuss won't affect the timing
noticeably . The patch added in the "HOOKS" article costs time only
when a variable is assigned a value, but no more so than if you had a
dozen extra variables in your program.

The first addition I discuss adds hex capabilities to BASIC. It is ac
cessed whenever BASIC has to deal with a number that appears in your

16 MICRO on the OSI

Listing 1

10 0000
20 0000
30 0000
.0 0000
50 0000
60 0000
70 0000
80 0000
90 0000

100 0000
110 0000
120 0000
130 0000
HO 0000
150 0000
160 0000
170 0000
180 0000
190 0000
200 0000
210 0000
220 0000
230 0000
240 0000
250 0000
260 0000
270 0000
280 0000
290 0000
300 0000
310 0000
320 0000
330 0000
340 0000
350 0000
360 0000
370 0000
380 0000
390 0000
.00 0000
410 0000
420 0000
430 0000
HO 0000
450 0000
460 0000
470 B[l4F
480 B04F 20COOO
490 B052 20COOO
500 BD55 20CDOC
510 B058 24B3
520 BD5A 1007
530 B05C A92D
540 B05E 204323
'550 8[161 46B3
560 B063 2016BF
570 B066 A924
580 B068 204323

;**
i* A[lIlITIONS TO BASIC UNDER 05-65D V3.3 *
;* *
;* BY RICHAR[I L. TRETHEWEY *
;** • •
;*******LABELS FROH BASIC*******

• •
AOnON =S08FC
ASCII =$lBEE
CHKCHR=$0E1 5
CRIIO =$OA73
CHRGET='CO
CHRGOT=$C6
FLOAT =$lB44
FORPNT=$96
FACEXP=$AE
FACHI =$AF
FACHHI=$BO
FACHLO=$Bl
FACLO =$B2
FACSGN=$B3
FRMEVL=$OCCII
GOTOTK=$88
GOTO =$08A6
INT =$1BC7
LINGET=$096C
oumo =$OAEE
POKER =$19
PTRGET=$OF2E
QUINT =$1B96
REM =$093C
REMTK =$8E
SNERR =$OE1E
THENTK=$AO
TXTPTR=$C7
• •

;*******OS-65D LABELSt******

* =$B [I,F

;
CASECK=$3A5F
CHROUT=$2343
PRBYTE=$2D92
• •
; ROUTINE TO PRINT IN HEX
;REPLACES ' Ht ' COHMAND IN HOOKS
• •
JSR CHRGET
JSR CHRGET
JSR FRHEVL
BIT FACSGN
BPL HO
LOA t '
JSR CHROUT
LSR FACSGN

THROW AWAY ASTERISK
GET NEXT CHARACTER
EVALUATE EXPRESSION
POS OR NEG?
BRANCH IF POS.
PRINT NEG SIGN

HO JSR LIN
LDA . ' f
JSR CHROUT

MAKE IT POSITIVE
MAKE IT AN INTEGER
PRINT A ' $'

(continued)

Getting BASIC to Behave with OS-6SD 17

program as text Irather than a variable name) . In programs that use a lot
of numbers without assigned variable names, this speed overhead can be
annoying. Using numbers instead of variables in such applications should
be avoided, and adding this patch to BASIC may force you to edit some
programs. The named GOTOs and new IF code make little difference
in speed.

To get BASIC to understand hex, I intercept the code that evaluates
numeric expressions . These expressions include equalities and functions .
BASIC first looks to see if the term is a variable name or a number in
discrete form . If you precede a hex value with a dollar sign, BASIC thinks
the character being looked at is a number and not a name. Before BASIC
decides how to handle this value, you should interrupt it and check to see
if the dollar sign is there. If it is not, execute the instructions written over
by the patch and return to the normal code. If it is, you must translate it
from ASCII into a form that BASIC understands and then put the number
where BASIC expects it . With these additions in place, only the
GOSUB/ GOTO function in BASIC won' t understand hex. With this
patch you can do instant hex/ decimal calculations and use hex values in
programs where they are easier to understand than their decimal
equivalents. You can mix hex and decimal in your calculations, too. This
addition lets you use the hex form for equalities, FOR/ NEXT loops,
PEEKs and POKEs, or anywhere you use a number.

Adding named GOSUBs and GaTOs is simple . Instead of always
demanding a number, this patch checks to see if the character is a
variable name before letting BASIC continue. If you find a name, look up
its value and give it to BASIC. That's all!

My version of IF copies the original code up to the point where BASIC
decides that the statement is false . Since you can't add the keyword ELSE
in the regular table without removing a necessary keyword, I have added
an extra function to the REM keyword. With my patch in place, the REM
will serve both its original comment function and a new ELSE function .
As in normal BASIC operation, a true condition will cause the statement
after the THEN to be executed and the REM to be ignored. When the con
dition is false, though, BASIC will look for a REM in the remainder of the
line and execute a simple line-transfer operation placed there . If there is
no REM, BASIC will proceed to the next line, as usual. The line transfer
is equivalent to GOTO; no other expressions can be evaluated after the
REM. Your existing BASIC programs must have their REMs removed
from lines with IF ... THEN statements.

If you have implemented the hooks into BASIC, I suggest you replace
the instructions that interpret the " H'" command with lines 400 to 630
of the new subroutine in listing 1. If you haven't added hooks, you will
have to make the first line of your BEXEC' similar to

1 ODISK! "CA BEaD = TT,S":POKE133, 189:POKE896D, 189

18 MICRO on the OSI

Listing 1 (continued)

590 B[t6B AS1A
600 BD6D F003
610 BD6F 209220
620 BD72 A519
630 BD7. 20922[1
640 B[l77 68
650 BD78 68
660 BD79 4C730A
670 B[17C 00
680 BD7D 00
690 BD7E 0000
690 B[180 0000
690 B082 0000
7 00 BD8.
7 10 BD84
7 20 BtlB4
7 30 BE7C

HI

RESLO
RESHI
INBUF

*=SBE7C

LOA POKER+!
BEa H1
JSR PRBYTE
LOA POKER
JSR PRBYTE
PLA
PLA
JMP CRDO
,BYT 0
,BYT 0
.DBY 0,0,0

GET HI BYTE
IF 0 , SKIP IT
NON-ZERO. SO PRINT
GET LOU BYTE
AND PRINT IT
CANCEL THE ' JSR'
THAT GOT US HERE
[10 CR, LF

;CODE TO ALLOW HEX IN BASIC FORMULAS
aODC3 4C7CBE JMP SBE7C
;

CMP t's
8EQ HEXFL T
eMf' . ' .
BHE HEX6
JMP ASCII

IS IT HEX?
YES, DO IT'
NO. REPLACE INSTRUCTIONS HERE

7 40 BE7C C924
7 50 BElE FOQA
760 BE80 C92E
770 BE82 n003
780 BEB4 4CEEl B
7 90 BE87 4CC70D
800 BE8A

HEX6 JMP SODC7

810 BEBA A004
820 BE Be A90a
830 BESE 8[17DB[1
8.0 BE91 997[BlJ
sso £lE94- Ba
860 BE95 DOFA
870 BE97 20COOO
880 BE9A F023
890 BE9C C93A
900 BE9E FOIF
910 BEAO C97F
920 BEA2 BO 1 B
930 BEA4 C930
9.0 BEA6 9017
950 BEAS 205F3A
960 BEAB 3B
970 BEAC E900
980 BEAE C90A
990 BEBO 9002

1000 BEB2 E907
1010 BEB4 997[B[I
1020 BEB7 C8
1030 BEBS COOS
1040 BEBA DO DB
1050 BESC 4C1EOE
1060 BEBF BS
1070 BECO B97EBD
lOBO BEC3 BD7CSD
1090 BEC6 COOO
1100 BECS FOZZ
1110 BECA 8B
1120 BECB B97EBD
11 30 BECE OA
11.0 BECF OA
1150 8EDO OA
1160 BEDI OA

HEXFLT

HEXO

HEX'

HEXZ

HEX3

HEX5

,
•
LIlY .4
LOA t o
STA RESHI
STA INBUf.Y
[lEY
BHE HEXO
JSR CHRGET
BEQ HEX3
eMf' t ':
BEQ HEX3
CMP U 7F
BCS HEX3
CMP t ' O
BCC HEX3
JSR CASECK
SEC
SBC to
CMP UA
BCC HE XZ
sac .7
STA INBUF.Y
INY
CPY . 5
SNE HEX1
JMP SNERR
DEY
LOA INBlJF.Y
STA RESLO
CPY to
BEQ HEX4
DEY
LDA INBUF,Y
ASL A
ASL A
ASL A
ASL A

INIZ

GET NEXT CHARACTER
CHECK FOR TERMINATOR

MAKE IT UPPER CASE

STRIP OFF ASCII
< 10?

SAVE IN BUFFER
BUMP CHAR, COUNT
TOO MANY?
OK, TO HEXl

POINT TO LAST CHAR,
GET LOWEST CHAR,
SAVE IT
ONL Y ONE DIGIT?
YES. WE ' RE DONE
NO. BUMP POINTER
GET CHARACTER
SHIFT LEFT 4 BITS

(continued)

Getting BASIC to Behave with OS·6SD 19

This will call the code into memory and protect it from being overwritten
by BASIC or 650. I have removed the hex-to-decimal conversion since it
is replaced by the new code. This version allows the output of any
number or variable in hex form. It is limited to numbers less than $FFFF
las are all the other routines herel , but at least now you can use both
variables and numbers in your conversions.

You will notice that often I do a)SR to a subroutine called CASECK.
This OS-650 V3.3 subroutine converts all lower-case letters to upper
case. By using the routine here and elsewhere in the "HOOKs into
BASIC," you can blind all your commands to upper / lower case. Usually
the comments in the code let you know what is happening. If you need
more information, I suggest you refer to the books listed at the end of this
article. OS-650 V3 .2 users should delete the references to CASECK.

The patches to BASIC that implement these changes are simple . To
allow hex inputs, change $00C3 to $4C, $00C4 to $7C, and $00C5 to
$BE using the monitor ROM . To get named GOSUBs and GaTOs,
change $08A7 to SOB and $08A8 to $BF in the same manner. Getting the
change for !F ... THEN is a little trickier since the jump to the monitor
alters this code. Instead of using the monitor ROM, just do POKEs if you
have made the above changes and the code is in place. Enter the following
line in the immediate mode:

POKE$214,$21 :POKE$215,$BF

lIn this case a foible of the 6502 necessitates pointing to one byte before
the actual location. I When you have made these changes, save them to
disk with the following instructions Iconsult your manual if you are
using a mini-floppy diskl:

DISK!"SA 02,1 =0200/B" :DISK! "SA 03,1 =ODOO/B"

When changing the ASCII to a floating-point routine, call the code first,
as the code at the high end gets overlayed when BASIC is invoked. First,
call in the code to high memory with

DISK! "CA 4800 = 04 1" ,

Then do these POKEs:

POKE$4BEE,$4C:POKE$4BEF,$51 :POKE$4BFO,$BF

Finally, save the code with

DISK! "SA 04,1 = 4800/B"

That will make the changes to BASIC pelmanent .

20 MICRO on the OSI

Listing 1 (continued)

1170 BED2 18
1180 BED36D7C«tI
1 1 90 BED6 8D7CB!.
1200 BED9 COOO
1210 BEDEl FOOF
1220 BEDD 88
1230 BEliE B97EBD
1240 BEE! OA
1250 BEE2 OA
1260 BEE3 OA
1270 BEE4 OA
1280 BEES 18
1290 BEE6 b07DED
1300 BEE9 BD 7 DBD
1310 BEEC AD7DBO
1320 BEEF 85AF
1330 BEFI AE7CBO
1:140 BEF4 86BO
1350 BEF6 A290
1360 REF8 38
1370 BEF9 204HB
1380 BEFC AE7CBD
1390 BEFF 60
1400 8FOO
1410 8FOO
1420 BFOO
1430 BFOO

HEX<

CLC
AnC RESLO
STA RESLO
CF'Y to
BEO HEX4
tlEY
LDA INBUF, Y
ASL A
ASL A
ASL A
ASL A
CLC
ADC RESHI
STA RESHI
LOA RESHI
STA FACHI
LOX RESLO
STX FACHHI
LDX n90
SEC
JSR FLOAT
L DX RESLO
RTS
• •

Ann TO PREVIOUS RESULT
ANI. SAVE IT
ARE WE [lONE?
YES, TO HEX4
NO, BUMP POINTER
REPEAT PROCESS

TRANSFER RESULT TO
FLOATING POINT ACC.

CHANGE FROH INT TO F. f'.
SOHE FUNCTIONS NEEO THIS

;PATCH TO GOTN TO ALLOW VARIABLES
; IN GOTO'S ANti GOSUB'S
• •

lHO BFOR *=$BFOB
1450 BrOD B003
1460 BFOD 4C6C09
1470 BFIO
1480 BFlO 202EOF
1490 8F!3 209ItlA
1500 Brlb 20961B
1510 BF19 A5B2
1520 BFlB 8519
1530 BFll' A5S1
1540 BFIF 851A
1550 BF21 60
1560 8F22
1570 BF22
15BO BF22
1590 8F22
1600 BF22 20CDOC
1610 BF25 20ChOO
1620 RF28 C988
1630 BF2A FOOS
1640 BF2C A5AO
1650 BF2E 20150£
1660 BF31 A5AE
1670 BF33 F003
1680 BF3S 4C4109
1690 RF38 "IE
1700 BF3A BIC7
1710 BF3C F010
1720 BF3E C9BE
1730 RF40 F003
1740 BH2 C8
17~jO BF43 [IOFS
1760 BF45 20FCOEI

LINE

LIN

NEWIF

NEWIFI

FALSE
FI

F2

BCS LINE IT COUll' BE A VARIABL~
JMP LINGET NO. IT 'S A NUMBER
• •
JSR PTRGET
JSR UA9D
JSR QUINT
LilA FACLO
STA F'OKER
LOA FACHLO
STA POKER+!
RIS
• •

LOOK UP VARIABLE
PUT IT IN FACC
HAKE IT AN INTEGER

HI[Sf'ATCH TABLE SENDS ' IF' HERE
;$0214=$21 $0215=$BF
;
JSR
JSR
CHP
BEO
LDA
JSR
LOA

FRHEVL
CHRGOT
tGOTOTK
NEWIF I
THENTK
CHKCHR

EVALUATE EXPRESSION

BEQ
JHP

FACEXP
FALSE
$0941
30

IF FALSE, CHECK
TRUE, [10 IT!

FOR ' ELSE7

LilY
LOA (TXTF'TR), '(
BEQ NOREH LOOK FO, , REH7

tREHTK CHP
BEG F2
INY
BNE
JSR

F1
ADDON

BR~NCH
lIPDATE

ALWAYS
TXTPTR

(continued)

Gelting BASIC to Behave with OS-65D 21

References
1. OS-6SD V3.2 Source Code, MA/ COMM Office Systems, Inc ., Aurora,

OH 44202.
2. Barden, William, How to Program Microcomputers.
3. OSI-Microsoft BASIC Assembly Source Listing, Aardvark Technical

Services, Walled Lake, MI.

Listing 1 (con tinued)

1770 ~F4B 20COOO
1780 BF4B 4C A608
1790 BF4E
1800 BF4E ;·C3C0 9 NOREM
1810 BF 51
1820 BFSl
18~O BF S1
1&40 B~':ll
1850 BFS1
1860 BFSI e924
18/0 BF53 FOOA
1880 flFS5 20C600
1890 BF5B AOOO
1900 BF5A A20A
1910 BFSC 4CF218
1920 BF5F 4CBABf. VAL 1

J5R CHRGET PLUS ONE
JMP GOTO
-•
JMP REM NO ELSE. SO REM
-•
;PATCH TO ASCII TO 'F .P. CONVERSION
no ALLOW EITHER HEX OR DECIMAL
; $lBEE 2051BF JSR $BF51
-•
CMF' t ' $
SEQ VAll
JSR CHRGOT
LIlY to
LDX ·t$A
JMP $lBF2 RE-ENTER NORMAL CODE IF DEC.
.JMP HEXFLT NO. IT 'S HEX. DO IT'

-

PRINT AT

PRINT AT 23

by Matt Asay

T he Microsoft BASIC on an Ohio
Scientific CIP has most of the

features found on other versions.
o One feature that is lacking is the

O
SI f'\etfl . ability to print at a selected location

on the screen. There are some ways
to get around this by using POKE,
but you are limited to POKEing one
character at a time, which is slow
and cumbersome.

I have developed a program to
remove these limitations by adding
an AT option to the PRINT state
ment. Once this program is installed
you can print anything anywhere on
the screen with ease. The program
hides itself at the top of your

available memory on any size system and
uses only 166 bytes of permanent storage. After it

has been entered you can write, save, load, and run pro-
grams using the new PRINT AT statement. Programs that do

not use AT in their PRINTs should function as always .
The syntax of the statement is:

PRINT AT location; print-list;

w here there are three forms of location:
1. A numeric expression. Printing starts at sc + !NTlexpressionl, where sc

is the address of the screen.
2. Two nUI1)eric expressions separated by a comma. Printing starts at

sc + !NTlexprll'32 + !NT lexpr21 . This allows specification of location
by row and column.

3 . An asterisk I"'" I. Printing continues with the position immediately
after the last character printed by the last PRINT AT.

print-list is any allowable hst of items to be printed, separated by
semicolons. The trailing semicolon is necessary since the carriage

24 MICRO on the OSI

Listing 1: BASIC Program to Load, Initialize, and Demonstrate
PRINT AT

1 REM -----FRINT AT- - ---
2 REM - --BY MATT ASAY---
3 REM
6 GOSUB 10: GOTO 1000
7 REM
B REM RELATI VE HEX LOADER SUBROUTINE
9 REM (SEE TEXT FOR A DESCRIPTION)
10 DEF FNA([t)=ASC(MIDS(HS, D ,I »
20 DEF FNX([t)=FNA(D)-48H FNA(0 »64)*7
30 DEF FNB(D)=FNX(D)U6+FNX(0+1)
40 DEF FNH(D)=((FNX(D)U6+FNX(0+1))*!6+FNX(D+2))U6+FNX(0+3)
45 READ HS: RO=PEEK(134)*256+PEEK(133)-FNH(1)
50 FORH=ROT032767:READHS:PRINTHS:ONLEN(HS)GOTO 51,52,53,54,S51COTOS4
51 RETURN
52 FOKE H,FNB(1) :NEXT:STOP
53 RA=ROtFNB(2):GOTO 56
54 POKEH,FNB(1)lFORI=3TOLEN(HS)STEP2:H=H+l1POKEH,FNB(I):NEXTI,HlSTOP
55 RA=ROtFNH(2)
56 IF LEFTS(HS,l)="H" THEN POKE H,RA/256:NEXTlSTOP
57 POKE H,RA AND 2SS:IF LEFTS(HS,l)="R" THEN H=H+l:POKE H,RA/2S6
58 NEXT: STOP
100 DATA OOFD I REM SIZE OF CODE IN HEX
105 REM CO DE FOR USRX
110 DATA A9,LS7,AO,H57,B5BIB4B2B5B3B4B485858486A207
120 [lATA BD, R4F, 95C5CAI0F8ADIA02ACIB028D, RE6, 8C, RE7
130 [lATA A9, LEt. AO,HElo 8DlA028ClB02ADlC02AC1002
140 DATA BD,RFB,BC,RFC,A9,LF6,AO,HF6,BD1C028C1D02A988AOAE
150 DATA B50B840C60C920FOF34 C,R57,OO
155 REM CODE FOR PARSER SPLICE (PSPLIC)
160 DATA 24CCI014C941DOOE489848AOOIBIC3C954F013
170 [tATA 68A86806CCC997D00285CCC93AB0034CCD0060
175 REM CODE FOR PRINT AT (PR.AT)
180 DATA 46CC68A86820BC0020BCOOC9A5D00620BC0038
190 DATA B04120CIAA2008B420C200C92CD023A5110AOA
200 DATA OAOA26120A8511A5122A4BA5114820C9AA2008B4
210 DATA 6BIB6511B5116865128512A5118D,RE9,A5122903
220 DATA 09DOBD, REA, 20C200C93BD0034CBCOOA91C85CC4C4EA2
225 REM CODE FOR OUTPUT SPLICE (OSPLIC)
230 DATA 24CC70034C00008DOODOEE,RE9,D003EE,REA,C60E60
235 REM CODE FOR CTRL C SPLICE (CSPLIC)
240 DATA A900B5CC4COOOO
245 REM END-OF-DATA MARKER
250 [tATM
260 REM
990 REM INITIALIZE PRINT AT WHILE PRESERVING
995 REM ANY PREV IOUS USR FUNCTION
1000 UL=PEEK(11) : UH=PEEK(12)
1020 POKE 11,RO-INT(RO/256)*2S6: POKE 12,RO/256
10+0 X=USR(x)
1060 POKE ll,UL! POKE 12 ,UH
1100 REM A SHORT DEMO OF THE USE OF PRINT AT
1200 PRINT: PRINT: PRINT" TEST PROGRAH"
1220 FOR 1=1 TO 20 : PRINT:NEXT
1230 PRINT AT 10*32+5; " PRINT";
12-4-0 PRINT AT *;" AT";
1250 PRINT AT 12,5;"HAS BEEN";
1260 PRINT "WORKS ! !!";
1270 PRINT AT *j" LOADED ••• ";
1280 A$="AND n"
1290 PRINT AT 14, 20-LEN(Af,HAt;
1300 FOR 1:::1 TO 500 t NEXT

PIUNT AT 25

return and linefeed that BASIC tags on will print as their corres
ponding graphics characters . This was done intentionally to allow the
printing of all graphics characters using CHR$().

Examples

PRINT AT 200;CHR$(248);" < . A tank" ;

PR INT AT X,Y; " PRINT AT ROW X, COLUMN Y";

PRINT AT 15,7; "PRINT AND ";

A$ = " ADD "

PRINT AT . ; A$ +" MORE";

PRINT "PRINT ON BOnOM AND SCROLL"

How to Install
Once I developed this program I needed an easy way to install it on a

system. I considered and rejected making a tape that the monitor could
read . It would be difficult to modify, error-prone on input, and would
work only if loading to a fixed absolute address. I did not want to use a
BASIC program that POKEd in several DATA statements of decimal
values since I think in hex when programming in assembly. For this
reason I created a BASIC program that reads hex strings, converts them to
binary, and loads them into memory . To be adaptable it calculates a
starting load address from the size of the program and the address of the
top of memory .

Enter the program shown in listing 1, save it to tape, and then run it .
After it is through loading (about 15 seconds) it will print "PRINT AT
HAS BEEN LOADED ... AND IT WORKS !!!" across several lines of the
screen . Then you may type NEW and enter or LOAD any program you
like using PRINT AT.

If an error occurs in the middle of a PRINT AT statement the " AT
flag" can be turned off by typing any valid BASIC statement (Le ., LIST or
" 1" for PRINT, etc.) at the keyboard .

Relative Hexadecimal Loader
The loader reads strings from data statements and loads a program

into high memory . The program consists of four parts:

Program size:
A four-digit hex number. This value is subtracted from the end-of
memory address at $0085 to get the starting address for the program.

26 MICRO on the OSI

Listing 2: Assembly Listing of PRINT AT Routine

10 0000
20 0000
30 0000
40 0000
50 0000
60 0000
70 0000
80 0000
90 0000

100 0000
110 0000
120 0000
130 0000
140 0000
150 2100
160 2100 A957
170 2102 A021
180 2104 8581
190 2106 8482
200 2108 8583
210 210A 8484
220 210C 8585
230 210E 8486
240 2110 A207
250 2112 BD4F21
260 2115 95C5
270 2117 CA
280 2118 10F8
290 211A AD1A02
300 211D AC1B02
310 2120 8DE621
320 2123 8CE721
330 2126 A9El
340 2128 A021
350 212A BD1A02
360 212D 8C1B02
370 2130 AD1C02
380 2133 ACID02
390 2136 BOFB21
400 2139 8CFC21
410 213C A9F6
420 213E A021
430 2140 B[llC02
HO 2143 8C1D02
450 2146 A9BB
460 2148 AOAE
470 214A 850B
480 214C 840C
490 214E 60
500 214F
510 214F
520 214F C920
530 2151 FOF3
540 2153 4C5721
550 2156 00
560 2157
570 2157
580 2157

jt*******************
;* *
1* PRINT AT *
j* *
;t BY MATT ASAY *
i* *
1******************** • ,
ATFLG=sCC
ASTOK=sA5

STATUS BYTE FOR 'PRINT AT'

CHRGET=SOOBC
CHRGOT=SOOC2

PRTOK=$97

'*' TOKEN FOR MULTIPLICATION
GET NEXT CHAR IN BASIC LINE
GET SAME CHAR AGAIN
TOKEN FOR PRINT COMMAND

• ,
*=S2100

USRX LDA tPSPLIC*256/256 USR INITIALIZATION
LDY IPSPLIC1256
STA SBI RESERVE MEMORY FOR SPLICES
STY S82
STA S83
STY SB4
STA $85
STY SB6
LDX t7 PUT SPLICE INTO PARSER

USRXI L[lA PATCH,X
STA SC5,X
[lEX

• ,

BPL USRXI
LDA S021A GET OLD OUTPUT VECTOR

LIlY S021B
STA OS.O+1 STORE INTO OUTPUT SPLICE

SlY OS.0+2
LDA tOSPLIC*256/256 SPLICE INTO OUTPUT

LDY tOSPLlC/256
STA S021A
SlY $021B
L[lA S021C GET OLD CTRL-C VECTOR

L[lY S0210
STA CS.O+l STORE INTO CTRL-C SPLICE
STY CS.0+2
LDA tCSPLIC*256/256 SPLICE INTO CTRL-C
LOY tCSPLlC/256
STA S021C
STY S021l.
LDA IS88 RESTORE DEFAULT USR VECTOR

LDY UAE
STA SOB
STY SOC
RTS

1**
PATCH CMP tS20 PATCH PUT AT SC5-SCC

BEa *-11
JMP PSPLIC

.BYTE 0 ATFLG AT SCC
;[(IT 0 SET- PRINT TOKEN FOUND ON LAST FETCH
;[(IT 1 SET- 'PRINT AT' CURRENTLY ACTIVE
;**

(continued)

PRINT AT 27

Non-relocatable hex data:
A string of any number of bytes in hex fOlm .

Relocatable addresses:
A prefix character R, H, or L followed by two or four hex characters.
The hex number is added to the starting address of the program. The re
sulting address is stored as follows:

R: Store both bytes (low, high form)
H: Store high byte
L: Store low byte

End of program marker:
Any single character ("." is used here).

You can use the loader program for your own machine-language
routines. Use lines 1-58 as shown. Replace 100-999 with DATA
statements for your code in the format shown. When the program has
finished loading it will jump to 1000 with RO set to the starting load ad
dress . Your statements here should protect your program and perfonn
any other initialization needed.

How the Program Works
The program has four parts: a USR call for initialization, "splices"

into the BASIC parse, output, and control-C routines. The USR routine
changes the top of memory address to protect the permanent part of the
program (not including this initialization). It patches the other three
pieces into their respective vectors. The code at line 1000 saves and
restores the previous USR address, so this routine can be loaded after
another USR routine without messing it up.

The second piece is spliced into the parse routine at $BC-$D3 . This
routine fetches the program for the BASIC interpreter a character/ token
at a time. When not in a PRINT statement this routine works normally;
otherwise it checks for an AT following the PRINT token . If it is found,
the routine collects and interprets the location specification. It then
returns the character following the first semicolon to the print routine as
if the "AT location;" had not been there.

The third piece is spliced into the output vector. Any time the" AT
flag" (bit 1 of $CC) is on, instead of going to the normal print routine it
outputs to the current screen location and then increments the location .
It then decrements the character count (which the routine that calls it in
crements) to prevent overflow and returns to the caller.

•

28 MICRO on the OSI

Listing 2 (continued)

590 2157
600 2157
610 2157 24CC
620 2159 1014
630 215B C941
640 2150 OOOE
650 215F 48
660 2160 98
670 2161 48
680 2162 A001
690 2164 B1C3
700 2166 C954
710 2168 F013
720 216A 68
730 216B A8
740 216C 68
750 216D 06CC
760 216F C997
770 2171 0002
780 2173 85CC
790 2175 C93A
800 2177 B003
810 2179 4CCDOO
820 217C 60
830 217D
840 2170
850 217D 46CC
860 217F 68
870 2180 A8
BBO 21Bl 68
890 2182 20BCOO
900 2185 20BCOO
910 21B8 C9A5
920 218A D006
930 218C 208COO
940 218F 38
950 2190 8041
960 2192
970 2192 20C1AA
980 2195 2008B4
990 2198 20C200

1000 219B C92C
1010 219D 0023
1020 219F A511
1030 21Al OA
1040 21A2 OA
1050 21A3 OA
1060 21M OA
1070 21A5 2612
lOBO 21A7 OA
1090 21A8 8511
1100 21AA A512
1110 21AC 2A
1120 21AD 48
1130 21AE A511
1140 2180 48
1150 21Bl 20C9AA
1160 21B4 200884
1170 2187 68
l1BO 21BB 18

• •
;******PARSER SPLICE******
PSPLIC BIT ATFLG PRINT TOKEN FOUND?

SPLO
SPLl

BPL SPLI BRANCH IF NOT
CliP t ' A CHECK FOR 'AT'
BNE SPLO BRANCH IF NOT FOUND
PHA SAVE A & Y REGISTERS
TVA
PHA
LDY
LDA
CMP
BEQ
PLA
TAY
PLA

tl
('C3),Y
t'T
PR.AT

NO BLANKS
BRANCH IF
RESTORE A

ALLOWED BETWEEN
'AT' FOUND
~ Y

CLEAR 'PRINT FOUND' BIT
IS CHAR A PRINT TOKEN?
NO. BRANCH

AH

SPL2

ASL ATFLG
CMP tPRTOK
BNE SPL2
STA ATFLG
CMF' .':

SET PRINT FOUND. CLR AT FOUND
SET STATUS & RETURN CHAR

SPL3
• •

BCS SPL3
JMP SOOCD
RTS

;******PRINT AT FOUND******
PR. AT LSR ATFLG

PLA

• •

TAY
PLA
JSR CHRGET
JSR CHRGET
CMP tASTOK
BNE PR.AO
JSR CHRGET

SEC
BCS PR.A3

PR.AO JSR SAACI
JSR U408
JSR CHRGOT

CMF' .',
BHE PR.A2
LDA Sll
ASL A
ASL A
ASL A
ASL A
ROL H2
ASL A
STA HI
LDA $12
ROL A
PHA
LOA HI
PHA
JSR SAAC9
JSR SB408
PLA

CLC

CLEAR PRINT FLAG. SET AT FLAG
RESTORE A & Y

SKIP OVER 'T'
GET NEXT CHAR
'.' TOKEN?
NO. BRANCH
GET NEXT CHAR

BRANCH ALWAYS

COLLECT EXPRESSION 1
CONVERT TO INTEGER
FOLLOWED BY COliMA?

NO. BRANCH
PUSH INT(EXPRl)*32 ON STACK

COLLECT 2ND EXPRESSION
CONVERT TO INTEGER
ADD INT(EXPR1)*32

(continued) --

PRINT AT 29

The last piece is spliced into the control-C vector. This vector is called
at the end of each statement {to check if control-C is depressedj. The
spliced routine unconditionally resets the" AT flag" before going to the
nOlmal control-C routine. This prevents an error, control-C, or END of
the program from leaving the "PRINT AT" on when control returns to

the user.

This program takes 253 bytes to load; but after initialization it re
quires only 166 bytes. If you wish to preserve the initialization code also,
just change the "L57" in line llO to "LOO".

listing 2 (continued)

1190 21B9 6511
1200 21BB 8511
1210 21BD 68
1220 21 BE 6512
1230 21CO 8512
1240 21C2 AS11
1250 21C4 80E921
1260 21C7 AS12
1270 21C9 2903
1280 21CB 09DO
1290 21CO 8DEA21
1300 2100 20C200
1310 21D3 C93B
1320 21D5 11003
1330 2107 4CBCOO
1340 210.
1350 21M A91C
1360 210C 85CC
1370 21DE 4C4EA2
1380 21El
1390 21El
1400 21El 24CC
1410 21E3 7003
1420 21E5 4COOOO
1430 21E8 8DOODO
1440 21EB EEE921
1450 21EE 11003
1460 21FO EEEA21
1470 21 F3 C60E
1480 21F5 60
1490 21F6
1500 21F6
1510 21F6 A900
1520 21F8 85CC
1530 21FA 4COOOO

ADC fll
STA fll
PLA
ADC fl2
STA f12

PR.A2 LOA fll ADD .0000. STORE AS 'AT' LOC.
STA 05.1+1.
LDA .12
AND 403
ORA UDO
STA 05.1+2
JSR CHRGOT

PR.A3 CMP t' ;
GET CHARACTER
HUST BE SEMICOLON
ERROR IF NOT BNE BOOBOO

JMP CHRGET GET CHAR & GOTO PRINT ROUTINE
• •
BOOBOO LOA t28 LOAD OFFSET OF 'ST' ERR MSG.

RESET 'PRINT' & 'AT' FLAGS
PRINT ERROR HESSAGE

STA ATFLG
JMP fA24E -•

;******OUTPUT VECTOR SPLICE******
OSPLIC BIT ATFLG 'AT' FLAG SET?

BVS OS.t YES. BRANCH
05.0 JMP .0000 DO NOR HAL OUTPUT & RETURN
05.1 STA fDOOO STORE CHAR ON SCREEN

INC OS.ltl INCREMENT SCREEN ADDRESS
SNE 05.2
INC os .1+2

05.2 DEC fOE DON'T LET CHAR COUNT OVERFLOW
RTS -•

;******CTRL-C VECTOR SPLICE******
CSPLIC LDA to END OF STATEHENT.

STA ATFLG SO RESET PRINT. AT FLAGS
CS.O JHP fOOOO DO NORHAL CTRL-C STUFF

Line Editor for OS! 540 Board 31

Line Editor for
051 540 Board

by Earl Morris

O SI users are painfully aware
that if a mistake is discovered

in the 63rd character of a BASIC
line, the entire line must be retyped.
I have watched in awe as PET
owners zip the cursor across the
screen and correct the offending
character in a few keystrokes . OSI
machines lack this useful feature as
standard equipment. But don't
despair. This article describes a soft
ware patch using the 540 video
board and BASIC-in-ROM to allow
line editing on OSI machines. The
program provides the basic editing
functions, but you can add addi
tional features as you wish. The

technique also can be applied to the CIP,
subject to limitations I will discuss later.

A line editor must perform three functions: it must find
the line to be edited, make the changes, and then put the line

back into the BASIC program. Finding the line is easy - just LIST it.
The data is then on the screen . The line editor can read a character from
the screen and copy it exactly whenever a designated key is hit. If any
other character is typed, that character is inserted into the new line in
stead of the screen character. Now comes the hard part: How do you get
the line back into BASIC'

The new line must be inserted at the proper location, moving the rest
of the program and refixing all the pointers. This is exactly what the
BASIC input routines do. The line editor can be much simpler if BASIC
can be fooled into believing that you re-typed the entire line .

First examine the BASIC input routines. After cold starting BASIC,
type in the following line:

10ABCDE

32 MICRO on the OSI

listing 1

10 0000
20 0000
30 0000
40 0000
50 0000
60 0000
70 0000
BO 0000
90 0240

100 0240 A920
110 0242 A2BO
120 0244 9DCOD6
130 0247 CA
140 0248 10FA
150 024A EB
160 0248 A920
170 0240 90BOD6
lBO 0250 9DB2D6
190 0253 A95E
200 0255 9D81D6
210 0258 20EBFF
220 0258 C920
230 0250 F019
240 025F C921
250 0261 fOl0
260 0263 C90D
270 0265 F020
280 0267 C95F
290 0269 FOl7
300 0268 C923
310 026D DOOC
320 026F A920
330 0271 DOOB
340 0273
350 0273 B001D6
360 0276 0003
370 0278
3BO 027B B041D6
390 0278 9DCID6
400 027E 9513
410 02BO [IOCB
420 0282
430 02B2 CA
440 0283 30C5
450 02B5 10C4
460 02B7
470 0287 A900
480 02B9 9513
490 02B8 A992
500 028D AOAI
510 028F 20C3AB
520 0292 A212
530 0294 AOOO
540 0296 4C80A2

1*********************************** ;* •
1* LINE EDITOR FOR 051 540 BOARD *
a ..
a BY E.D. HORRIS •
n ..
1***********************************
I

*=S240

CLR

CUR
Cl

I

LDA U20
LDX U80
STA SD6CO.X
DEX
BPL CLR
INX
LDA U20
STA SD6BO.X
STA $D682.X
LDA USE
STA SD6BbX
JSR SFFEB
CMP U20
BED COPY
CHP t'!
aEa LONG
CMP nOD
BEQ DONE
CMP USF

BEn BACK
CMP t'.
BNE WSCR
LDA U20
SNE WSCR

CLEAR BOTTOM OF SCREEN

REMOVE CURSOR FROM SCREEN

PRINT CURSDR ON SCREEN

GET KEYSTROKE
SPACE BAR FDR SHORT LINE

EXCLAMATION FOR SNORT LINE

RETURN ..,

BACKSPACE ?

't' FOR SPACE
MUST BE CORRECTION
SPACE
BRANCH ALWAYS

LONG LDA $0601.X READ SCREEN (LONG)

• •
COPY
WSCR

• •

BNE WSCR BRANCH ALWAYS

LDA $D641.X
STA $D6Cl. X
STA SI3.X
BNE CUR

READ SCREEN (SHORT)
PRINT CHAR ON SCREEN
STORE CHAR IN BUFFER
BRANCH ALWAYS

BACK DEX BACKSPACE

I

BMI CUR
8PL Cl

LIMIT BACKSPACE
BRANCH ALWAYS

DONE LDA to PUT NULL INTO BUFFER
STA S13,X
LDA U92 DISPLAY ' OK' MESSAGE
LDY UAI
JSR SABC3
LDX U12
LDY to
JMP $A280 BACK TO BASIC

Une Editor for OSl 540 Board 33

u you press RETURN, this line will be entered into the BASIC text.
However, instead of RETURN, press the BREAK key and jump to the
machine-monitor mode. Examine the data stored at locations $0013 to
$0019 . You should find

Location Data ASCD
$0013 31 1
$0014 30 0
$0015 41 A
$0016 42 B
$0017 43 C
$0018 44 0
$0019 45 E

The data at these locations is the hex representation of the ASCD
characters you just typed. Locations $0013 through $005A are the input
buffer . Thus, to simulate keyboard input the line editor must store the
corrected line in this buffer. The next trick is to get BASIC to accept this
data . First the "X" and "Y" registers must be set to point at the input
buffer and then a jump made to the proper location in BASIC.

Try the following experiment. Cold start BASIC and jump to the
machine monitor. Using the monitor, fill locations $0013 to $0019 with
the hex data from the above example, adding a $00 at location $OOIA.
Again using the machine monitor, write the following program at $0250.

$0250 A2 12 LOX #$12
$0252 AO 00 LOY #$00
$0254 4C 80 A2JMP $A280

Then execute the program starting at $0250. The pointers are set to the
input buffer and a jump is made into ROM. There will be no indication
that anything happened, but you are now back in BASIC . Type LIST and

10ABCOE

will appear. This technique has convinced BASIC to accept a line of data
stored in the input buffer as if it had been typed in. Try using this method
to input other lines of data, remembering to make the final character a
null or $00.

Here is the final link to writing a line editor. Listing 1 is an editor
assembled at address $0240. The program assumes that the line to be
edited has been listed previously and now appears on the screen starting
at $0641. The line editor is called through the USR function. After clearing
several screen locations, the program displays an up arrow I$SE) as a cur
Sor immediately below the line to be edited. The subroutine at $FFEB

34 MICRO on the OSI

gets a character from the keyboard . If this character is a space bar ($2.0),
one character is copied from the old line into the input buffer and
displayed on the screen below the cursor. The cursor will move
backwards on a backspace or $SF input. A RETURN or $00 indicates that
you are finished editing that line. Since the space bar is used for direct
copying, something else must be used for a space . I have chosen the # sign
or $2.3. Any other character typed is assumed to be corrected input and is
stored in the buffer and on the screen.

The RETURN key causes the program to display "OK" and places a
null at the end of the input line. The pointers are set as described above,
and a jump made back into BASIC. If the program is moved to reside in a
different memory location, the jump absolute instructions at lines $02.82.
and $02.88 must be changed.

For those of you who do not use machine code, I have included a
BASIC program to set up this patch and then erase itself. Once the line
editor is entered, either by BASIC or via machine code, load the program
you want to edit. Then add the following line to your BASIC program:

1 POKE 11,64: POKE 12,2:Z = USR(1)

LIST the line you want to edit, then type RUN. This calls the line editor
and displays the cursor directly under the listed line. The valid com
mands were listed above. To run your program, either delete line one or
enter RUN 10 (assuming your first line is 101. Before you save the cor
rected program, delete line one.

Listing 2

10 PRINT' LINE EDITOR FOR OSI'
20 PRINT ' CIP OR SUPERBOARD'
30 FOR 1=576 TO 669:READ J:POKE I,J:NEXT
40 PRINT:PRINT 'EDITOR LOADED':NEW
50 DATA 169,32,141,37,211,141,38,211,162,0
60 DATA 169,32,157,5,211,157,7,211,169,94
70 DATA 157,6,211,32,235,255,201,32.240,22
80 D~TA 201,13.240.34.201.95.240,26.201.35
90 DATA 208,2,169,32,157,38,211,149,19,76
100 DATA 124~2t189,230,210,157,38,211,14',19
110 DATA 232,76,74,2.202.76,74,2,169,79
120 DATA 141,69,211,169,75,141.70.211.169,32
130 DATA 141.71,211,169.0.149.19.162.18.160
140 DATA 0,76.128.162

Line Editor for OS! 540 Board 35

Now for the limitations of this simple editor. The line to be corrected
must appear at a fixed position on the video screen. This is determined by
the screen read instruction LOA $064l,X. The editor will not work if the
line is not exactly at this position. For example, if a line is longer than 64
characters, the screen will scroll, moving the text up one line. A similar
problem occurs when you attempt to edit the last line of a program - the
listed line appears too low on the video screen. In this case, simply hit a
RETURN to scroll up one line and then type RUN to enter the editor.

Lines longer than 64 characters can be edited by changing the screen
read instruction from LOA $064l,X to LOA $060l,X. This is ac
complished by using different keys for the "copy" function, depending
on the length of the line being edited. Lines shorter than 64 characters are
copied by pressing the space bar. Longer lines are copied with the
exclamation ill key.

This editor can be modified to run on a CIP or Superboard by changing
the appropriate screen locations. A BASIC listing of a CIP version is
shown in listing 2. The editor is limited to a single video line, which, in
the case of the ClP, is only 25 characters. To edit multiple lines, the
editor must be able to skip over the unused bytes on the edges of the CIP
video screen.

Listing 3 is the source code for 6503.2. Assemble the program
somewhere Ifor example at $XXXXI and go back into BASIC . The editor
is set up by OISK!"GO XXXX". This set-up POKEs the word "EDIT" in
place of " WAlT" in the instruction table and changes the dispatch table
to point to the edit routine . The first Nap must be left due to the way the
dispatch table works. LIST a line, then call the editor by entering EDIT.
Otherwise this routine works the same as the 540 ROM version.

,

36 MICRO on the OSI

Listing 3

10 0000
20 0000
30 0000
40 0000
SO 0000
60 0000
70 0000
80 E800
90 E800 A94S

100 E802 80C902
110 E805 A944
120 E807 8DCA02
130 E80A A91S
140 E80C 8112402
1 SO E80F A9E8
160 E811 8D2502
170 E814 60
180 E815
190 E815
200 E815
210 E815 EA
220 E816 A920
230 E818 A280
240 E81A 90COD6
250 E81[1 CA
260 E81E 10FA
270 E820 A200
280 E822 AnO
290 E824 9114006
300 E827 9!142Il6
310 EB2A A95£
320 E82C 904106
330 E82F 20EDFE
340 E832 C920
350 E834 F019
360 E836 C921
370 E838 F010
380 E83A C90D
390 E83C F022
400 E83E C95F
410 E840 F019
420 E842 C923
430 E8H DOOC
HO E846 A920
450 E848 D008
460 E84A BOC105
470 E840 0003
480 E84F B00106
HO E852 9081D6
500 EB5S 9518
510 E857 E8
520 E858 4C22E8
530 E8SB CA
540 E85C 30F9
550 E85E IOC2
560 E860 A900
570 E862 951B
580 E864 A992
590 E866 A003
600 E868 200300
610 E86B A21A
620 E86D AOOO
630 E86F 4CBOO.<\.

;******************************* ;* LINE EOITOR 65D 3.2 VERSION *
a * ;* BY EARL MORRIS *
;******************************* • •

;

;JUMP HERE TO SET UP Ell IT OR BY "EDIT"
*=$[800
SET LDA t ' E

STA t02C9
LDA t ' D
STA t02CA
LDA tGO*256/256
STA t0224
LOA tGO / 256
STA f0225
RTS

;START OF EOIT ROUTINE
BUFF=UB

GO NOP
LOA U20
LOX U80

CLR STA tD6CO.X CLEAR SCREEN BOTTOH

CUR

LONG

COPY
WSCR

L1

BACK

DONE

DEX
BPL
LDX
LDA
STA
STA
LOA
STA
JSR
CHF'
BW

CLR
to
U20
tD640,X
fD642tX
USE
.D641,X
tFEED
U20
COPY

CHP . ' !
BEQ LONG
CHP UD
Bm DONE
CHP USF
Bm BACK
CHP t ' .

WSCR
U20
WSCR
tDSC1.X
WSCR

BNE
LOA
BNE
LDA
BNE
LOA
STA
STA
INX

fD601,X
tD681,X
BUFF, X

JMP CUR
DEX
BMI
BPL
LDA
STA
LM
LDY
JSR
LOX
LOY
JMe

Ll
CUR
to
BUFF, X
$$92
.3
t0003
U1A
to
.0.80

REMOVE CURSOR

CURSOR
PLACE CURSOR
GET KEYSTROKE
SPACE BAR FOR SHORT LINE

EXCLAMATION FOR LONG LINE

RETURN?

BACKSPACE?

t FOR SPACE
MUST BE CORRECTION
SPACE
BRANCH ALWAYS
READ SCREEN (LONG)
ALWAYS
REAlI SCREEN (SHORT)
WRITE SCREEN
INPUT BUFFER

BACKSPACE
LIMIT BACKSPACE

NULL INTO BUFFER

DISPLAY 'OK ' HESSAGE

BACt(TO BASIC

Auto Line Numbers for OS] Disk BASIC 37

Auto Line Numbers for
051 Disk BASIC

by Lester Gain

Software support for the OSI is
improving but is still minimal,

and users have to develop many of
their own programs. Actual pro
gramming with flow charts and
algorithms is part of the pleasure of
developing your own program. But
when it's time to input to the
machine some of the fun flies out
the window. With all the necessary
keying, line numbers are an added
detriment and detract from the
pleasure of writing programs.

Some of you are familiar with
large mainframe computers, which
have an AUTO function and put out
line numbers for you. This function

is definitely a plus and should be available
to everyone. I explain here a simple, easy-to-use

program that gives you an AUTO function to relieve
some of the tedious burden of typing. There are two listings -

one in assembly language and the other in BASIC, which should
work on the CIP disk BASIC also. The logic is easy to follow and could be
put to use on ROM machines with different hooks . But I will leave that as
an exercise for persons with ROM.

Listing 1 is the assembly-language routine necessary to develop the
program. In OSI disk BASIC, the routine to get a character from the
keyboard and incorporate it into the BASIC Source begins at $558, which
is LOX #$0. At the next address, or $55A, there is a hook to make BASIC
jump to the AUTO program. This is accomplished in line 310 of listing 2
and forces information to go through the code before BASIC can do
anything with the keyboard infmmation.

Now you are at routine START in the assembly routine. Since there is
a hook here to make BASIC jump, you will have to perform the routine

38 MICRO on the OSI

listing 1
•

10 0000
20 0000
30 0000
40 0000
50 0000
60 0000
70 0000
80 0000
90 0000

100 0000
110 0000
120 0000
130 0000
140 0000
150 0000
160 0000
170 0000
180 0000
190 0000
200 0000
210 BOOO
220 BOOO 208705
230 B003 4B
240 B004
250 B004 C906
260 B006 D006
270 BOOB A900
280 SOOA 85D8
290 BOOC 85D9
300 BOOE
310 BOOE C91B
320 BOlO DOO,
330 BOl2 E6DB
340 B014 E6D9
350 8016 A5DB
360 B01B D004
370 BOlA A5D9
380 BOle F004
390 BOlE 68
400 BOlf 4C5D05
410 B022
420 B022 68
430 B023 A940
HO B025
450 8025 a5he
460 B027 A9D7
470 B029
480 8029 856D
490 B028 A5DA
500 8020 18
510 B02E 690A
520 8030 85DA
530 B032 9002
540 B034 E6DB
550 8036 A6DA
560 8038 A5DB
570 B03A
5BO B03A

;, AUTO LINE NUMBERS ,
;, fOR OSI C1P-CBP •
;. WITH DISK BASIC •
j. *
;. BY LES CAIN • ,. *
• •

SCL=$6C
SCH='6D
BUf=t1A

;
BASIC=.055D
INPUT=$OSB7

;

•

LlNE=t1CDC

TH=$DB
fH=THt1
LO=TH+2
HI=TH+3

•
'='8000

CURSOR'S HOME POINTER (LO)
CURSOR'S HOME POINTER (HI)
START OF BASIC BUFFER

INPUT EXIT POINT
BASIC INPUT ROUTINE
HEX-DECIMAL CONVERT ROUTINE

AUTONUMBER FLAG
CARRIAGE RETURN FLAG
CURRENT LINE. (LO BYTE)
CURRENT LINE. (HI BYTE)

START JSR INPUT BASIC INPUT ROUTINE SENT HERE
PHA SAVE CHARACTER

• •
AUTON CMP.6

• •

BNE AUTOff
LDA .0
STA TH
STA FH

AUTOff CMP U1B
BNE BACK
INC TH
INC FH

BACK LDA TH
BNE BK
LDA FH
BEG AUTO

8K PLA
BKI JMP BASIC
;
AUTO PLA

LDA .. 40

STA SCL
LOA UD?

STA SCH
LOA LO

CLC
ADC tiD
STA LO
BCC ASOUT
INC HI

ASOUT LOX LO
LDA HI

• •

CTRL f ?

YES. TURN ON AUTO
AUTO FLAG
FLAG TO BYPASS AUTO

ESC
TEST fLAGS
TURN OfF AUTO FLAGS

GET AUTO FLAG
NOT A 0 - BACK TO BASIC
CR FLAG MADE 0 WITH A CR
If 0 THEN CONTINUE WITH LINE •
RESTORE SAVED CHARACTER
BACK TO BASIC WITH CHAR

PULL SAVED CHAR fROM STACK
LO BYTE Of SCREEN ADDRESS
; •• ** •• 65 fOR C1P ,.,.
INITIALIZE POINTER LO BYTE
HI BYTE Of SCREEN ADDRESS
;,,*, '$D3 FOR CIP ""
INITIALIZE POINTER HI BYTE
LO BYTE Of LINE •

ADD LINE INCREMENT
SAVE LO BYTE
SKIP INCR HI If NO CARRY
INCREMENT HI If NECESSARY
GET LO BYTE Of LINE •
GET HI BYTE Of LINE •

;CONVERTS BINARY NUMBER TO ASCII STRING & OUTPUTS

(contin ued)

Auto Line Numbers fOT OSl Disk BASIC 39

that was originally there, getting a key from the keyboard. At AUTON
you test for a control 'F'. If this key is encountered, the two Auto flags are
set to zero and the program will fall through to the AUTO routine . If
there is no control 'F', then test for an ESC at AUTOFF. If there is an
ESC, turn off Auto flags TH and FH and go back to BASIC with the
character in the accumulator. If no ESC is found, test Auto flag TH. If TH
is not zero then test the secondary flag FH. This flag is turned off in the
SCR routine so constant line numbers are not output. If FH is zero then
you are ready for a new line number and fall through to the AUTO
routine.

AUTO is a simple addition and increments the line number by 10 at
every pass . AUTO also initializes the indirect screen pointers. This needs
to be done only once, but why take chances? BASIC might decide to stick
something at these addresses.

One of the keys to the whole program is the ASOUT routine . The line
number is loaded into the accumulator and the X index. A)SR to the
BASIC routine LINE i$ICDC) outputs an ASCII string from the binary
values in LO and HI to the screen at cursor level. BASIC uses this routine
to output line numbers when listing.

This brings you to the most important segment of the program - get
ting BASIC to accept the line number you have created. It must be in an
acceptable format and in the input buffer. Use the Y index for LINE, and
decrement it by one to get you to the cursor. Here storage is started into
the buffer. After the line number is in, the X index is decremented and
you write on top of the cursor with a space . BASIC uses X to point into
tbe buffer. From here it's back to the keyboard with a space after the last
digit of the line number. Here you also turn off the CR flag FH, simply by
incrementing it .

Now for the last segment of the assembly program - the CR routine.
You have put a hook into BASIC with the statement in line 270 of listing 2.
BASIC jumps here when it finds a carriage return . Turn to the back of flag
FH; if the main Auto flag TH is on, the AUTO process continues until an
ESC turns off both flags . To end the program, jump to $A6D. This puts
the buffer pointer into the CHARGET routine and checks the syntax to
determine if what you just did was an immediate command or a line
number. Since it is a line number, all pointers will be reset and the line is
entered into the BASIC Source.

The BASIC program as shown is all that is necessary to have the
AUTO function on your system. Line 170 determines the highest page of
RAM on your system and sets the high end of BASIC work space to pro
tect the object code. Statement 220 POKEs the code into the appropriate
area of memory by reading the data and POKEing it to l. Statement 270

40 MICRO on the OSI

Listing 1 (continued)

590 B03A
600 803A
610 B03A 20DCIC
620 803D 98
630 803E AA
640 803F 48
650 8040 88
660 8041
670 8041 B16C
680 B043 991AOO
690 8046 88
700 8047 DOF8
710 8049 68
720 804A A8
730 804B CA
740 B04C E609
750 B04E A920
760 B050 [iOeD
770 8052
780 8052
790 B052
800 8052
810 8052 A900
820 8054 8509
830 8056 4C600A

;USED TO OUTPUT lINE t'S WHEN LISTING
• ,

;
SCR

• ,

JSR LINE
TVA
TAX
PHA
[lEY

LOA (SCl hY
STA BUF,Y
[lEY
BNE SCR
PlA
TAY
DEX
INC FH
LOA *,20
SNE BKI

BASIC ROUTINE FOR THE LINE t
GET Y-REG FROM OUTPUT ROUTINE
SAVE IT IN X-REG

BYF'ASS SPACE AFTER CURSOR

GET CHARACTER FROM SCREEN
PUT IT IN BASIC BUFFER-l

NOT AT END OF lINEt ON SCREEN
GET Y-REG BACK
RESTORE Y FOR DISPLAY PURPOSES
BYPASS CURSOR, X IS BUFFER IND
TURN OFF CR FLAG
lOAO A SPACE
TO BASIC WITH SPACE IN ACC,

;PATCH FROM BASIC POKES TO RESTORE AUTO FLAG
;AFTER A CR IS RECEIVED BY INPUT ROUTINE
• ,

CR LOA to
STA FH
JMP SOAbO

TURN AUTO FLAG BACK ON
SET CR FLAG
BACK TO BASIC ADDRESS PATCHED

Auto Line Num bers for OSl Disk BA SIC 41

putS in the intercept jump to reset the secondary Auto flag . Statement
310 puts the hook for getting characters into the original BASIC routine,
for the test routine . Since the machine code is completely relocatable,
the only variable is P, which BASIC puts in 8960 on boot in, indicating
the highest page in RAM .

The REM statement in the data indicates the location of the beginning
line number. This can be changed if you don ' t want to start a line number
as 100.

T he listings included here allow you to choose how you want to
implem ent the AUTO routine. The assembly method can be used in the
free area before BASIC workspace on the mini-disks. A note of caution:
some of the new software has a revised keyboard routine in this area .
This way the program is available all the time and not used as free RAM.
Or, the BASIC program could be run from BEXEC· . The BASIC listing
was made using the AUTO function .

A few words here on using the finished program : the two flags are
turned off at first and must be turned on with a Control-F . After the pro
gram is on, it will continue to output line numbers until it encounters an
ESC. The ESC can be either in the line or before another line is output.
Simply press the space bar to continue after each carriage return . This is
certainly more convenient than typing in line numbers!

•

42 MICRO on the OSI

Listing 2

10 REM AUTO LINE NUMBERS
20 REM FOR OSI IP-8P DISK SYSTEMS
30 REM WORKS FOR ANY SIZE MEMORY
40 REM
50 REM POKE NEW HIGH MEMORY TO SAVE CODE
60 S=PEEK(8960):POKE 132.143:POKE 133.5: RUN 70
70 P=PEEK(8960)
80 REM
90 REM X IS BEGIN ADDRESS TO POKE CODE
100 X=P*256+1H:FORI=X TO X+88:READ A:POKE I.A:NEXT
110 REM
120 REM POKE A JUMP TO MACHINE CODE AT lOS84
130 REM P IS THE HIGH BYTE
l~O POKE 1412,76!POKE 14i4,P!rOKE 1413,226
150 REM
160 REM POKE JUMP TO MACHINE CODE AT lOSS A
170 POKE 1370 .76:POKE 1371.144:POKE 1372.P
180 REM
190 PRINT!PRINT"READY u :PRINT
200 REM
210 REM SET BEGINNING LINE = TO 90
220 POKE 21B,90!POKE 219,0
230 REM
240 REM DATA FOR MACHINE LANGUAGE CODE
250 DATA 32,135,5,72,201,6,208,6,169,0,133,216,133,217,201,27
260 DATA 208,4,230,216,230,217,165,216,208,4,165,217,240,4,104,76
270 [lATA 93,51104,169
280 DATA 64: REM CHANGE TO 101 FOR CIP
290 DATA 133, lOB, 169
300 DATA 215:REM CHANGE TO 211 FOR CIP
310 DATA 133,109,165,218,24,105
320 DATA 10:REM THIS IS THE AUTONUMBER INCREMENT
330 DATA 133,218,144,2,230,219,166,218,165,219 , 32,220,28,152,170,72
340 DATA 136,177,108,153,26,0,136,208,248,104,168,202,230,217,169.32
350 DATA 208,205,169,0,133,217,76,109,10

Autonumber Plus for Cursor Control 43

Autonumber Plus for
Cursor Control

by Kerry LourQsh

T his short machine-language
utility frees CIP owners from

the drudgery of typing line numbers
and doubles as a fast line deleter.

When the Autonumber (ANI pro
gram (listing 1) is patched into Cur
sor Control, a number can be called
up by hitting the LINE FEED key.
The number will appear on the
screen, indented one space and
followed by a space, just as line
numbers appear when they are
LISTed. Only the number is stored
in the buffer; this lets you use the
limited buffer length to the fullest.
Hitting the LINE FEED and
RETURN keys alternately deletes

lines quickly.
The counter for the Autonumber is located in

$Fl, $F2 (decimal 241 and 242). It can be set directly
with POKEs or zeroed by doing a warm start. The counter can

also be zeroed by POKEing $206 (decimal 518) to zero.
Autonumber is patched into the Cursor Control by setting CC's

PATCH jump to the starting address of Autonumber:

Change $1E10 ($12) to $22
$1 E11 ($1 E) to $02

The line increment can be altered by changing location $024C (deci
mal 588).

The AN uses a BASIC-in-ROM subroutine whose normal function is
printing line numbers for the LIST rou tine and ERROR IN XXXX
messages. This subroutine converts the contents of the A and X registers
to an ASCn string stored in $OlOO-$OlOC. Next, it prints the string on the

44 MICRO on the OSI

listing 1

10 0000
20 0000
30 0000
40 0000
50 0000
60 0000
70 0000
80 0000
90 0000

100 0222
110 0222
120 0222
130 0222
140 0222
150 0222
160 0222
170 0222
180 0222
190 0222
200 0222
210 0222
220 0222
230 0222
240 0222
250 0222
260 0222
270 0222
280 0222
290 0222 C90A
300 022-1 D03D
310 0226 AE0602
320 0229 D008
330 022B A964
340 022D 85Fl
350 022F A900
360 0231 85F2
370 0233 A900
380 0235 8D0602
390 0238 A6F 1
400 023A A5F2
410 023C 205E89
420 023F 20EOA8
430 02-12 A2FF
HO 0244 E8
450 0245 BIJOI01
460 02-18 9513
470 02-1A DOF8
-180 024C 18
490 024D A90A
500 02-1F 65F 1
510 0251 85Fl
520 0253 9002
530 0255 E6F2
5-10 0257 8E0602

;***********************************
; * AUTONUMBER FOR CURSOR CONTROL *
;* *
; * BY KERRY LOUR ASH *
;***********************************
• ,
COUNTL=.Fl
COUNTH=.F2

• ,
FLAG=.206

*=.222

AUTO COUNTER LO BYTE
AUTO COUNTER HI BYTE
AUTO RESET FLAG

;******ADD THIS ROUTINE TO MAKE******
;******AUTONUMBER FREE-STANDING******
;******PATCH INTO INPUT WITH******
;******POKE536,34:POKE 537,2******
• ,

;0222 2C0302 INPUT
;0225 1003
;0227 4CBFFF
;022A 8A IN
;022B 48
;022C 98
;022D 48
;022E 2000FD

• ,

BIT .203
BPL IN
JHP $FFBF
TXA
PHA
TVA
PHA
JSR $FDOO

;******CHANGE 'QUIT ' CODE FROM******
;******JMP $lE12 TO JHP .FDB7******
• ,
AUTONM CMP *SA

ZERO

LOOP

SNE QUIT
LDX FLAG
BNE ZERO
LIlA tiOO
STA COUNTL
LDA to
STA eOUNTH
LDA to
STA FLAG
LDX COUNTL
LDA COUNTH
JSR .895E
JSR .A8EO
LDX UFF
INX
LDA UOlrX
STA $l3,X
SHE LOOP

LINE FEED KEY?
NO, BACK TO CC
FLAG=O "1
NO, DON'T RESET COUNTER
INITIALIZE COUNTER
TO 100

PRINT A LINE t
PRINT A SPACE

PUT LINE t IN BUFFER
GET DIGIT
PUT DIGIT IN BUFFER

INCRHT CLC INCREHENT AUTO COUNTER

DONE

LDA UO BY 10
ADC COUNTL
STA COUNTL
BCe DONE
INC COUNTH
STX FLAG SET FLAG (continued)

Autonumber Plus for Cursor Control 45

screen. The space after the line number is printed by another BASIC-in
ROM routine.

The AN program can be relocated, but $IElO and $IEll must point to
the new starting address . If you've relocated the Cursor Control program,
adjust AN's)MP $IEI2 accordingly.

Because of memory space limitations, I was not able to make the Cur
sor Control as modular as I would have liked. Several useful routines are
impossible to access directly from BASIC. Also, I noticed that I seldom
used the window feature because the windows are hard to set. The
following routines llisting 21 should correct these weaknesses .

First, I designed the USR GO routine to make machine-language
subroutines easier to access. This routine eliminates the need to POKE
different USR vectors when multiple machine-language routines are called
in a BASIC program. The vector 1$1l-$121 needs to be set only once - to
the start of the USR GO routine . When you call a machine-language
subroutine, type X-USR IDDDDDI . The D's represent the decimal ad
dress of the subroutine. You can use a number, variable, or even an ex
pression inside the parentheses . For example, 12.256 + 6.16 + 41 would be
accepted . To set USR GO, POKE 1l,100:POKEI2,2.

USR GO allows five special subroutines to be called with a single digit
II-51 and checks the high byte of the calling address in the USR paren
theses before going to that address . If the high byte is zero laddress less
than 255J, USR GO selects one of the five routines. If the number is not
1-5, a "function error" message is printed. With a little examination of
the USR GO logic you can add over 200 of your own often-used sub
routines. Here's a hint: $B408 returns with the low byte of the address in
the Y register.

Now that multiple machine-language routines are easy to access, it's
possible to tap three useful Cursor Control subroutines:

ESC - Switch windows III
RUB - Erase current window 121
HOM - Home cursor 131

There is also a PRIN AT function that moves the cursor location to any
address in screen memory:

PRINAT - Print at 141

The command format is X = USRI41 offset. The offset should be 1-1000
and can be expressed as a number, variable, or formula. The offset is added
to $DOOO lupper left comer of the screenl and the cursor is moved to that
location. A handy way to set cursor location is X = USRI4IA'32 + B.

To make window setting easier, I developed:

WINSET - Set window boundaries 151

46 MICRO on the OSI

listing 1 (continued)

550 025A 68
560 025B A8
570 025C 68
580 025D 8A
590 025E 48
600 025F 98
610 0260 48
620 0261 A901
630 0263 4C121E

listing 2

10 0000
20 0000
30 0000
40 0000
50 0000
60 0000
70 0000
80 0000
90 0000

100 0000
110 0000
120 0000
130 0000
140 0000
150 0264
160 0264
170 0264 200884
180 0267 C900
190 0269 F010
200 026B 6Cll00
210 026E
220 026E 201AA7
230 0271 C8
240 0272 98
250 0273 18
260 0274 65C3
270 0276 9002
280 0278 E6C4
290 027A 60
300 027B
310 027B 88
320 027C 0005
330 027E 48
340 027F 48
350 0280 4C601E
360 0283
370 0283 88
380 0284 D005
390 0286 48

PLA PULL BUFFER INDEX (X)
TAY FROM STACK AND REPLACE
PLA WITH NEW CHAR COUNT
TXA

PHA
TYA
PHA
LDA t1 NON-PRINTING CHAR

QUIT JHP UE12 BACK TO CURSOR CONTROL

;********************* ;* BASIC ACCESS TO *
;* CURSOR CONTROL *
;********************* • ,
CURSOR=sEO
ALTWIN='E6

PATCH='IEOF
ESCAPE=UE5C

HOME=$lE72
RUBOUT=$IE80
PCURSR='lF14

PRINT=$1F1F
• ,
• ,
USRGO JSR '8408

CHP fO
BEG ESC
JMP (Sl1)

• ,

CONVERT TO 2-BYTE
IS HI BYTE=O'1
YES, TO CC SUBS
JUMP TO ADDRESS

CLR JSR SA71A FIND END OF LINE
INY PLUS 1
TYA

No.

CLC UPDATE PARSER POINTER
ADC SC3
BCC CLl
INC SC4

CLl RTS
;
ESC DEY SWITCH WINDOWS

SNE RUB
PHA
PHA
JHP ESCAPEH

• ,
RUB DEY CLEAR WINDOW

SHE HOM
PHA (continued)

Autonumber Plus fOT Cursor Control 47

The command format is X = USRISI top boundary, bottom boundary.
The boundaries are expressed as line numbers: I = top to 32 = bottom.
See figure 2 in the Cursor Control article for a map of the window lines . A
typical command is: X = USRIS)24,30. This command sets the alternate
window to the bottom quarter of the screen. To use the window, call the
ESC rou tine: X = USRII).

CLR Subroutine
Notice that PRINAT uses one variable to the right of the USR paren

theses and WINSET uses two. CLR allows the use of the command form
X = USRIA),B,C for both routines. CLR finds the end of the statement,
either colon or null, and sets the parser pointer I$C3,$C4) past the end of
the line. Otherwise BASIC would print an error message .

After trying out the Autonumber Plus, you may wish to relocate it to
leave the block of RAM at $0222 free. Cursor Control could be moved
down one or two pages and the AN relocated to the top of memory . Cur
sor Control will protect them from being overwritten. Warms tart vectors
$0001 and $0002 would have to be adjusted, of course.

Listing 2 (continued)

400 0287 48 PHA
410 0288 4C841E JMP RU80UTH
420 028B • •
430 0288 88 HOM DEY HOME CURSOR
HO 028C [1005 BNE PRINAT
450 028E 48 PHA
460 028F 48 PHA
470 0290 4C6F1E JHP HOME-3
480 0293 • •
490 0293 88 PRINAT DEY PRINT AT
500 0294 D016 SNE WINSET
510 0296 201F1F JSR PRINT ERASE CURSOR
520 0299 20C1AA JSR SAAC1 GET OFFSET
530 029C 200884 JSR SB408 CONVERT TO 2-BYTE •
540 029F 84EO STY CURSOR ADD OFFSET TO $DOOO
550 02A1 18 CLC
560 02A2 69DO ADC uno
570 02114 85E1 STA CURSORtl
580 02A6 20141F JSR PCURSR PRINT CURSOR

(continued)

48 MICRO on the OSI

listing 2 (continued)

590 02A9 4C6E02
600 02AC
610 02AC 88
620 02AD D032
630 02AF 20C302
640 0282 20D502
650 0285 20C002
660 0288 A202
670 02BA 2011502
680 028D 4C6E02
690 02CO
700 02CO 2001AC
710 02C3 20C1AA
720 02C6 2005AE
730 02C9 C6AF
740 02CB A205
750 02CD 06AF
760 02CF 26AE
770 02Dl CA
780 02D2 DOF9
790 02D4 60
800 02D5
810 02[15 A5AF
820 02D7 95E6
830 02D9 18
840 02DA A9DO
850 02DC 65AE
860 02DE 95E7
870 02EO 60
880 02[1 4C88AE

JHP CLR GOTO END OF LINE
• •
WINSET DEY SET ALT. WINDOW

• •

SNE ERR
JSR WINGET+3 GET START OF WINDOW
JSR STOR STORE IT
.JSR WINGET GET END OF WINDOW

LDX .2
JSR STOR STORE IT
JHP CLR TO END OF LINE

WINGET JSR
JSR
.JSR
DEC
LDX

SACOI
SAACI
fAE05
SAF

.5
SAF

SAE

FIND COHHA ELSE ERROR
GET VALUE
CONVERT TO 2-BYTE •
'lINUS 1 .6 FOR 2K CONVERSIONS
HUL TIPL Y BY 32 1.11 ASL

• •
STaR

ERR

ROL
DEX
BNE
RTS

LDA
STA
CLC
LIlA
ADC
STA
RTS
.JHP

WI

SAF STORE WINDOW VALUES
ALTWIN.X

.SDO
SAE
AL TWIN+!.X

SAE88 FUNCTION CALl ERR

ON ERROR GOTO for OSI ROM BASIC 49

ON ERROR GOTO
for 051 ROM BASIC

by Earl Morris and Kerry Lourash

OSI ROM BASIC en
counters an error, program ex

ecution is halted and the screen
displays the dreaded

? S. ERROR IN LINE xx

where the. is a graphics character
rather than the correct letter. The
following programs add an " ON ERR
GOTO" function to your machine
so that errors are detected and a
jump is made to program line 50000.
The line number where the error oc
curred is stored in the variable XX
and the type of error is stored in X.
At line 50000 the programmer can

print out the expanded error message, fix
the error, or jump back to the program. As an

added bonus, the graphics character in the error
message is converted to the correct alphabetic letter.

As an example, consider the program

10 INPUT "NUMBER"; A
20 PRINT:PRINT 1/A
30 GOTO 10

Ii a zero is input, the program halts with a divide-by-zero error in line 20.
With the error-trap program in place, the following can be added:

50000 PRINT: IF XX < > 20 THEN END
50010 PRINT:PRINT "CAN'T DIVIDE BY ZERO - TRY AGAIN "
50020 GOTO 10

50 MICRO on the OSI

listing 1: 1 P Version

10 0000
20 0000
30 0000
40 0000
SO 0000
60 0000
70 0000
80 0000
90 0000

100 0222
110 0222
120 0222 C90D
130 0224 DaiS
140 0226 8A
150 0227 48
160 0228 BA
170 0229 BD0601
180 022C C9S2
190 022E D007
200 0230 BD0701
210 0233 C9A2
220 0235 F007
230 0237 68
240 0238 AA
250 0239 A90D
260 023B 4C69FF
270 023E
280 02.3E A588
290 0240 C9FF
300 0242 F04C
310 0244
320 0244
330 0244 M87
340 0246 85AD
350 0248 84AE
360 024A A290
370 024C 38
380 024D 20E8B7
390 0250 A900
400 0252 855E
410 0254 855F
420 0256 A95B
430 0258 8593
440 02SA 8594
450 025C 2049AD
460 025F 8597
470 0261 8498
480 0263 207487
490 0266
500 0266
510 0266 68
520 0267 48
530 0268 4A
540 0269 A8
550 026A A900
560 026C 20C1AF
570 026F A900
580 0271 8594

'**********************************
'* ON ERROR ROUTINE. IP VERSION *
1**********************************
;
IGOES TO LINE 50000 ON ERROR WITH
ILINE NUIIBER IN xx. ERROR TYPE IN X.
I
ISET UP $021A=$22. $0218=$02

• •
*=$0222

Al

BYE
I
ERRTRP

• •

CliP
BNE
TXA

PHA
TSX
LDA
CliP

BNE
LDA
CliP
BED
PLA

TAX
lOA
JIIP

LDA
CliP

nOD
BYE

$106.X
n52
Al
H07.X

nA2
ERRTRP

nOD
$FF69

$88
nFF

BED ERROR

IS OUTPUT A CR1
NO. EXIT TO MORIIAL
SAVE X REGISTER

GET STACK POINTER
IS CALLING ADDRESS
.A252 1

YES. TO ERR TRAP
RESTORE X-REG.

RESTORE A-REG.
GOTO REGULAR OUTPUT

IF IN IHH. 1I0DE
PRINT ERROR MESSAGE

I******STORE CURRENT LINE t IN XX ******

STORE CURRENT LINE •
IN F.P.A

LDY $87
STA $AD
STY $AE
LDX .. 90
SEC
JSR $B7E8

LDA to
STA $5E
STA $5F
LDA t'X
STA $93
STA $94
JSR SAD49
STA $97
STY S98
JSR SB774

I
I ******STORE ERROR

PLA
PHA
LSR

TAY
A

lOA to
JSR $AFC!

LDA to
STA $94

CONVERT LINE. TO F.P.

SET DEFAULT DIll FLAG
SET VAR. TYPE FLAG
SPECIFY XX VARIABLE
NAIIE

FIND OR CREATE XX

STORE F.P.A IN XX

tl2 IN X ******
PULL ERROR •
SAVE IT AGAIN
HALVE IT

STORE ERR t IN F.P.A

(continued)

ON ERROR GOTO for OSI ROM BASIC 51

If an error occurs in line 20, the error trap program prints a message and
continues program execution. Other errors will still end the program .
The error trap resets the stack, effectively clearing all loops and
subroutines . The jump back to the main program cannot enter within a
FOR-NEXT loop or go directly to a subroutine.

Two versions of the ON ERR routine are listed: IP and 540. Use the
version appropriate for your machine . The method used to detect errors is
different for each type of computer. The IP version uses the output vector
on page two. On every carriage return, the ON ERR program searches the
stack to determine which routine is writing to the screen. If a $A252 is
found on the stack, then the error routine is outputting and the ON
ERRor program is triggered .

Machines other than the IP do not have the output vector in RAM,
and must use a different hook into BASIC. The ON ERR program hooks
into the OK message printer at $0003 . The routine looks for the "1",
which appears above the OK whenever an error occurs . A disadvantage of
this hook is that the normal error message has already been printed and
the type of error is no longer in memory. Thus, the 540 version stores a
value in XX (line number) but not in X (error type).

In both programs, after an error is detected, location $88 is inspected .
If it contains a $FF, the computer is in the immediate mode and the ON
ERRor routine is bypassed. Then the normal error message (corrected) is
printed . If you wish to use ON ERRor in the immediate mode, change the
following location:

1 P - Change $0243 from $4C to $00
540 - Change $0259 from $EE to $00

T he variable XX contains 65xxx as a line number if the error occurs in the
immediate mode.

If the computer is not in immediate mode, or if the above patch is
made, the current line number is converted to floating point and stored in
the variable XX. The error index contained in the X register is halved,
converted to floating point, and stored in the variable X.

Next a search is made for line 50000. If it is found , the parser pointer
is set to the start of line 50000 and the program jumps to the start of the
BASIC execution loop. If no line 50000 is found, the normal error
message is output and execution is halted .

Notes on IP Version

Whenever the BREAK key is pressed, the IP' s vectors are reset to the
original. The output vector again must be pointed to ON ERRor after
every break. This can also be done with

POKE 538,34 : POKE 539,2

- -

52 MICRO on the OSI

Listing 1 (continued)

590 0273 2049AD
600 0276 8597
610 0278 8498
620 027A 2074B7
625 027D • ,

JSR fADH FIND OR CREATE X
STA .97
STY f98
JSR fB774 STORE F.P.A IN X

630 02 7D ;******FIND LINE
LDA USO
STA Ul
LDA .fC3

50000******
640 027D A950
650 027F 8511
660 0281 A9C3
670 0283 8512
680 0285 2032A4
690 0288 9006
700 028A 20D9A6
7 10 028[1 4CC2A5
720 0290
730 0290
740 0290 68
750 0291 AA
760 029 2 20E3A8
770 0295 BD64Al
780 0298 20ESA8
790 0291< BD65Al
800 029E 297F
810 02AO 4C5FA2

STA H2
JSR fA432
BCC ERROR
JSR fA6D9
J"P fA5C2

;
;******PRINT ERROR
ERROR PLA

TAX
JSR
LDA
JSR
LDA
AND
J"P

fA8E3
fA1M,X
SA8ES
SA16S,X

U7F
SA25F

HEX 50000 IN $11,12

LOOK FOR LI NE
BRANCH IF NO LINE
SET PARSER AT 50000
GOTO BASIC EXEC. LOOP

"ESSAGE******
PULL ERROR INDEX

PRINT '1 '
GET FIRST CHARACTER
PRINT IT
GET SECOND CHARACTER
ZERO HI BIT OF CHAR
TO REG. ERR ROUTINE

ON ERROR GOTO fOT OS1 ROM BASIC 53

For the IP version, the error type is contained in the variable X. Table 1
lists the error types. A program can be written to print out the full error
descriptions if you have trouble remembering what "T'" means .

Notes on 540 Version
On error can also be set up using

POKE 4,64 • POKE 5,2

The first command in line 50000 should be PRlNT. This scrolls the error
message up one line to prevent retriggering ON ERRor. The 540 version
does not put the error type into X, but the error type is displayed on the
screen at $0741 and $0742. The ON ERRor program could be extended to
read these locations and do a table look-up to get the error index .

Table 1: Error Types
-~-----:

.:.,-

Index

a
1
2
3
4

7

8

9
10
11

12 "
13 •
14
15
16

Next
Syntax Error

4%' -,,,,'0.< .@,
-.' ..

Function Can - argument out of range
W Ove:flQW' Jill'

~ : .. -.. ' -

Out OfMemOty
Undefined Statement

Ii GOlia
'" " Bad Slibseript '

Subscript greater than dimension
Double Dimension
Division By Zero
illegal Direct

C • .. d' d Gw, an t use It;\ Imme ,ate mo " e
.. ,:" ,- ~". . ", . - '", ,',

'type Mismatch "'f

Long String
String ,;:remporaties
Contiriue ErrOr
Undefined Function

54 MICRO on the OSI

Listing 2: 540 Video Version

10 0000
20 0000
30 0000
40 0000
50 0000
60 0000
70 0000
80 0000
90 0000

100 0240
110 0240
120 0240 48
130 0241 A04007
140 0244 C93F
150 0246 FOO.
160 0248 68
170 0249 4CC3AB
180 024C
190 024C AD4207
200 024F 297F
210 0251 8042D7
220 0254 A58B
230 0256 C9FF
240 0258 FOEE
250 025A 68
260 025B A487
270 025D 84AE
280 025F A58B
290 0261 B5AD
300 0263 A290
310 0265 38
320 0266 20E8B7
330 0269 A900
340 026B 8S5E
350 026D B55F
360 026F A958
370 0271 8593
380 0273 B594
390 0275 2049AD
400 0278 8597
410 027A 8498
420 027C 2074B7
430 027F A950
440 0281 8511
450 0283 A9C3
460 0285 8512
470 0287 2032M
480 028A 9006
490 028C 20D9A6
500 028F 4CC2As
510 0292
520 0292 A992
530 0294 AOAI
540 0296 4CC3A8

;************************************ ;* ON ERROR ROUTINE FOR 540 VIDEO *
;************************************ • •
;GOES TO LINE 50000 ON ERROR
;WITH LINE NUMBER IN XX.
• •
;SET UP $0004="0 $0005=.02

• •
• •

J2

• •
J1

,
J3

PHA
LDA $D740
CMP t '?
BEa .11
PLA
JMP $A8C3

LDA $0742
AND t$7F
STA $0742
LOA $B8
CMF' UFF
BED J2
PLA
LOY $87
STY $AE

LOA $88
STA $AO
LOX U90
SEC
JSR $B7EB

LOA 10
STA SSE
STA $SF
LOA t' X
STA $93
STA $94
JSR $A049
STA $97
STY .98
JSR tB774
LOA .,50
STA '11
LOA •• C3
STA $12
JSR $A432
BCC J3
JSR $A609
JHP $AsC2

LOA .,92
LOY "AI
JHP $ABC3

READ CHAR FROM SCREEN
IS IT A QUESTION HARK?
IF YES. THEN ERROR OCCURED
NORMAL MESSAGE OUTPUT
MESSAGE PRINTER

GET GRAPHICS CHARACTER
CLEAR HI BIT
RETURN CHAR TO SCREEN

IN IHMEDIATE HOOE?
YES. GO TO BASIC

PUT CURRENT LINE •
IN $AD. $AE

CONVERT HEX TO FLOATING

SET DIM DEFAULT FLAG
SET VARIABLE TYPE
SPECIFY XX VARIABLE

FIND OR CREATE XX VAR.

PUT VALUE IltTO XX
PUT HEX 50000 INTO $11. $12

LOOK FOR LINE 50000
BRANCH IF LINE NOT FOUND
POINT TO LINE :soooe
GOTO BASIC EXEC LOOP

NO LINE 50000- PRINT 'OK'

HESSAGE I'll INTER

Cross· Reference Generator for OS/ BAS/C·in·ROM 55

Cross-Reference
Generator for 051
BASIC-in-ROM

by John Krout

you develop a large pro
gram in BASIC, almost in

evitably you need to find all the
references to some aspect of the pro
gram. If you decide to delete a par
ticular line, it is important to locate
all the GaTOs, THENs, and
GOSUBs mentioning that line. If
you want to conserve memory by
merging two string variables into
one, you must find all the ap
p~arances of the string variable
names. A cross-reference generator
program is extremely useful at these
times, for it can find references
within your program much faster
and more accurately than the tradi
tional visual search.

A cross-reference generator is needed most
often, however, when free memory is a scarce

commodity. In this article I develop a cross-reference
generator that requires less than IK of RAM and finds refer

ences to variable names, constants, literals, line numbers, and any
word in the vocabulary of BASIC.

When you type a line of BASIC program text, OSI BASIC-in-ROM
~tores that text in a condensed or "tokenizedll format in RAM. Listing 1
IS a program that takes a look at itself in RAM, and table 1 shows that pro
gram's output.

In listing I, variable T points to the beginning address of numeric
variable storage in RAM, which is also the end of your BASIC program
text. The beginning of BASIC text is address 768. ISee MICRO 31:61 for

,

56 MICRO on the OS]

more infOImation on text and variable storage area pointers . J To look at
the RAM storing BASIC text, the FOR-NEXT loop examines all addresses
from 768 to T. Line 60160 prints the address, the graphic corresponding
to the data at the address, and the data at the address - in decimal.

Listing 1

60010 T=PEEK(123)+256*PEEK(124)
60100 FOR 1=768 TO T
60110 X=PEEK(I)
60160 PRINT I;CHR$(X);X
60170 NEXT I: END

Although the printer used to create table 1 does not use OSI's entire
graphics code, a comparison of listing 1 to its tokenized version in table 1
is very informative. First of all, you can see that the variable names, con
stants, and some BASIC symbols are stored in their ASClI code fOIm, just
as if they were strings of characters. Most BASIC keywords and symbols,
however, are stored as single characters called " tokens," and all the
tokens have values greater than 127 .

Table 1

768 0 787 (40 806 1 49 825 I 40
769 25 788 1 49 807 3 826 X 88
770 3 789 2 50 8 0 8 .. 20 6 8 2 7) 41
771 J 106 790 4 52 8 0 9 234 828 • 59 0
772 234 791) 41 810 X 88 829 X 88
773 T 84 792 0 811 .. 171 830 0
774 .. 1.71 793 & 38 812 , 187 831 H72
775 , 187 794 3 813 (40 832 3
776 (40 795 ,.., 196 814 I 73 833
777 1 49 7 96 2 3 4 815) 41 10
778 2 50 797 129 816 0 834 235
779 3 51 798 I 73 817 ? 6 3 835 130
780) 41 799 .. 171 818 3 836 I 73
781 - 163 8 00 7 55 819 0 837 • 58 •
782 2 50 8 0 1 6 54 820 235 838 128
783 5 53 8 02 8 56 8 2 1 151 839 0
784 6 54 8 03 157 822 I 73 840 0
785 I 165 8 0 4 T 84 823 • 59 841 0 ,
786 , 187 805 0 824 192 842 0

843 T 84

Cross·Reference Generator for OSI BASIC·in·ROM 57

The line number of each line is also stored. While each reference to a
line number (GaTOs, GOSUBs, THENs) is stored as a string following
the appropriate token, the line number of each tokenized line is stored at
the beginning of the line in low-high format . For instance, line number
60010 begins at address 771:

PEEK(771) + 256*PEEK(772) = 60010

Moreover, each line of tokenized text is terminated with a zero.
There are two other bytes of data between each terminating zero and

the bytes representing the number of the following line. These are a
pointer, also in low-high format, to the next line. For instance, before the
beginning of line 60010 in RAM:

PEEK(769) + 256* PEEK(770) = 793

At address 792 a zero terminates line 60010, and at address 795 and 796
the number of the second program line is stored. Therefore, the next-line
pointer for each line points to the next-line pointer for the following line .

Listing 2 is a modification (to be added to listing I) that decodes and
prints the number of each tokenized line. The program spots each ter
minating zero in line 60120 and branches to the line decoder. An
interesting feature of FOR-NEXT loops is utilized in line 60530: you can
change the value of the loop variable while the loop is running. This
enhances execution speed slightly by skipping the next-line pointers.

Listing 2

60120 IF X=O GOT060500
60500 REM NEW LINE
60510 LINE=PEEK(I+3)+256*PEEK(1+4)
60520 PRINT LINE
60530 I=It5
60540 GOTO 60110

11 BASIC can translate new text lines to tokens and, during a LIST,
vice versa, then there should be a dictionary of BASIC vocabulary and
corresponding tokens somewhere in ROM. In fact, the dictionary resides
in addresses 41092 through 41314 (see MICRO 24:25, 23:65) . Listing 3
takes a look at the dictionary, and the results of listing 3 appear in table 2.
The items are placed in the dictionary in numerical order of their corre
sponding tokens. The last character of each item has its most significant
digit set to 1 to tell BASIC that the end of the item has been reached. In
listing 3, X represents a byte of data in the dictionary and is used in line

58 MICRO on the OSI

61040 to build a string, B$, of consecutive bytes . Line 61050 branches to
avoid incrementing the token number, variable TK, and printing and
clearing B$, if the item is not yet complete; i.e., if the most significant bit
of X is cleared. While assembling B$, use Boolean logic in line 61040 to
clear the most significant bit of every character, not just the last one.
This may be overkill, but it is also compact code and serves the need to
conserve RAM. Now combine listings 1 through 3. This enables you to
search for any string, or token corresponding to a dictionary item, that
you need to find.

Listing 3

61000 REM LOOKUP TOKEN
61010 TK=127:B$=··
61020 FORI=41092T041314
61030 X=PEEK(I)
61040 BS=BStCHRt(XAND127)
610~0 IFX<12BGOT061100
61060 TK=TKtl
61070 PRINT TKIBt
61080 Bt=· ..
61100 NEXT

128 END 145
129 FOR 146
130 NEXT 147
131 DATA 148
132 INPUT 149
133 aIM 150
134 READ 151
135 LET 152
136 GoTO 153
137 RUN 154
138 IF 155
13. RESTORE 156
140 Gosue 157
141 RETURN 158
142 REM 159
143 STOP 160

Table 2

NULL 162 STEP
WAIT 163 +
LOAD 164 -
SAVE 165 *
DEF 166 I
POKE 167
PRINT 168 AND
CQNT 169 OR
LIST 170 >
CLEAR 171 =
NEW 172 <
TA8(173 SGN
TO 174 INT
FN 175 ASS
SPC(176 USR
THEN 177 FRE

144 ON 161 NOT 178 POS

179 SQR
180 RND
181 LOG
182 EXP
183 COS
184 SIN
185 TAN
186 ATN
187 PEEK
188 LEN
189 STRS
190 VAL
191 ASC
192 CHR$
193 LEFT'S
194 RIGHTS
195 MICS

Cross-Reference Generator for OSI BASIC-in-ROM 59

Listing 4 modifies listings 1 and 2 to find a string, represented by the
variable A$, in any tokenized text line. A$ can therefore be a variable
name, constant, line reference, or literal in a print statement, data state
ment, string computation, or remark. The variable B$ here represents the
tokenized text and is built byte by byte in line 60130 . If the contents of
A$ resides anywhere within B$, then sooner or later A$ will equal the
rightmost L characters of B$, where L represents the length of A$. When
this match occurs, line 60160 prints the line number of the current line
represented by B$. The previous unconditional print of each byte and line
number has been replaced, and B$ is cleared in line 60520 whenever a
new line number is decoded.

Listing 4

60050 INPUT"WHICH STRING"iA~:PRINT
60070 L=LEN(At)!Bt=M .
60130 BS=BHCHR'(X)
60160 IFA$=RIGHT.(BS.L)THENPRINTLINEi
60170 NEXTI:PRINT:GOTO 60050
60520 8t=""

If you have entered listings 1 through 4 in sequence, then listing 5
adds the capability of converting a keyword to its token by searching the
dictionary and finding all references to the token . Line 61070 converts
the numeric token TK to a I-byte string A$, and then uses the string
search routine of listing 4 to locate matches for A$.

Listing 5

60030 INPUT" KEYWORD OR STRING"iA':PRINT
60040 IF ASC(AS)=75 GOTO 61000
60170 NEXT I:PRINT:GOT060030
61005 INPUT "WHICH KEYWORD"iAS:PRINT
61015 L= LEH(AS)
61070 IFA$=LEFT'(BS.L)THENA'=CHR$(TK):GOT060070
61200 PRINTASI"NOT FOUNIt":PRINT:GOT060030

As is, the cross-reference generator will now find all that you seek,
but it finds a few extra items as well . For example, direct the program to
examine its own text for references to the numeral 7. It prints the line
numbers in which the constants 75, 768, and 127, as well as line
reference 60070, appear. Ask it to find references to the numeric variable
A Ithere are none), and it prints references to A$. If references to Tare
sought, it finds two of the input prompts and one of the remark literals,
as well as all references to T and TK . Some fine tuning is definitely in
order to eliminate, or at least reduce, the unwanted reference reports .

60 MICRO on the OSI

The problem of distinguishing a constant from a line reference is very
complex, partly because line references can be surrounded by commas in
an ON/GOTO or ON/ GOSUB context, while constants can also be sur
rounded by commas in a multiple-argument function or command. In my
programs, I've found line references to be far more common than con
stants, and far more likely to end with the numeral o. I have seen other
cross-reference generators that can do the job, but they are larger than
this one and not as versatile. Since my purpose is compactness, versatility
is useful, and since the chances of confusion appear to be minimal, I can
live with the constant/line reference problem.

The problem of distinguishing subscripted, string, and numeric
variables is easier to solve. If references to a numeric variable are sought,
the program should reject any it finds that are followed by either a (or a $.
If references to a string variable are sought, the program should ignore
any followed by a (character. These suffix rejection rules for numeric and
string variables suggest that you can eliminate erroneous references
embedded in larger strings (illustrated above by the searches for 7 and T)
by implementing a set of suffix and prefix rejection rules. The prefix rule
for all strings is rejection of references preceded by a numeric or upper
case alphabetic character. The suffix rule for constants, line references,
and numeric variables is as stated above for numeric variables, with the
additional rejection of numeric and upper-case alphabetic suffixes.

Listing 6 incorporates these rules into the cross-reference generator,
utilizing three defined Boolean functions in a single IF/GOTO state
ment. The functions are defined in lines 60005 through 60007. The argu
ment in each is the ASCII value of a character. FNA returns a true value if
the character is numeric or upper-case alpha. FNB returns true if the
character is neither (nor $. FNC, utilizing FNA and FNB in its definition,
returns true if the character is either numeric, upper-case alpha, (, or $.
Line 60070 is modified to set new variable A equal to the ASCII value of
the first byte of A$. Lines 60080 and 60135 skip over the rules implemen
tation if A indicates that A$ represents a token . Line 60090 sets new
variable B equal to the ASCII value of the last byte of B$, to decide later if
the string to be found is a subscripted or string variable.

listing 6

60005 DEF FNA(X)=(X>47ANDX <S8) OR (X>64ANDX<91)
60006 DEF FNB(X)=X<>36 AND X< >40
60007 DEF FNC(X)=NOT FNB(X) OR FNA(X)
60070 L=LEN(A$): B$=" • : A=ASC(A$)
600BO IF A>127 GOTO 60100
60090 B=ASC(RIGHT$(A$.I»
60135 IF A) 127 GOTO 60160
60140 IF A$ <>RIGHT$(B$,l) GOTO 60170
60145 Y=PEEK(ltl):IFLEN(BS»LTHENW=ASC(RIGHTS(BS,L+l»
60150 IFFNA(W)OR(B=36ANDY=40)OR(FNB(B)ANDFNC(Y»GOT060170
60535 W=O

Cross·Reference Generator for as} BAS}C· jn·ROM 61

Since the program doesn't need the rules unless a potential reference
is located, line 60140 jumps past the rules until that condition is met. In
line 60145, Y is the ASCII value for the reference suffix and, if the
reference is not the first item in the text line, then W is the ASCII value of
the reference prefix. Line 60535 sets W to zero whenever a new line
number is decoded. Line 60150 skips the line number printing statement
if any of the prefix or suffix rejection rules are met when a potential
reference is found. This is one easy way to read the line:

if the prefix W in the text is numeric or upper-case alpha,

or the item sought ends with a $ and the text suffix is a L
or the item ends with neither I nor $ and the text suffix is either
numeric, upper-case alpha, $ or L
GOTO 60170.

The first clause implements the prefix rule, the second the string variable
suffix rule, and the third the suffix rule for numeric variables, constants,
and line references .

Listing 7 is the result of all these developments. It does indeed run in
less than lK of RAM, with about 200 bytes to spare for a few instructions
inserted between lines 60010 and 60030. That might be a good place to re
mind yourself that the symbols + , -, " / , " , >, = , and < are treated
as keywords, not strings Isee table 2) .

A few extra lines in listing 7 are useful options . Line 0 is simply a
jump to the start of the program; you can load it from tape on top of your
main program already in RAM and simply type RUN to begin cross
referencing. Since modification of a program erases the tables of variables
in upper RAM, you need the CLEAR statement in line 60002 only if you
test your own program and then enter the cross-reference generator by
typing GOTO 60000. The FRE function in line 60035 allows the garbage
collection routine to conserve memory in the string storage space
whenever a new A$ is input in line 60030. Rest assured that garbage col
lect will not crash the system unless your own program uses subscripted
string variables and their values are preserved by avoiding both program
modification and the CLEAR statement. Line 60515 ends the search
When the program' s own line numbers are reached .

You can conserve even more memory by deleting the remark state
ments and altering the references to those lines accordingly, as well as by
combining unreferenced lines into multiple statements. This latter step
saves the four-byte header for each of the lines eliminated and can add up
to a critical saving.

62 MICRO on the OS]

Listing 7

1 GOTO 60000
60000 REM XREFGEN
60002 CLEAR
60005 DEF FNA(X)=(X>47ANDX<58) OR (X) 64ANDX<91)
60006 DEF FNB(X)=X<>36 AND X<>40
60007 DEF FNC(X)=NOT FNB(X) OR FNA(X)
60010 T=PEEK(123 >+256*PEEK(124)
60030 INPUT"KEYWORD OR STRING";A$:PRINT
60035 Y=FRE(1)
60040 IF ASC(AS)=75 GOTO 61000
60050 INPUT"WHICH STRING";Al:PRINT
60070 L=LEN(At): 8$=" " : A=ASC(AS)
60080 IF A) 127 GOTO 60100
60090 a=ASC(RIGHT$(AS.l I)
60100 FOR 1=768 TO T
60110 X=f'EEK(I I
60120 IF X=O GOT060500
60130 B$=BHCHRS(X I
60135 IF A) 127 GO TO 60160
60140 IF AS<>RIGHT$(B$.LI GOTO 60170
60145 Y=f'EEK(1+1): IFLEN(BS l>L THENW=ASC(RIGHT$(B$. L+1 »
60150 IFFNA(W)OR(B=36ANDY=4010R(FNB(B)ANDFNC(Y»GOT060170
60160 IFA$=RIGHT$(S$.LITHENPRINTLINE;
60170 NEXTI:PRINT:GOT060030
60500 REM NEW LINE
60510 LINE=PEEK(1+3 H2S6*PEEK(1+4-)
60515 IFL INE>59999THENPRINT :GOT060030
60'520 8$= ""
60530 1=1+'5
60535 \11=0
60540 GOTO 60110
61000 REM LOOKUP TOKEN
61005 INf'UT"WHICH KEYWORD " ;A$:PRINT
61010 TK=127:8S=""
61015 L=LEN(AS)
61020 FORI=41092T041314
61030 X=PEEK(I)
61040 a$=S$+CHRS(XANDI27)
61050 IFX<128GOT061100
61060 TK=TK+1
61 010 IFA$=LEFT$(B$.L)THENA$=CHR$(TKI:GOT060070
61080 8$=""
61100 NEXT
61 200 PRINT A$;" NOT A KEYWORD":f'RINT:GOT060030

Cross·Relerence Generator lor OSI BASIC·jn·ROM 63

Have you been wondering about the need for the next-line pointers?
They are essential to BASIC's execution of branching statements. An
understanding of this process will help you improve execution speed of
your own programs as well as the cross-reference generator. When a
branch token such as a GOTO is executed, BASIC first translates the
string of digits following the token into the low-high line-number format.
The speed of this operation clearly depends on the length of the string, so
it always helps to use small line numbers, even though this may be
impractical in large programs. If line references were stored in low-high
format when tokenized, it would save memory and speed things up. I
suspect Microsoft shares my conclusion that it is difficult to distinguish
constants and line references.

Once the line number is ready, BASIC looks at each tokenized line
header in turn, starting with the first program line in RAM, until a line
number match is found. If the current header doesn't match, BASIC uses
the next-line pointer to skip to the next header. You can maximize the
speed of this skip-compare process by minimizing the number of lines
and lengthening each line with multiple statements. You should also put
your most frequently called routines in the lowest line numbers, where
BASIC will find them first, and put the initialization code in the highest
line numbers so BASIC won't have to skip through it on the way to the
more important material. The cross-reference generator has a very
significant execution speed problem in this regard, because not only its
own initialization in lines 60000-60090 but also the entire tokenized text
data base sits below the main processing loop routine in RAM!

There are two ways you can modify the cross-reference generator to
use next-line pointers to improve execution speed. Once a reference is
found in a line there is no need to search the remaining portion of the
line, so use the pointer to increment the loop variable I to the beginning
of the next line. More helpful is an input specifying the range of line
numbers in your program through which the cross-reference generator
should search. It can use the next-line pointers to skip to the first line
number you specify and then quit when it finds the last line number you
specify. If you're looking for references to a block of code in your own
program about to be moved or eliminated, you can reduce the number of
searches required by adding a search for references to a specified range of
line numbers. I suggest that you create a defined Boolean function of your
own to help implement the rules for these extra features.

•

Extended OSI BASIC 65

Extended OSI BASIC

S I f'\e"flO

o .

by Collin Macauley and Jeff Macauley

A ttempts to emulate an Extended
BASIC have been undertaken

but they have never been user trans
parent. Ed Carlson, in a MICRO arti
cle (2.5: 15), altered the parser rou
tine (CHRGETI. Michael Mahoney
continued this theme in a follow-up
article (MICRO 46:511. Unfor
tunately the parser routine is the
most used subroutine in BASIC and
the loss in speed may be unaccept
able to many programmers. Addi
tionally, the use of "HC" in a pro
gram does not look like a CLS com
mand. A different approach was
taken by Yasuo Morishita in
PEEK(651 Vol. 2., No. ll, where an

extended USR(XI statement was used;
e.g., K = USR(OIKY designated a GET command .

Again this solution did not use accepted syntax.
Our program is a development of the Morishita program and

uses an adaptation of that program when the Extended BASIC com
mands are called. Originally ' the program was developed for use with
Synertek 8K BASIC where an enhanced USR(XI statement is available.

The program will recognize any user-designated statements; the only
limitation is the ability of the programmer to define code to support these
Statements. A jump and keyword table are readily expanded when further
additions are developed.

The program is divided into three sections, described as follows:
INPUT. The input vector ($218, $2191 is pointed to this routine and

converts the user's keywords into their correct USR calls When a car
riage return is detected the routine checks the input buffer for each
keyword; e.g., CLS. If a keyword is located it is converted into a user call
of one of the following types:

a . 00 = USR(OI$ICXY - standalone statement; e.g., CLS
b. USR(OI$ICXY - equate statement; e.g., X = HEX($AAAA)

where $ICXY is the appropriate address in the keyword jump table

,

66 MICRO on the OSI

listing 1: Input Routine

10 0000 ;*************************
20 0000 ;* EXTENDED OSI BASIC * 30 0000 ;* *
40 0000 ;* COL IN & JEFF MACAULEY *
50 0000 j*************************
60 0000 ,

•
70 0000 , INPUT •
80 0000 ,

•
90 0000 EA =$E2

100 0000 EX =$E4-
110 0000 LB =$13
120 0000 LF =0203
130 0000 PB =$E3
140 0000 TE =$EO
150 0000 TF =$200
160 0000 TOK=$1BOO
170 onoo TW =$E6
180 0000 UF =$F7 INPUT FLAG
190 0000 US =$1 B14
200 0000 XB =$OE LINE CHAR , COUNTER
210 0000 ,

•
220 lEOO *=$lEOO
230 lEOO • •
2 40 lEOO A5F7 TZ LDA UF SET INPUT FLAG
250 1E02 0940 ORA tHO
260 lE04 85F7 STA UF
270 lE06 20BAFF JSR $FFBA GET CHAR FROM KYBD
280 lE09 C90D CMP UD END OF INPUT?
290 lE08 FOO l BEG T
300 lEon 60 RTS RETURN TO BAS I C
310 lEOE ,

•
320 lEOE A900 T LDA to
330 lElO 860E STX XB SAVE BUFFER LENGTH
3 40 lE12 9513 STA LB,X
350 lE1 4 M TAX
360 lE15 B6EO STX TE
:,70 lE17 ACOO LDY t o
3BO lE19 B513 TO L[lA LB,X CHECK BUFFER
390 lElB E<OE CPX XB END OF BUFFER?
400 lEl D F009 BEG TB
41 0 lE1F D9001B CMf" TOK,y NO. CHECK FOR KEYWORlt
420 1£22 F020 BEG Tl
430 lE24 E8 14 HlX NO. LOOP BACK
440 1E25 4C191E ,JMP TO
4 50 1E28 A900 T8 LDA t o RESET COUNTER
460 lE2A 85EO STA TE
470 lE2C AA TAX
480 1E2[1 B9001B T5 LDA TOK, Y FIND END OF KEYWORlt
490 lE30 300. BMI T2
500 1E32 CB INY
510 lE33 4C2D1E JMP TS
520 1E36

,
•

530 l E36 CB T2 INY SKIP TO NEXT KEY WORD
540 lE37 CB INY
550 lE38 CB INY
560 1£39 CB INY
570 lE3A C9FF CMP 'I$FF END OF KEYWORDS?
580 lDC DO DB BNE TO NO. LOOP BACK

(continued)

Extended OSl BASIC 67

The input buffer will be expanded to accommodate the conversion.
Thus the program line" 10 CLS : X = 1" would be expanded to "10 00 =

USR(0)$lC03 : X = 1" in the input buffer. With this expansion, care must
be taken not to overflow the input buffer as an error will be flagged if
multistatement lines are too long. Also note that the variable 00 cannot
be used and has been chosen specifically because it is unlikely that a pro
grammer would use it in view of the letter O/zero confusion.

Each keyword has four parts in the keyword table. For example, con-
sider CLS:

1. 'CL' letters of keyword less one
2. $03 ASCn "S" with highest bit set
3 . '03' low byte of jump table address ($lC03)
4. $00 $00 = standalone statement, else $03

The program has room for additional keywords, which can be inserted
into the keyword and jump tables.

OUTPUT. The output vector ($21A, $21B) points to this routine and
will print the appropriate Extended BASIC statements rather than the
converted USR call. In this manner the USR call conversion is invisible to
the user. When listing to the screen or tape, the routine searches for the
USR statements and prints them only when no match is found; i.e., an
actual program USR call was made, as opposed to a keyword USR call. If a
match is found, the keyword, rather than the USR call is printed.

USR . The USR vector ($OB, $OC) points to this routine and allows ex
ecution of the redefined USR call. This new type of USR call allows ex
pressions, variables, and hexadecimal values to be evaluated and used by
the USR call. The evaluated expressions, etc., are stored as integers in the
low I high format starting at $EO. Any Extended BASIC routine can then
access these locations when required . Because of the revised form of USR
call, any non-keyword USR calls must be of the following type :

USR(O)XX,A, ... F
where XX is the call address
A-F are up to 7 data values

XX and A-F may be expressions, numbers, or hexadecimal numbers (if
preceded by a " $" sign).

This change makes the USR call easier to deciper, as you are freed
from continually changing locations $OB, $OC before calling a USR
routine with the USR address always being identifiable. The changes to
Yasuo Morishita's program were to allow parentheses to be used in defin
lllg a statement; e.g., AUTO (start, inc) for an auto line-number com
mand. The parentheses cause the BASIC expression handler ($AAAO) to
flag an error and must be skipped . The routine checks for the open paren
thesis and, if found , replaces the close parenthesis with a colon. After all
expressions are evaluated, the open parenthesis is easily skipped and the

68 MICRO on <he OSI

Listing 1 (continued)

590 lE3E 18 CLC YES, EXIT TO BASIC
600 IE3F MOE LOX XB
610 IE41 A90IJ LOA un
620 IE43 60 RTS
630 IE44 ,

• 640 IE44 E6EO TI INC TE
650 1£46 C8 INY
660 lE47 EB INX
670 IE48 B9001B LOA TOK,Y
680 IE4S 297F AND U7F
690 IE4D [1513 CMP LB,X MATCH FOR NEXT CHAR OF KYWO.
700 IE4F nooa BNE T3 NO . CHECK BUFFER AGAIN
710 IESI B900lB LOA TOK,y
720 IES. 300C BMI T6 KEYWORD FOUND
730 1£56 . CHIE JMP TI KEEP CHECKING
740 1E59 ,

•
750 1[59 8B T3 DEY RESET COUNTER
760 lE5A CA DEX
770 lESE! C6EO DEC TE
780 1E5[1 [IOFA BNE T3
790 lE5F 4C241E JMP H
800 IE62 ,

• 810 1E62 C8 T6 INY
820 IE63 EB INX
830 IEM 84E2 STY EA
840 IE66 86E3 STX F'B
850 IE6B B9021B LDA TOK+2,Y STANDALONE KEYWORD?
860 IE6B FOOS BEQ KI YES, USE OO=USR(O)$ICXY
870 lE6[1 A90B LDA UB NO. USE USR(0)UCXY
8BO lE6F 4C741E JMP Tl7
890 1E72 A90E KI LDA UE
900 IE74 38 TI7 SEC
910 tE75 ESEQ SBC TE
920 IE77 85H STA EX
930 IU9 C6E4 DEC EX
940 IE7B 18 ClC
950 lE7C 650E AIle XB
960 IE7E C947 CMP U47 BUFFER OVERFLOW?
970 lE80 9005 BCC K2
9BO IEB2 A20A LOX UA YES, FLAG ERROR
990 IE84 4C4[AZ JMP SA24E

1000 lE87 ASOE K2 LOA XB SET UP TO EXF'AND BUFFER
1010 IE89 38 SEC
1020 lEBA £5£3 SBC PB
1030 lE8C AA TAX
1040 IEBD E8 INX
1050 IE8E A900 UIA to
1060 IE90 8SEl STA TW+I
1070 lEn A50E LOA XB
1080 lEN IB ClC
1090 IE9S 6913 AD C tLB
1100 IE9? 8SE6 STA TW
1110 IE99 AOOO EP lDY to EXPAND BUFFER
1120 IE9B B1E6 LDA (TlrJ) , Y
1130 IE9D ME4 LOY EX
1140 lE9F 91E6 STA (TW)'Y
1150 lEAl C6Eb DEC TW
1160 IEA3 CA DEX
1170 lEA"- [I0F3 BNE EP
1180 lEA6 ASOE LDA Xis

(continued)

Extended OSI BASIC 69

colon subsequently replaced by a close parenthesis before execution to
the appropriate machine-language subroutine .

For an 8K RAM system, the Cold Start MEMORY SIZE? Prompt
should be answered with "6900" to protect the program from being over
written by BASIC. The program uses zero-page locations $DF-$EF and
$F2-$F8 and care must be taken if your monitor or machine-code pro
grams u se these locations. To initialize the program the following POKEs
are req uired :

POKE 247,0 : POKE 11,64 : POKE 12,28· UF flag ; USR vector
POKE 538,0 : POKE 539,29 : POKE 536,0 : POKE 537,30 . Outpulll nput vectors

To demonstrate the program, three keywords have been included in
the lis tings :

1. CLS - clear screen
2. GET - wait for a keyboard response and save ASCII value of key hit
3. HEX j$XXXXj - converts hexadecimal value XXXX into decimal

In use, the following short program

10 CLS
20 PRINT HEX($2000)
30 PRINT GET

will in actual fact be stored as

10 00 = USR(0)$1 C03)
20 PRINT USR(0)$1COO($2000)
30 PRINT USR(0)$1C06

in m em ory, but this will not be visible to the programmer.
The program may be relocated and transferred to EPROM to save your

valuable RAM . With this program you will need to thumb through your
back issues of MICRO to locate those routines for PRINTAT, AUTO,
PLAY, etc., which may be readily incorporated.

• 2

70 MICRO on the OS!

listing 1 (continued)

1190 lEAS 18 CLC
1200 1£A9 bSE4 ADC EX
1210 IEAB 850E STA X8
1220 lEATt A4E2 LDY EA
1230 lEAF B9021B LDA TOI(+2, Y STANDALONE KEYWORD?
124-0 1E82 FOO4. 8EO TI8
12S0 lEB4 A003 LIlY 13
1260 1 EBb II002 BNE Tl 9
1'70 lEBa AOOO T18 LDY t o
1280 l EBA ASE3 TI9 UtA PB
1290 IEBC 38 SEC
1300 lEBD ESEO SBC TE
13 10 IEBF AA TAX
1320 lECO CA DEX
1330 IECI B9141B EP3 LDA US,Y SHIFT USR INTO BUFFER
13 40 IEe4 9513 STA LB,X
1350 IEC6 E8 INX
I 60 IEC7 C8 INY
1370 IEca COOC CPY tiC
1380 lECA !!OF5 BtlE EP3
1390 lEce A4E 2 LDY EA
1400 IECE 89001 B LDA Tal(, Y PUT USR ADDRESS INTO BUFFER
IHO IEDI 9513 STA Li:\, X
14 20 IED3 89011 B LDA TOKtl. Y
1430 IEDb E8 INX
1440 lED7 9513 STA LBrX
1450 1Eri9 A900 LOA to
1460 lEItE 8SEO STA TE
1470 lEDIt A8 TAY
H80 lEDE ~C241E JMF' 14 CHECK FOR MORE KEYWmU1S

EXlended OSI BASIC 7J

Listing 2: Output Routine

10 0000
20 0000
30 0000
40 0000
50 0000
60 0000
70 0000
80 0000
90 0000

100 0000
110 0000
120 0000
130 0000
140 0000
150 0000
160 0000
1 ~O 0000
180 0000
190 0000
200 1DOO
~10 H IOO
220 1000 24F7
230 1002 70 13
240 1M-4- 1003
250 1[106 4C391D
260 ID09 C94F
270 1[IOB D003
280 1 [lOD 4C221 II
290 Hl l O C955
300 lD12 D003
310 HII4- 4C331[1
320 1 [t17
330 1[11 7 48
340 t DI S ASF7
3~O IDIA 29 BF
360 1IiI C 95F7
370 ttnE 68
3RO 1tLIF 4C69FF
39C 11:22
400 1 II22 48
410 1[123 A90 1
420 1 [125 85FB
43C 1[127 B5F2
4-40 1 [1 29 A980
450 1[12[: 35F7
460 1(12[1 68
470 lD2E . 964
480 11130 850F
490 ltl32 60
500 1[133
510 ID33 48
~20 1[134 A9 04
530 11136 4C2S111
5 <4-0 1[139
550 1D39 BSF6
560 103B 48
570 lD3C 8A
5ao 1D30 48

;*************************
;* EXTENDED OSI BASIC *
a * ;* COLIN & JEFF MACAULEY *
;*************************
,
• ,
•

,
•

BASP

• •
OUTPUT

FAI =$F3
PA2 =$F 4
F'RINT=$FF69
foX =$F8
Toes =$F5
SF- X =$F2
TOK =$IBOO
UF =SF7
US =UBI4
VI =$F 6
• •
* =$1[100

INPUT FLAG

CHECK INPUT FLAG BIT UF
BVS BA3
BPL BAl
JMP FS
CMP t ' 0
BNE BA2
JMP OST
CMP t 'U
BUE BA3
Jt\P UST

YES. PRINT CHARACTER
USR "LREADY DETECTED?

BAI

BA2

;
BA3

,
•

OST

aST!

,
•

UST

,
•

FS

PHA
LOA UF
AND n BF
STA UF
PLA
JMP PRINT

PHA
LDA t1
STA PX
STA SPX
LDA uao
STA UF
PLA
lDA tlOO
STA .OF
RTS

PHA
LOA H
JMP OSTl

STA VI
PHA
TXA
PHA

NO . CHECK FOR USR

o

NOT FOUND. PRINT CHAR

CLEAR INPUT FLAG

PRINT CHAR

MAYBE OO=USR(O)$ICXY

SET UWR FLAG

RETURN TO BASIC

MAYBE USR(O)$ICXY

SAVE REGISTERS

(continued)

72 MICRO on the OSI

Listing 2 (continued)

390 103E 99 TYA
600 1[I3F <19 PHA
610 1040 ASF? LOA UF CLEAR INPUT FLAG
620 10,2 29BF AND t$BF
630 1[144 8SF7 STA UF
6,0 1[146 ASF6 LOA VI
650 1048 A6F8 l[tX PX
660 104A EOOE CPX U4 OO=USR(0) OR USR(0) FOUND
670 10,C F03C BEQ P50 CHECK FOR REST OF ADDRESS
680 10,E nOlA SNE P2
690 1050 • • 700 1[150 A6F2 p, LOX SPX NO HATCH
710 lIi52 CA llEX
720 I DS3 B0141F PH LDA US,X PRINT CHARS HELD BACK
730 IDS6 2069FF JSR PRINT
740 1059 E9 INX
750 ID5A E,F8 CPX PX
760 IDSC ItOFS BWE PH
770 t [l5E 0900 LOA to CLEAR USR FLAG
7BO 1060 85Fl STA UF
7 90 1[162 68 PLA
800 1063 AB TAY
810 lIl64 68 PLA
820 1065 AA TAX
830 1[166 68 PLA
8<10 1067 <lC69FF .JMP PRINT PRINT & RETURN TO BASIC
8S0 106A • •
860 10M EOOC 1'2 CPX t12 SAVE X OF UCXY
870 1[16C F012 BEQ P5
880 1 I16E EOOD CPX t13 SAVE Y OF $1CXY
B90 HI70 F013 BEQ 1'6
900 1072 00141B CHP US,X CHECK CHARS
910 1 Il lS DOD9 BNE P4 NO HATCH. PRINT CHARS
920 HI77 E8 1'7 INX
1,30 ID78 86F8 STX PX YES. HOLD PRINT
940 HI7A 6B RETR PLA RETURN TO BASIC
950 107B AB TAY
960 107C 68 PLA
970 tD711 AA TAX
9BO 1 D7E 68 PLA
990 lD7F 60 RTS

1000 IDBO • •
1010 1080 B5F3 1'5 STA PAl
1020 It1a2 4C771[t JMP P7
1030 1085 • • 1040 IDBS 85F4 1'6 STA PA2
1050 IDB7 <lC771[1 JMP 1'7
1060 IDBA • • 1070 1 IISA A200 1'50 LOX to
lOBO 108C 86F5 1'36 STX TOCS
1090 ID8E EB 1'33 INX
11 00 108F SMOlS LOA TOK, X CHECK FOR KEYWORD
1110 lI192 10FA BPL P33
1120 1094 E8 INX
1130 1095 BOOOIB LDA TOK,X FOUND
1140 1[198 C5F3 CMf' PAl CHECK AODRESS-IST PART
1150 Itt9A D027 SNE P31 NO. NEXT KEYWORD
1160 ID9C EB tNX
1170 HI90 BDOOIB LDA TOK,X
1180 1DAO CSF4 CMf' PA2 CHECK ADDRESS-2ND PART

(continued)

Extended OSl BASIC 73

Listing 2 (continued)

1190 IDA2 0020 BNE P32
1200 1 IIA 1. A6F5 LOX TOCS
1210 1 tlA6 BOOOIB P35 LOA TOK,X
1220 lIlA9 3007 BMI n.
1230 tHAD 2069FF JSR PRINT
1240 1 [IAE E8 INX
1250 IDAF 4CA61D JMP P35 CONTINUE PRINTING
1260 1D82 297F P34 ANO U7F
1270 lILE<4 2069FF JSR PRINT
1 ::'80 lIlEt7 A900 LOA to RETURN TO BASIC
1290 1 II{(9 85F7 STA UF
1300 IDBB 68 PLA
1310 lDBC AB TAY
1320 IDBD 6B PLA
1330 IDBE AA TAX
1340 HI8F 6B PLA
1350 lOCO 4C69FF JMP PRINT
1360 IDC3 • •
1370 lDC3 EB P31 INX
13BO 1 [IC4 EB P32 INX
1390 lDC5 E8 INX
1400 IDC6 BDOOIB LOA TOK,X CHECK NEXT KEYWORD
14 10 InC9 3003 BMI P3B
1420 IntI< 4CBCIl' .J MF' P36
1430 IDCE 4COCAC P38 .)MP ~ACOC

74 MICRO on the OSI

listing 3: USR Routine

10 0000
20 0000
30 0000
40 0000
SO 0000
60 0000
70 0000
80 0000
90 0000

100 0000
110 0000
120 0000
130 0000
HO 1800
150 1BOO
160 lBOO
170 lBOO 48
170 lBOl 45
170 1M2 DB
170 lB03 30
170 lB04 30
170 lE05 03
1 BO lB06 43
180 lM7 4C
lBO lBOB ['3
lBO lB09 30
180 iBOA 33
I BO lBOB 00
190 180C 47
190 lBOlL 45
190 180E D4
190 lBOF 30
190 lBl0 36
190 1811 03
2 00 1B12
210 lB12 FF
210 1813 FF
220 1814
230 1814 4F
230 IBIS 30
230 lB16 3D
230 lB17 55
230 IB18 53
230 1IC19 52
230 1 B1A 2B
2 30 lEllB 30
230 IBle 29
230 Ulll 24
2 30 U1E 31
230 1Blr 43
2 40 l eoo
250 leoo
2 60 leoo
270 lCOO 4CDB1C
280 lC03 4CE21C
290 lC06 4CF61C
300 lC40
310 lC40

;************************* a EXTEN!tED OSI &ASIC *
a *
;* COLiN • JEFF MACAULEY *
;************************* • • • • USR
• •
; ADAPTED FROM
j "EXTEN!IEII USR(X) REVISITHt"
; BY YASUO MOR[SH[TA
; IN f'EEK(65) VOL. 2 , tl1
• •
• •

• •

• •

"=S!BOO

; KEYWOR!1 TOKENS
TOK .BYT 'HE ' ,s!ts, ' oo ' ,3

.SYT ' CL ' ,$!t3 , ' 03',0

.BYT ' GE ' ,$!t4, ' 06 ' ,3

;KEYWORD END MARKER
.BYT tFF,tFF

; USR CALL
US .BYTE ' OO=USR(O)SlC '

*=$1COO

;KEYWORD JUMP TABLE
.)MP HEX
JMP CLS
JMP GET

BAS *=*+55

(contin ued)

Extended OSI BASIC 75

listing 3 (continued)

320 lC40 CF' ='EO
330 lC40 CHRGET=OBC
3 40 l C40 CHRGOT=$C2
350 l C40 • •
360 l C40 A200 EXTUSR LDX to
370 lC42 86SA STX >5A RESET DATA COUNTER
3BO lC" B6DF STX 'DF CLEAR BRACKET FLAG
390 lC46 MOO LDY to
400 lC4B B1C3 CH4 LDA (SC3),Y
410 lC4A C92B CMF' t' (BRACKETS USED?
4 20 lC4C !I006 BNE CHI
430 lC4E A901 UIA tl YES, SET FLAG
440 lC50 B5DF STA s[lF
450 l C52 DOOB SNE CH2
460 l C54 C900 CHI CMF' to END OF LINE?
470 l C56 F007 BEG CH3 YES, CHECK USR ADDRESS
4BO l C5B C93A CMF' .' : END OF STATEMENT?
490 IC5A F003 BEQ CH3
500 lCSC CB CH2 INY
510 l CSD 00E9 SNE CH4 LOOF' BACf;
<"0 l C5F A5DF CH3 LDA .OF CHECK BRACKET FLAG " L
530 lC61 FOOD BEG CH5 CLEAR, GET ADDRESS S40 lC63 BB CH6 [lEY
SSO IC64 F02F BEQ SER
560 1C66 B1C3 1[IA (SC3)'Y
570 IC6B C929 CMF' t') SET. FIND CLOSE BRACKET
580 lC6A OOF7 BNE CH6
590 l C6C A93A LDA .' : REf'LACE ')' WITH ' .. ,
600 lC6E 9lC3 STA (SC3), Y
610 lC70 20C200 CH5 JSR CHRGOT GET CURRENT CHAR
620 lC73 20AB1C JSR CD GET USR ADDRESS
630 lC76 A5EO LDA CF'
MO lC7B 05El ORA CF't!
6S0 IC7A FOl9 BEQ SER
660 lC7C 20C200 JE4 JSR CHRGOT END OF LINE?
670 lC7F F017 BEG JEOUT
6BO ICBI C92B CMF' t ' (NO. CHECK FOR BRACKET 690 ICB3 DOO6 SNE CB
700 l C8S 20SCOO JSR CHRGET SK I F' BRACKET
710 lCBB 4CBE1C JMP XX
720 lCBB 2001AC CB JSR >ACOI COMMA?
730 lCBE 20AB1C XX JSR CD GET DATA 740 IC91 E011 CPX tl7 MORE THAN 7 DATA ITEMS? 750 lCn 30El BMI JE4 NO. GET MORE DATA 760 lC95 4COCAC SER JMP fACOC
770 lC9B • • 780 lC9B A5DF JEOUT LDA stlF CHECK BRACKET FLAG 790 IC9A F009 BEG JEl
800 IC9C MOO LOY to 810 IC9E A929 LDA t ') YES, REF'LACE BRACKET B20 lCAO 91C3 STA (SC3),Y
830 lCA2 20BCOO JSR CHRGET SKIP BRACKET 840 lCAS 6CEOOO JEl JMP (cn GOTO ML CODE ROUTINE 850 lCAB • • 860 ICA8 C924 CO CMP t ' f HEX EXF'RESSION? B70 lCAA DOlE BNE JDl 880 lCAC A299 COl LDX *'99 YES, EVALUATE HEX 890 lCAE A905 LOA tS 900 ICBO 8559 STA f59 910 ICB2 20BCOO J03 .JSR CHRGET

(continued)

76 MICRO on the OS!

Listing 3 (continued)

920 ICBS C659 OEC .59
930 ICB7 FOOA BEQ J02
9,0 ICB9 2093FE JSR SFE93
950 ICBC 30[17 BHI SER
960 ICBE 20DAFE ,]SR $FEDA
970 ICCI FOE F BEQ J03
980 ICC3 A4-95 .JD2 LIlY .95
990 ICC5 AS96 LDA <96

1000 IC C? IB CLC
1010 ICCB 9006 BCC SX
1020 ICCA 20AOAA .Hll ,]SR .AAAD EVALUAT E EXPRESSION
1030 ICCD 2008B4 ,]SR U,08
1040 ICDO A6SA SX LDX SSA STORE EVALUATION
1050 1 C112 94EO STY ChX
1060 IC04 E8 INX
1070 1e05 95EO STA ChX
1080 lCDl E8 INX
1090 ICD8 865A STX .SA
1100 ICDA 60 RTS
1110 ICDB • ,
1120 ICOB A5E3 HEX LOA CPt3 HEX-DEC CONVERSION
1130 IC OO A4E2 LOY CPt2
1140 1 C{IF 4CCI AF JHP SAFCI
1150 ICE2 • ,
1160 ICE2 ADOO CLS LDY to CLE AR SCREEN
1170 ICE4 A920 LOA U 20
1180 ICE6 990000 CL STA fDOOO, Y
1:190 ICE9 990001 STA .I_l OQ ,Y
1200 I CEC 990002 STA fD2 00 , Y
1210 ICEF 990003 STA f[J3 00 ,Y
1220 I CF2 C8 INY
1230 I CF3 DOFI BNE CL
1240 lCF 5 60 RTS
1250 ICF6 • ,
1260 ICF6 2000FD GET JSR SFDOO GET A KEYSTROKE
1270 ICF9 A8 ' TAY
1280 ICFA A900 LDA t o
1290 ICFC ,CCIAF JHP SAF CI

BASIC STEP and TRACE 77

BASIC STEP and TRACE

by Richard L. Trethewey

D ebugging BASIC programs is
always a chore, especially if you

didn't write the program in the first
tylO place. If you don't have a printer, or

OSI f'\t if you do have one and don't want to
pencil-check the program, the only
alternative has been the standard
"TRACE" program provided by
M/ A-OSI with all versions of OS-
6SD. That program prints out the
line number of every new line as it is
executed. For many purposes that is
fine, but unfortunately the way this
trace is implemented, the line
numbers are not followed by a car
riage return; you can easily get lost
between these numbers and any out-

put from the program being traced. This
problem only gets worse if there are FOR-NEXT

loops involved; you may find your output being scrolled
off the screen because TRACE doesn't halt program execution

- it just interrupts it . I think I have a simple solution.
I have written my own trace program that displays the line of program

text before BASIC executes it and optionally displays all non-subscripted
variables and their values. My program also waits for a keystroke before
executing the line, or halts execution if the user presses the <RETURN >
key . The tracing function allows you to halt execution even if the pro
gram being traced has disabled <CTRL> 'C' checking.

The BASIC program I have listed here POKEs the machine-code
routine that does the tracing into memory and protects it from getting
overwritten by BASIC. This code assumes you have 48K of memory on
board. If you don't, you will have to re-assemble the machine code at a
lower location using the source code I have included here . You will also
have to change the routine starting at line 100, which does the POKEing
into memory . It probably would be easier to change this routine to a call
from disk to memory rather than compute the bytes that require changing

78 MICRO on the OSl

Listing 1

10 POKE133,17~IREM- SET HIGH MEMORY TO $AFFF
20 GOSUBIOQIREM- POKE TRACE CODE INTO MEMORY AT $8000
30 INPUT"ENABLE OR DISABLE TRACE (E/D)",A$
40 L=2011IIFLEFT$(A.,l)="E"THENGOSUB260IGOT070
:50 IFLEFT$(AS,1)="D"THEN90
60 PRINT:PRINT"ENTER ~E· OR "0" ONLY, PLEASE.",PRINTIGOT030
70 POKEL,32tPOKEL+l,O;POKEL+2,17bIPOKEL+3,234IPOKEL+4,234
80 PRINT"TRACE ENABLED. "lEND
90 POKEL,24.POKEL+l,144IPOKEL+2,2IPOKEL+3,230IPOKEL+4,200
9'5 M=PEEK(89601IPOKE133,MzPRINT"TRACE DISABLED. ":END
100 FORX=4~0:56T045273IREAOY:POKEX,YINEXTXIRETURN
110 DATA165,134, 133,25,16'5,135,133,26,32,51,6,32,218,6,32
120 DATA115,lO,32,33, 17b,32,64,35,201, 13,208,5, 169,3,76
130 DATA33,8,96,160,0, 165, 122,133, 172, 165,123,133, 173, 166, 173
140 OATA228,12~,208,7,165,172,197,124,208,1,96,160,O,177,172
150 DATA133, 146,41, 127,32,67,35,209, 172,240,3,238, 168, 176, 200
160 DATA177,172, 133,147,41J127,32,67~35,209,172,240,19,174,lb8
170 DATA176,208,3,76, 169,176, 169,37,140, 168, 176,32,67,35,7 6
180 DATA113, 176,32,138,15, 32, 1~7, 26, 32,115,45,61,32,0,165
190 DATA146, 16, 17, 172, 168,176,200,200, 177, 172, 170, 136, 177, 172,32
200 DATA220,28,76, 146, 176,32,236,28,32,204, 10,32, 106,45, 16 5
210 DATA172,24,10S,7,133,172,144,2,230,173,169,O,141,168,176
220 DATA76,43,176,0,140,168,176,32,115,45,36,b1,32,O,172
230 DATA168, 176,200,177,172,141,168,176,240,212,206,168,176,200,
240 DATA172,133, 148,200, 177, 172, 133, 149,160,0, 177, 148,32,6 7,35
250 DATA204, 168,176,240, 187,200,208,243
260 INPUT"DID YOU WANT VARIABLES PRINTED";YS
270 IFLEFT$(YS,l)="Y"THENRETURN
280 POKE45073,44:RETURN:REM- DISABLE VARIABLE PRINT
290 REM- POKE 45073 WITH 32 TO RE-ENABLE

BASIC STEP and TRACE 79

in the DATA statements. I used POKEs to save a track on my disk and to
make the program easier to transport to other disks .

To enable STEP ITRACE, run the program and respond with " E" to

the prompt "ENABLE OR DISABLE TRACE IE/ D! 1". You can then
select whether or not to have the variables printed during the tracing.
Now load and run the program to be debugged. You will see the first line
to be executed displayed just as if you had entered LIST LN#. You will
also see the variables that have been encountered on subsequent lines at
this point, if you chose to do so from the TRACE program. Now the
system waits for you to press a key before executing the line you see
before you . If you want to continue, I suggest you simply press the
< SPACE BAR>. If you want to stop before this line is executed, press
the < RETURN> key and the system will display a < BREAK> message.
If you need to check on a subscripted variable or do a PEEK you could do
so now from the immediate mode. Also you can enter "CaNT" now and

• • contlnue program executton.

This program gives me a lot more control while debugging than the
original TRACE program ever could. It's also nice to actually see the line
that's being executed instead of having a program listing in front of me
and looking up line numbers all the time. I'm sure that those of you
without printers will find this handy too. The code for STEP ITRACE
occupies less than one page of RAM, so it shouldn' t prevent you from
tracing most programs. When you disable STEP ITRACE your full
workspace is returned to you.

80 MICRO on the OSl

Listing 2

1 0000
10 0000
20 0000
30 0000
40 0000
50 0000
60 0000
70 0000
BO 0000
90 0000

100 0000
110 0000
120 ooao
130 0000
140 0000
150 0000
160 0000
170 0000
lBO 0000
190 0000
20 0 0000
210 0000
220 0000
230 0000
240 0000
250 0000
260 0000
270 0000
280 0000
290 0000
300 0000
310 0000
320 0000
330 BODO
340 BODO
350 «002
360 B004
370 B006
380 BOOB
390 B008
400 BODE
410 BOl1
420 BaH
430 B017
4'10 8019
450 BOlD
460 BOI D
470 B020
4BO B021
490 B021
500 8023
510 8025
520 B027
530 B029
540 B028
550 B02t1
560 B02F
570 B031

A5B6
8519
ASS7
B51A
203306
20DA06
20730A
202 1BO
204023
C90[l
0005
A903
4C210B
60

AOOO
A57A
B5AC
A57B
85AD
AoAD
E47D
[l007
A5AC

;*****************
;***t****tt**t***t**tt****t*t*
a BASIC SINGLE LINE STEF'PER _
it *
it BY RICHARD L. TRETHEWEY *
;**-*-*************** •••••• * •• • •

• •
• •

• •

• •

iBASIC EXTERNALS
• •

POKER=$l9
VARTAB=>7A
ARRTAB=$7C
ENDTAB=$7E
EXLINE=$B6
VARNAM=$92
VARPNT=$94
VARF'TR=$AC
FN[lLIN=$0633
IiISLIN=$06DB
ZCFL =$OB21
CRDO =$OA73
BASPRT=$OACC
GETVAR=$1A9D
ASCII =$ICEC
PNUMBR=$ICDC

START OF VAR. TABLE
START OF ARRAYS
ENI. OF ARRAYS
CURRENT LINE NUMBER
ASCII NAME OF VAR.
ADDRESS OF VARIABLE

FIND A BASIC LINE
DISPLAY A BASIC LINE
CTRL C CHECK
DO LF, CR
PRINT NUMBER
PUT VAR. IN F.P.A
CONVERT F.P.A TO ASCII
PRINT INTEGER VARIABLE

;OS-65D EXTERNALS

CRLF =$2D6A
INCH =$2340
CHROUT=$2343
STROUT= $2D73

*=$BQOO
LIlA EXLINE
STA POKER
LDA EXLINE+!
STA POKER+I
JSR FNDLIN
JSR [lISlIN+2
JSR CRDO
JSR VIEWIT
JSR INCH
CMP UD
BNE CONT
LDA l3
JMP ZCFL

CONT RTS

VIEWIT LDY +0
LDA VARTAB
STA VARPTR
LDA VARTAB+I
STA VARPTR+I

va LDX VARPTRtl
CPX ARRTABtI
BNE VI
LDA VARPTR

PRINT LF.CR
GET KEYSTROKE
PRINT CHARACTER

GET CURRENT LINE +
MOVE IT

FIND LINE IN WORKSPACE
DISPLAY IT ON SCREEN
CLEAN UP WITH CR. LF
PRINT NON-SBSCRPTD. VAR'S
GET A CHARACTER FROM KYBD.
IS IT A CR?
NO, CONTI NUE
YES. LOAD A CTRL C
AND EXECUTE IT
BACK TO BASIC

LOAD START OF VAR. TABLE
PUT IT IN POINTER

CHECK MSB OF POINTER
SAME AS MS8 OF END?
NO, PRINT VARIABLE
YES, CHECK LS&, TOO

(continued)

Listing 2 (continued)

580 B033
5 90 B035
600 B037
610 B038
620 B038
630 B03A
640 B03C
65 0 B03E
660 B040
670 B043
6 80 B0-45
690 B047
700 B04A
7 10 B04B
720 B04[1
730 B04F
7-40 £1051
750 B054-
760 BO~i 6
770 BOS8
780 BO~:iB

790 [t05D
BOO B060
BI O B060
820 B062
830 B06S
840 B06B
850 B06B
B60 B06E
870 B071
BBO B074
8BO B075
BBO B076
B90 B077
900 B079
9 10 B07B
920 B07E
930 S07F
940 BOBO
950 B082
960 B083
970 BOB4
980 S086
990 BOB9

1000 BOBC
10 10 BOBC
1020 {{OBF
1030 B092
1040 11095
1050 8097
1060 B09B
1070 B09A
1080 B09C
1090 B09E
11 00 SOAO
111 0 BOA2
1120 BOAS
1130 BOAB
1140 BOA8
11 50 BOA9

C57C
[1001
60

• ,
AOOO Vl
B1AC
8592
297F
204323
[llAC
F003
EEABBe
C8 V2
B1AC
8593
297F
204323
IliAC
F013
AEA8BO
D003
4CA9S0

• ,
A925 V5
8CA8BO
204323
4C71S0
20BAOF V3
209D1A
20732D V6
3D
20
00
A592
1011
ACA8BO
C8
C8
BIAC
AA
88
SIAC
20DC1C
4C92S0

• ,
20EC1C V4
20CCOA
206A2D NEXT
A5AC
18
6907
85AC
9002
E6AD
A900 ' NX 1
8[IA8BO
4C2SBO

• ,
00 STRFLG
BCA8BO STRING

CMP
BNE
RTS

L[lY
LOA
STA
AND
JSR
CMP
BEQ
INC
INY
LIlA
STA
AND
JSR
CMP
SEQ
LOX
BNE
JMP

LOA
STY
JSR
JMP
JSR
JSR
JSR

ARRTAB
VI

t o
(VARF'TR) , Y
VARNAM
U7F
CHROUT
(VARf'TR), Y
V2
STRFLG

(VARF'TR), Y
VARNAM+1
U7F
CHROUT
(VARPTR), Y
V3
STRFLG
VS
STRING

t'7-
STRFLG
CHROUT
V6
fOF8A
GETVAR
STROUT

BASIC STEP and TRACE 81

NOT SAME, PRINT VAR.
YES I T IS, QUIT

INIZ INDEX
GET VAR. NAME 1ST BYTE
SAVE IT
ZERO HI BIT
AND PRINT IT
IS THIS AN INTEGER?
NO, SKIP A BIT
YES, SHOW IT
BUMP INDEX
GET 2ND BYTE OF NAME
SAVE IT
MASK AS BEFORE
PRINT IT
IS THIS A SPECIAL VAR?
NO, ITS AN F. P. TYPE
CHECK IF AN INTEGER
FLAG SET ! INTEGER=>VS
FLAG CLEAR STRING=>

LOAD ' Y.'
SAVE INDEX
PRINT THE ' 7. '
SKIP A BIT
SET POINTERS TO VAR.
PUT VAR. IN F.P.A

.BYTE '= ' ,0 PRINT ' ='

VARNAM
V4
STRFLG

CHECK VAR TYPE
F.P ?=> V4
RECOVER INDEX
BUMP IT 2

LDA
BPL
LDY
INY
INY
LOA
TAX
DEY
LOA
JSR
JMf'

(VARF'TR), Y GET VAR. FROM MEMORY

(VARPTR), Y
PNUMRR PRINT THE INTEGER
NEXT MOVE TO NEXT VARI ABLE

JSR ASCII
JSR BASPRT
JSR CRLF
LOA VARPTR
CLC
ADC t7
STA VARPTR
BCC NXl
INC VARPTRH
LDA to
STA STRFLG
JMP VO

• BYTE 0
STY STRFLG

CONVERT TO ASCII
PRINT IT
DO A CR, LF
BUMP POINTER TO NEXT
SPOT ON TABLE

CLEAR FLAG

LOOf' UNTIL DONE

SAVE INDEX

(continued)

J~------------------------------

82 MICRO on the OSI

Listing 2 (con tin ued)

1160 BOAC 20732D JSR STROUT SHOW STRING VARIABLE
1170 BOAF 24 .BYTE J $= ' .0
1170 BOBO 3D
1170 BOB1 20
1170 BOB2 00
1180 BOB3 ACASBO LDY STRFLG RECOVER INDEX
1190 BOB6 CB INY BUMP IT ONE
1200 BOB7 B1AC LDA (VARF'TR), Y GET STR ING LENGTH
1210 BOB9 BMBBO STA STRFLG SAVE IT
1220 BOBC FOD4 BEQ NEXT IF ZERO LENGTH. QUIT
1230 BOBE CEABBO DEC STRFLG DECREMENT LENGTH COUNTER
1240 BOCI CB INY BliMP INDEX
1250 BOC2 B1AC LDA (VARF'TR), Y GET ADDRESS OF STRING
1260 BOC4 8594 STA VARPNT SAVE IT
1270 BOC6 CB INY
1280 BOC7 B1AC LDA (VARF"TR) r Y
1290 80C9 8595 STA VARPNTtI
1300 BOCB 0000 L[lY to INIZ INDEX
1310 BOCrl 8194 STRI LDA (VARF'NT), Y GET CHAR FROM MEMORY
1320 BOCF 204323 JSR CHROUT PRINT IT
1330 BOD2 CCABBO cn STRFLG CHECK IF DONE
1340 BOD5 FOBB BED NEXT YES, => NEXT

1350 BOD7 CB IHY NO, BUMP INDEX

1360 BO[18 [tOF3 BNE STRI LOOP UNT! L DONE

Extended Trace 83

Extended Trace

by Kerry Lourash

Extended trace is a vast improve
ment over trace programs that

simply print line numbers. This
assembly-language program is for
OSI BASIC-in-ROM computers with
a CTRL-C vector in RAM. X-Trace
allows a BASIC subroutine to be
called after execution of each and
every statement in a subject pro
gram. You can design your own
trace routine lin BASIC) to check
variables , program flow, free
memory space, etc . In addition,
X-Trace provides options difficult to
implement in BASIC.

My goal in designing X-Trace
was to make it as self-contained and

user friendly as possible. No zero-page
locations are used by X-Trace . Vectors for the

USR and CTRL-C routines are saved and then restored
when X-Trace is done. Even a string variable used by X-Trace

is stored within the program .

What X-Trace Does

X-Trace calls a BASIC subroutine, as opposed to the usual BASIC call
to a machine-language subroutine. This technique allows you enormous
flexibility and ease in designing a trouble-shooting routine. To further
simplify the task, the starting line of the BASIC trace subroutine may be
changed in mid-program, allowing multiple trace subroutines . Also,
X-Trace stores the line number of the next statement to be executed in a
String variable with a name you select . I call this string SUB$. In addition
to the line number, SUB$ may contain subroutine nesting infolmation.
For example:

SUB$ = 50

84 MICRO on the OSI

listing 1

10 0000
20 0000
30 0000
.0 0000
50 0000
60 0000
70 0000
BO 0000
90 0000

100 0000
110 0000
120 0000
130 0000
,.0 0000
150 0000
160 0000
170 0000
lBO 0000
190 0000
200 0000
210 0000
220 0000
230 0000
2.0 0000
250 0000
260 0000
270 0000
280 0000
290 0000
300 0000
310 0000
320 0000
330 0000
340 0000
350 0000
360 0000
370 0000
3BO 0000
390 0000
400 1000
41 0 1000
420 1000
HO 1000
440 1000
.... 50 1000
460 1002
470 1004
480 1007
490 1009
500 100B
510 1000
520 1000
530 1000
540 1000
550 1010
560 1013
570 1016
580 1016

ASBO
3012
2008B4
ASII
0512
D072

ADODI2
AEOE12
4C56IO

;*********************
;* *
it X-T RACE *
i* BY KERRY LOURASH *
it *
itt*ttttttt***ttt**tt*

• •
• •

• •
ASCII=$B96E
CFLAG=S212

CONT=SA636
CTRLC=S2IC

CURLIN=S87
DIMFLG=f.SE

END=S80
EXEC=SASC2
FIND=SA432

FIX=SB408
FINSUB=SAIA4
FINVAR=SAD53

FLOAT=SB7EB
GETCHR=SOOBC
GOTCHR=SOOC2

GOSUB=S8C
GOTO=$A6DO

KEYTBL=SA084
KYPORT=SI'FOO

LEGAL=SAD81
QUOFLG=S60
RETURN=SA6EB

SIGN=SBO
STONUM=SB71+
TXTPNT=SC3

USR=SOB
VARADD=S97
VARIBL=$93
VARLOC=S95
VARTYP=SSF
YlNilEX=S97

t=$1000

CONVERT 2-BYTE HEX TO ASCII
CTRL C FLAG
STORE VALUES FOR oCONTo COMMAND
CTRL C VECTOR (S2IC.2ID)
HOLDS • OF CURRENT BASIC LINE
DEFAUL T IIlMENSION FLAG
n END" TOKEN
BASIC EXECUTION LOOP
FIND LOC. OF A BASIC LINE
CONVERT FLOATING POINT TO HEX
FIND GOSUB INFO IN STACK
FINI' LOC. OF A BASIC VARIABLE
HEX TO FLOATING-POINT CONVERSION
GET NEXT CHAR FROM BASIC LINE
GET SAME CHAR FROM BASIC LINE
"GOSUB" TOKEN
ENTRY TO BASIC "GOTO"
BASIC KEYWORD TABLE
KEYBOARD INPUT STORED HERE
TEST FOR ALPHA CHAR.
QUOTE FLAG FOR LIST COMMAND
ENTRY POINT "RETURN" COMMAND
SIGN OF ACCUMULATOR .1
STORE A VALUE IN BASIC VARIABLE
BASIC 'S POINTER IN PROGRAM
USER VECTOR (SOB.OC)
ADDRESS OF VARIABLE ($97.98)
NAME OF VARIABLE
LAST VARIABLE VALUE ADDRESS
STRING OR NUMERIC FLAG
STORAGE FOR Y REG.

; tt***tttttt**t****
i SELECT A TRACE SUB
• •

BRANCH LilA SIGN
BMI VECTOR
JSR FIX
LOA $11
ORA U2

GET SIGN OF F.P.A .1
BRANCH IF NEGATIVE
CONVERT TO HEX
IS NUMBER=O?

BNE LISLIN NO. LIST BASIC LINE
; tttt*tt*tt*ttt**t*t**
; RESTORE CTRL C VECTOR
• •

NORMAL LilA CSAVE
L[IX CSAVE+l
JMP VI

; *ttttttt*t*tt************
j SAVE BASIC TRACE SUB'S

(continued)

Extended Trace 85

SUB$ indicates that the next statement to be executed is in line 50. When
tracing multistatement lines, the line number will be the same for every
statement except the last, when the number of the next line will be in
SUB$. Note that there are three spaces between 50 and the first asterisk.
Spaces are used to pad the length of SUB$ to five characters. U
LENISUB$I is greater than five, there is subroutine nesting information
in SUB$. The numbers 30 and 10 indicate that the subject program is two
levels deep in subroutines at this point. In other words, a RETURN com
mand in the next statement would return to line 30, which was called by
line 10.

Any program line can be stored in SUB$ with an X = USR liine #1 com
mand. SUB$ can then be printed or POKEd to a location in video memory
for display. For example, the next line to be executed in the subject pro
gram could be stored in SUB$ with an X = USRIVALISUB$II command.
Any information formerly in SUB$ is erased, but it could be transferred to
another string if necessary.

The CTRL-C Vector

The CTRL-C vector at $021C,$021D points to a ROM routine that
checks for a CTRL-C command. A flag at $0212 can turn off the CTRL-C
check so you can poll the keyboard. At the end of every BASIC statement
this routine is called to see if you wish to stop the program. A CTRL-C
halt saves your place in the BASIC program. U the program code is not
altered, a CONT command causes the program to continue where it left
off. The X-Trace program switches the CTRL-C vector to point to a
machine-language program that calls a BASIC subroutine.

The GOSUB Command

When a line such as 100 GOSUB 300 is executed, the following happens:

1. The stack is checked to see if room is available for GOSUB information.
2. The parser pointer, the current line number 11001, and a GOSUB token

1$8CJ are pushed onto the stack. An address I$A5FB I is already on the
stack. The parser pointer is BASIC's "bookmark" that tells it where to
resume execution when a RETURN is encountered.

3. The GOTO subroutine at $A6B9 reads the GOSUB 's target line
number 13001, finds the line in the workspace, and prepares BASIC to
resume execution at that line.

4. BASIC goes to the execution loop I$A5C21 and executes the
subroutine.

5. When a RETURN is encountered, the parser pointer and current line
number are pulled from the stack and restored. BASIC resumes execution
at the statement after the GOSUB statement lafter 100 GOSUB 3001.
GOSUBs may be nested; that is, a GOSUB to a second subroutine can

be done from the first subroutine. The second subroutine may contain a

86 MICRO on the OSI

listing 1 (continued)

590 1016
600 1016
610 1016
620 1016
630 1016 297F
6+0 1018 8580
650 lO lA 2008 B4-
660 10 1[1 8C1012
670 10?0 8[1111 2
680 1023 20C200
690 1026 208 1AD
700 1029 9032
7 10 l02E< BItEell
7'}0 102E AOOO
730 1030 20BCOO
740 1033 AA
750 1034 F006
760 1036 20BCOO
770 1039 F003
780 103B 2498
790 103U 248A
BOO 103F BUFOII
810 1042 AUID02
920 1045 C9FO
830 1047 9013
840 1049 8[10EI2
850 104C A[lIC02
860 l04F BD0012
870 10'52 A905
880 1054 A211
890 1056 BBlC02
900 1059 8EID02
910 lOSt 60
920 105[1 4ClICAA
930 1060
940 1060
900 1060
960 1060
970 1060 ACOO
980 1062 "B1C3
990 106+ [1002

1000 1066 A004
1010 1068 C8
1020 1069 BIC3
1030 106B C9BO
1040 106[1 DOED
1050 106F
1060 106F
1070 I06F
1080 106F
1090 106F
1100 100F
1110 tObF AI11 212
1120 1072 850B
11.30 1074 AD1312
11 40 1077 850C
1150 107 9 2052 10
1160 t07C 4CE8A6
1170 107F
1180 107F

; STARTING LINE NUMBER.
; SAVE CTRLC VECTOR AND
; REPLACE WITH TRACE VECTOR
• •

VEC TOR

VARBLE

V2
V3

VO

VI

AND
STA
JSR
STY
STA
JSR
,)SR
BCC
STA
LDY
JSR
TAX
BEa
JSR
BEQ
BIT
BIT
STA
LDA
CMF'
BCC
STA
LOA
STA
LOA
LDX
STA
STX

EXIT RTS

U 7 F
SIGN
FIX
TRASAV
TRASAV+1
GOTCHR
LEGAL
ERR
CHR1+1
to
GETCHR

V2+1
GETCHR
V3+1
S9B
SBA
CHR2+1
CTRLC+1
UFO
EXIT
CSAVE+1
CTRLC

CHANGE SIGN OF NUHBER

CONVERT TO HEX
SAVE START OF TRACE SUB

GET FIRST CHAR AFTER" I'
IS IT A LETTER?
NO. PRINT TM ERROR
STORE 1ST LETTER OF VAR.

GET 2ND CHAR AFTER "I'
SAVE IT IN x REG.
BRANCH IF END OF STMT.
SET PARSE POINTER AT END
BRANCH ALWAYS
CHAR=O (TYA I
RESTORE CHAR (TXAI
STORE 2ND VAR . LETTER
CTRL C AlIDRESS <.rooo?

CSAVE
tXTRACE*2S6/2S6
tXTRACE/2S6
CTRLC

REPLACE CTRL C
VECTOR WITH XTRACE

CTRLC+I

ERR JMP SAABC PRINT TM ERR ~ EXIT
; ******************** ; CHECK NEXT STATEMENT
; FOR "END" TOKEN
• •

RTN LDY to GET 1ST CHAR OF NEXT
LDA (TXTPNT I.Y STHT
BNE COLON BRANCH IF NOT A NULL
lDY .. 4

COLON INY
LDA (TXTPNT), Y
CMF' tEND IS 2ND CHAR AN ' END' TOKEN?
BNE EX IT NO. BACK TO TRACE SUB

; ***********************
; RESTORE USR VECTOR AND
; TRACE VECTOR.
; SI MULATE BASIC "RETURN'
; TO SUBJECT PROGRAM
• •

LIlA USRSAV RESTORE USER VECTOR
STA USR
LDA USRSAV+I
STA USR+!
JSR VO RESTORE TRACE VECTOR
JMP RETURN

; ********************
; STORE A LINE IN SUB'

(continued)

Extended Trace 87

call to a third subroutine, and so forth . X-Trace finds the subroutine calls
on the stack and stores their return line numbers in SUB$.

How X-Trace Works
The user sets the USR vector to the BRANCH routine and calls

X-Trace with:

x = USR(negative trace subroutine starting line number)variable

For example, X = USRI - 260)SU specifies that the starting line of the
BASIC trace subroutine is at line 260 and the trace variable is SU$ lor
SUB$, as I call it) . The BRANCH routine goes to VECTOR, which saves
the line number of the trace subroutine Ithe stock CTRL-C vector) and
points the CTRL-C vector at XTRACE. VECTOR returns to BASIC,
which executes the first statement in the subject program.

At the end of the statement, the CTRL-C vector sends BASIC to the
XTRACE routine. XTRACE does the following :

1. Checks the CTRL-C
2. Saves the current USR vector
3. Saves the subject program's line number in SUB$
4. Finds subroutine calls in the stack and stores them in SUB$
s. Simulates a GOSUB to the BASIC trace subroutine

While in the trace subroutine, you have the option of storing a BASIC line
in SUB$. The format is: X = USRlline number). You can PRINT the string
or POKE it somewhere in video memory.

The RTN routine looks for an END command in the next statement to
be executed. When RTN detects an END, a simulated RETURN to the
subject program is performed Idon't worry; you can use END in the sub
ject program without side effects). The NORMAL routine is called with
an X = USRIO). It restores the normal CTRL-C vector and turns off
X-Trace. The USR vector must be set to the BRANCH routine when the
USR command is executed.

Here are three short programs to
demonstrate X-Trace. Program 1 is a
demonstration of the subroutine
nesting display of X-Trace. Lines 10
and 20 set the USR vector to the start of
the X-Trace program and specify the
subroutine's starting line number 1100)
and the string used by XTRACE ISU$) .
Next, a series of GOSUBs fills SUB$
with subroutine information . Line 40
program.

5 REM PROGRAM .1
10 POKEll,0:POKEI2.16
20 X=USRt-l00)SU
30 GOSUB50
40 X=USRt 0): END
50 GOSUB60:RETURN
60 GOSUB70:RETURN
70 GOSUB80:RETURN
80 GOSUB90:RETURN
90 RETURN
100 PRINTSUBf:END
110 END

turns off X-Trace and ends the

88 MICRO on the OSI

Listing 1 (continued)

1190 107F
1200 107F A900
1210 1081 BDOF12
1220 IOB4 2032A4
1230 IOB7 905C
1240 I OB9 Ab11
1250 lOBI< A512
1260 1080 20D711
1270 1090 A2FF
1280 1092 EB
1290 1093 [e[lOlO!
1300 1096 9IL1412
1310 1099 OOF7
13? O l09B A920
1330 10911 901412
1340 10AO 8EOFI2
13~jO lOA3 AD01
1360 IOA5 8460
1370 I OA7 A003
1380 IOA9 0011
1390 10AB M97
1400 10Ali 297F
1410 lOAF 20FAIO
1420 IOB2 C922
1430 IOB4 11006
1440 IOB6 A560
1450 IOB8 49FF
1460 10BA 8560
147 0 10BC C8
1480 10BII BIAA
1490 10BF F024
1500 lOCt IDEA
1510 10C3 2460
1520 10C5 30E6
1530 10C7 38
1540 IOC8 E97F
1550 tOCA AA
1560 10CB 8497
1570 lOCO AOFF
1580 10CF CA
1590 10110 F008
1600 1002 CB
1610 1003 B984AO
1620 10D6 lOFA
1630 10DB 30F5
1640 10DA C8
1650 100B B9B4AO
1660 10liE 30CB
1670 10EO 20FAIO
16BO IOE3 DOFS
1690 IOE5
1700 10E5 20E411
1710 lOEB SA
1720 IOE9 E8
1730 10EA BIIOIOI
1740 10ED C9FS
1750 10EF DOFB
1760 10Ft B!I0201
1770 IOF4 C9A5
17BO IOF6 1I0FI

;

• ,
LISLIN

L6

L5
LO

LI

L2

L3

L4

XIT

XO

lDA to
STA LENCNT
JSR FIND
BCC XIT
LOX SII
LilA SI2
JSR CONVRT
LIIX UFF
INX
LDA 'S101, X
STA SUB$,X
BNE L6
LDA 1$20
STA SUBi,X
STX LENCNT
LOY II
STY QUOFLG
LOY t3
SNE LI
LilY YINDEX
AND U7F
JSR STORE
CMP un
BNE LI
LDA aUOFLG
EOR UFF
STA QUOFLG
INY
LDA (iAA),y
BED XIT
BPL LO
BIT aUOFLG
BMI LO
SEC
SSC U7F
TAX
STY YINDEX
LOY UFF
OEX
BEQ L4
INY
LDA KEYT8L,Y
BPL L3
BMI L2
INY
LDA KEYTBLr Y
8MI LS
JSR STORE

SNE L4

JSR STRING
TSX
INX
LDA 'il01, X
CMP UFB
BNE XO
LDA $102,X
eMF' UAS
SNE XO

SET LEN SUBS=O

FIND LINE IN BASIC WORKSPACE
EXIT IF NOT FOUNO

CHANGE LINE. TO ASCII

STORE ASCII IN SUBS

CLEAR QUOTE FLAG

RESTORE BASIC LINE PNTR.
ZERO HI BIT

IS CHAR A "1

TOGGLE QUOTE FLAG

GET NEXT CHAR

BRANCH IF IT ' S A NULL
BRANCH IF NOT A TOKEN
CHECK QUOTE FLAG

SUBTRACT 7F FROM TOKEN

RESULT IN X REG

FIND KEYWORD

BRANCH IF FOUND

GET CHAR

BRANCH IF LAST CHAR
STORE CHAR IN SUBS
BRANCH ALWAYS

GET STACK POINTER
FIND fASFB CALL ON STACK

(continued)

Extended Trace 89

5 REM PROGRAM .2
10 POKE11,O:POKE12,16
20 X=USRt -60)LI
30 FORA=l T010
40 B=B+C:C=C-l
50 NEXTA:END
60 V=VAL< LI $)
70 IFA=B OR ABStC)=A

80 f'RE=V: END

Program 2 shows how to monitor
the value of variables and store the
previous statement number IPRE).
When a variable changes in the subject
program, you may want to know the
exact line number in which the change
occurred. X-Trace stores only the next
statement number to be executed.
Note: I recommend the use of a single

subscripted variable in the trace subroutine Isuch as XY" XY" XY3 , etc.)
to avoid conflict with variables in the subject program.

Program 3 shows how to switch
BASIC trace subroutines. In this exam
ple, the trace subroutines are switched
within the trace subroutines them
selves. You can switch subroutines in
the subject program, but that's a less
tidy method, since you might forget to
delete those lines from the subject pro
gram after they have served their
purpose.

Converting X-Trace

5 REM PROGRAM .3
20 X=USR(-60)N
30 FORI=1T010
40 NEXT!
50 ENtl
60 PRINTVAL< N$)
70 IFI=4THENX=USRt-90)N
80 END
90 PRINTUSR(VALtN$»:PRINTN$
100 IFI=5THENX=USRt-60)N
110 END

Please note the two changes necessary to convert X-Trace to C2I4P
operation. They are located right after the "START of XTRACE"
heading. Always remember to isolate the BASIC trace subroutine from
normal program flow so it doesn't try to trace itself. I have tried to make
the stack-handling routines as general as possible, but X-Trace may not
be compatible with some modified USR or CALL routines .

Formatting

The major difficulty when tracing a program is displaying the infor
mation generated without clobbering the subject program's output. I list
only a few methods.
l. Call $FOOO and build a string from keyboard input without writing to

the screen.
2. Turn the screen output flag 1$64) off and on to control output.
3. Slow the video Output rate with a POKE to location $206 or a SAVE

command.
4. POKE SUBS to the screen at a point not used by BASIC.

See other reference sources for more solutions.

~~--------------------------

90 MICRO on the OSI

Listing 1 (continued)

1790 IOF8 9A TXS SET STACK: BYPASS USR
1800 IOF9 60
1810 10FA
1820 10FA AEOFI2
1830 10FD E8
1840 10FE 9[11412
1850 1101 8EOFI2
1860 1104 60
1870 1105
1880 1105
1890 1105
1900 1105
1910 1105
1920 1105
1930 1105
1940 1105
1950 110,; ADI202
1960 11080019
1970 1I0A A9FE
1980 110C BttOO[lF
1990 110F 2COODF
2000 1112 700F
2010 1114 A9FB
2020 1116 BDOO[IF
2030 1119 2COODF
2040 IIIC 7005
2050 IIIE A903
2060 1120 4C36A6
2070 1123
2080 1123 A588
2090 1125 C9FF
2100 1127 !l003
2110 1129 4eOOl0
2120 112C
2130 112C
2140 112C
2150 112C
2160 112C
2170 112C A50 B
2180 112E 8D1212
2190 1131 A50C
2200 1133 8D1312
2210 1136 A900
2220 1138 8508
2230 113A A910
2240 113C B50C
2250 11 3E A960
2260 1140 8D1C02
2270 1143 A910
2280 IllS 8DID02
2290 1148
2300 Ill8
2310 1148
2320 1148
2330 1148 .000
2340 114A BI C3
2350 114C DOOB
2360 IllE A003
2370 11 50 BI C3
2380 1152 AA

RTS
• ,

STORE LDX LENCNT STORE A CHAR IN SUB>
INX
STA SU'BS,X
STX LENCNT
RTS

• ,
;*************************** ;* START OF XTRACE ROUTINE *
,***t*********************** ; rio CTRL C CHECK AND
; RESTORE CTRL C VECTOR
; IF IN IMMEDIATE MODE
• ,

XTRACE LDA CFLAG GET CTRL C FLAG
BilE IMME[I SKIP CHECK IF FLAG SET
LIlA UFE tl IF C2/4P*************'*
STA KYPORT
BIT KYF'ORT
BVS IMMElI
UIA UFB t4 IF C214P***************
STA KYPORT
BIT KYPORT
BVS IMMED
LHA t3
JMP CONT EXIT IF CTRL CHIT

• ,
IMMEl. LDA CURLIN+! IN IMMEDIATE MODE?

CMP UFF
BNE SAVUSR NO, BRANCH
JMP NORMAL RESTORE C VECTOR & RTS

; **i**i*i*************
; SAVE PROGRAM'S USR
; VECTOR & POINT CTRL C
; VECTOR AT RTN ROUTINE
• ,

SAVUSR LBA USR SAVE USER VECTOR
STA USRSAV
LDA USR+l
ST A USRSAV+!
LBA tBRANCH*256/256 BRANCH VECTOR IN
ST A USR USER VECTOR
LOA tSRANCH/256
STA USRtt
U'A tRTN*2561256 RTN VECTOR IN
STA CTRLC CTRL C VECTOR
LDA tRTN/256
STA CTRLCtt

; ************************
; SAVE CURRENT LINE NUMBER
; IN "SUBS" VARIABLE
• ,

STORLI LDY to I F WE ARE NOT AT END OF
LOA (IX'TF-NT)'Y LINE, LINE. IS IN CURLIN
BNE CURENT
L[lY *3 GET NEXT LINE. FROM
L[lA (TXTPNT)'Y EcASIC WORKSPA CE
TAX

(continued)

Extended Trace 91

listing 1 (continued)
2390 1153 C8
2400 1154 BIC3
241 0 1156 CB
2420 1157 [l004
2430 1159 A5BB
2440 11 58 A687
2450 115[1 20D711
2460 1160 AOFF
2470 1162 C8
2480 1163 B90101
2490 1166991412
2500 1169 [IOF7
2510 1168 AnO

INY
LDA (TXTPNT), Y
INY
8NE

CUREtH LDA
LOX

NEXTLI JSR
LOY
INY
LDA

NO

NEXTLI
CURLIN+1
CURLIN
CONVRT
UFF

GET LINEt FROM CURLIN

CHANGE LINEt TO ASCII

STORE ASCII IN SUBS

2520 116D 99H12 Nt
2530 1170 C8

STA
BNE
LOA
ST.
INY

$lQt,Y
SUBS ,Y
NO
U20
SUB$,Y

PAD TO 5 DIGITS
WITH Sf'ACES

2540 1171 C0 05
2550 1173 [lOFB
2560 1175 BS
2570 1176 8COFI2
2580 1179
2590 1179
2600 1179
26 10 1179
2620 1179
2630 1179 BA
2640 117A 20MAI
2650 117D C98C
2660 117F D034
2670 1181 A[lOF12
2680 l1B4 C943
2690 11B6 B02D
2700 1188 EB
2710 11B9 B[lOl01
2720 11ac B5AE
2730 l1BE E8
2740 llBF BD010l
2750 1192 85AD
2760 1194 SA
277 0 1195 48
2780 1196 20DB11
2790 1199 A92A
2800 119B 20FAtO
2Bl0 119E ACOO
2B20 11AO C8
2B30 l1Al E8
2B40 l1A2 B90001
2850 11AS 9[11412
2860 llAB DOF6
2870 llAA BEOF12
28BO llAD 68
2B90 11AE AA
2900 l1AF E8
291 0 1180 E8
2920 1181 E8
2930 1182 4C7All
2940 llB5
2950 l1B5
2960 llB5
2970 l1B5
29BO 11B5
2990 l1ES 20E411
3000 11 B8 ASC4

CPY t5
SNE NI
DEY
STY LENCNT LENCNT=S

; *********************
; FIND SUBROUTINE CALLS
; IN THE STACK & STORE
; THEH IN suss VARIABLE
• •
NEXSU8

NEXCHR

;

TSX
JSR
CHP
BNE
LDA
CHP
BCS
INX
LDA
STA
INX
LOA
STA
TXA
PHA
JSR
LDA
JSR
LDY
INY
INX
LDA
STA
SNE
STX
PLA
TAX
INX
INX
INX
JHP

FINSUS
tGOSUB
SUB
LENCNT
t67
SUB

;,101,X
.AE

CON
t'*
STORE
to

$100, Y
SUB$,X
NEXCHR
LENCHT

NEXSUB

; *****************
; PUSH eOSUE INFOR-
; MATION ONTO STACK
• •

SUB JSR STRING
L[lA TXTPNT+l

LOOK FOR SUBS ON STACK

BRANCH IF NO MORE SUBS
GET LENGTH OF SUBS

BRANCH IF =) 67

GET LINE . ' 5 FROM STACK

CONVERT LINE t 'S TO
ASCII AT SIOO-IOC

GET ASCII DIGIT
PUT IT IN suas
LOOP IF NOT A NULL
SAVE LENGTH OF SUBS
RESTORE STACK INDEX
INCR PAST SUB INFO

LOOK FOR ANOTHER SUB

PUSH PARSER POINTEJ;;
(continued)

92 MICRO on the 051

listing 1 (continued)
3010 IIBA 48
3020 llBS A5C3
3030 IISD 48
3040 liSE AS88
3050 IICO 48
3060 IICI AS87
3070 IIC3 48
3080 IIC4 A98C
3090 IIC6 48

F'HA
UIA
PHA
L[lA
PHA
LDA
PHA
LDA
PHA

TXTPNT

CURLIN+1 PUSH CURRENT LINEI

CURLIN

IGOSUB PUSH "GDSUB" TOKEN

• ********************** • 3100 IIC7
• DO A SIMULATED GOSUB • 3110 IIC7
• TO THE BASIC TRACE SUB • 3120 11C7

3130 IIC7
3140 IIC7 ADIOl2
3150 IICA BSII
3160 11ce AIIl112
3170 llCF 8512
3180 11I11 20[lOA6
3190 11[14 4CC2A5
3200 11 07
3210 1107

• •

• •
• •

3220 1107 ;

UtA TRASAV
STA ill
UIA TRASAV+1
STA tl2
JSR GOTO
JMF' EXEC

HEX TO ASCII AT tlOO

3230 1107 85AD CONVRT STA SAD
3240 IID9 86AE STX tAE
3250 liDS A290 CON LDX U90
3260 I HoD 38 SEC

SET UP GOTO INFO
JUMP TO BASIC EXEC LOOP

3270 IIDE 20E8B7 JSR FLOAT HEX TO FLOATING POINTt
3280 IIEI 4C6EB9 JMP ASCII F .P. TO ASCII AT tIOO-IOC

3290 IIE4 ; ************************
3300 IIE4 ; FIND OR CREATE SUBt VAR.
3310 IIE4
3320 IIE4 AOFF
3330 IIE6 845F
3340 IIE8 C8
3350 11E9 B45E
3360 IIEB A953
3370 liED 8593
3380 llEF A955
3390 IIFI 0980
3400 IIF3 8594
3-4.10 llF"S 2053A[I
3420 IIF8 AQOO
3430 IIFA EEOFI2
3440 11Ft- ADOF12
3450 1200 9195
3460 1202 C8
3470 1203 A914
3480 1205 9195
3490 1207 CB
3500 1208 A912
3510 120A 9195
3520 120C 60
3530 120D
3540 120D
3550 1200
3560 120D 0000
3570 120F 00
3580 1210 0000
3590 1212 0000
3600 1214
3610 125B
3620 125B

• •

• • • • • •

STRING LDY UFF SPECIFY STRING VAR.
STY VARTYP
INY SET DIMFLG=O
STY DIMFLG

CHRI LDA I'S VARIABLE NAME =SU.
STA VARI BL

CHR2 LIlA I'U
ORA UBO SET HI BIT OF " U"
STA VARIBLtl
JSR FINVAR FIND OR CREATE SU.
LDY 10
INC LENCNT
LOA LENCNT SET LENGTH OF SU.
STA (VARLOC), Y
INY
LIlA ISUB$02561256 STORE LOCA TION
STA (VARLOC), Y OF sus
INY
LDA ISUB$/256
STA (VARLot), y
RTS

nu**un**
STORAGE AREA

CSAVE
LENCNT
TRASAV
USRSAV
SUBs
=+71

.WORD 0

.SYTE 0

.WORD 0
• WORn 0

CTRL C VECTOR STORAGE
LINE LENGTH COUNT
TRACE SUB LINE STORAGE
USER VECTOR STORAGE

72-BYTE SUB TA8LE
;OR LINE STRING

Symbol Table Lister 93

Symbol Table Lister

•

by Rolf Johannesen

Programming in assembly rather
than a high-level language

iBAS]C, Pascal) may be preferred for
one of three reasons: speed,
economy of memory usage, and the
ability to do things not available in
the higher-level languages. Small
sections of code can be assembled by
hand and entered using a simple
monitor. However, this is a tedious
process and prone to error. For any
serious assembly-language coding an
assembler program must be used. An
assembler will read source code,
check for errors, generate all
necessary cross-references, and pro
duce the desired assembled code. A

listing may be produced optionally by the
assembler.

The OSI CIP Assembler/Editor
The OS] CIP assembler does all of the above and has

editing capability as well, so the user can enter source code conven
iently from keyboard or tape and edit it before assembly. One useful op
tion lacking in the OS] assembler is the ability to list or print out a sym
bol table following the listing. A symbol table lists all symbols and labels,
together with their assigned values, and is a valuable adjunct in reading a
program listing. When modifying a program, the symbol table helps you
avoid inadvertent duplication of symbols or labels. A complete cross
reference progralll would be even more useful and would not be difficult
to write. For my own use, the extra effort and extra memory required did
not seem to be worthwhile. This article presents a symbol table lister for
the OS] CIP. The listing included here is for the OS650 disk system;
comments indicate changes needed to run the program with the cassette
version of the assembler.

•

94 MICRO on the OSI

Listing 1

10
20
30
40
50
60
70
80
90

100 0010=
110 00 11=
120 0012=
130 0013=
140 0014=
'·0 -" 0015:-
160 0016-
170 0018=
lBO 001A=
191) 00 1C=
200 001E=
210 OO~6=
'")')0 -- 002E'"
230 0032=
240 0036=
250
260 12C9=
270 12CB=
280 12FE=
290 lA56=
300
310 19(9=
320
330 lD[16=
340
350 2343:-
360
370 2F83=
380
3~O

~OO lF3(
-410
420 lF3E A900
no lF40 95~E
440 lF42 BS2F
450 iF44 8530
,60 lF46 8531
470 lF48 38
,80 lF49 AD832F
,90 IF,C (904
500 lF4E 8518
510 lF50 ADB42F
520 lF53 E900
530 iFS58519
540 iFS7 2056iA
550 lF5A A9FF
560 lF5C 8533
570 lF5E ACCB12
580 lFbl ADCC12

; SYMBOL TABLE LI STING PROGRAM
; rOF: OS6SD V3. 3
j COMMENTS GI'JE CHANGES FOR CASSETTE
; BASEn as! ASSEMBLER
; BY ROLF B. JOHANNESEN
; 13917 CONGRESS DRIVE
; ROCKt)! LLE, !'tD 20853
; LAST REVISION 28 NOV 82
; PAGE ZERO LOCHTIONS
CC - $10 CHARACTER COUNTER
CSV = CC+1 SAVED CHARACTER
HeTR: CSVt! MUL T. CHAR. COUNTER
XP = MCTRtl X POINTER
XSV = Xf'+1 X REG. SAVE
YSV - XSVtl Y REG. SAVE
LN - YSVtl LINE NUMBER
UJ - LN+2 LAST WORD
F'TR = LW+2 POINTER
F'TR2= PTR+2 SECOND F'OINTER
BFR -= PTR2+2 BUFFER
DEST= BFR+3 DESTINATION BUFFER
M - [lEST+8 MINIMUM SYMBOL VA.LUE
MP = Mt4 MINIMUM IN CURRENT LOOP
BCB = MPH
; ADDRESS EDUATES
STMEM=$12C9 STAra OF MEM FOR SOURCE
STS = $I2CB TOP OF STORAGE
NL = $12FE NEXT LOCN FOR SOURCE
CRL = $1A56 CARRIACE RETURN-LItlE FEED
; CRL = $AB6e FOR CASSETTE
PHEX= $I 9E9 PRINT HEX CHAR.
; PHEX INTERNAL FOR CASSETTE
IlVIl = $1DD6 16- BIT DIVIDE ROUTINE
; [IVD INTERNAL FOR CASSETTE
PRINT=$234 3 PRINT ROUTINE
j F'f.:HIT= $FFEE FOR CASSETTE
LL = $2F83 LAST LINE USED IN SYMBOL TABLE
; LL = $OOOA FOR CASSETTE
; PROGRAM STARTS HERE

*=$1F3E
i *=$1391 FOR CASSETE
STRT LilA to

STA M
STA Mtl
STA M+2
STA M+3
SEC

INITIALIZE
TO ZERO

MINIMUM

LDA LL
SBC t4
STA LW
LDA LLtl
SBC to

SET POINTER LW TO LAST

STA LtHl
JSR CRL

LOOPI LDA UFF
STA MPH

LOOf'2 LDY STS
LDA STS+l

LOCN IN SYMBOL TABLE

MAKE MF' >
SYMBOL
SET F'TR+Y
OF SYMBOL

ANY POSSI BLE

TO TOP
TA.BLE

(continued)

Symbol Table Lister 95

Operation of the Assembler/Editor
In the OSI assembler, source code is stored in memory as it is read in,

beginning at the location following the end of the assembler. Numbered
lines are inserted at their correct position. Each line begins with two
bytes containing the line number in hex in the order low, high. The line
ends with a return (SOD). Line feeds are not stored in the source text but
are added after each return during printing. There is no special signal to
indicate end-of-text as in BASIC; rather the editor keeps the next location
available for text in a table (see below.) When an assembly is requested, a
symbol table is built, which begins at the last location in RAM and moves
to successively lower addresses as more symbols are added. Each symbol
requires six locations for storage: four bytes for the symbol itself (encoded)
and two bytes for the value of the symbol. A symbol may be from one to
six characters in length. It must begin with an alphabetic and the remain
ing characters must be in the set A-Z, 0-9, :, ., or $. The symbol table is
not sorted, nor is a hash table used; the symbols are simply entered in the
order in which they are encountered. A forward reference causes an entry
to be made in the symbol table with a value that appears to be random. A
value is adjusted when the symbol is defined.

Operation of the Symbol Table Lister
The assembler maintains pointers to the start and end of source code

and the start and end of the symbol table. These are shown as STMEM,
NL, STS, and LL in the accompanying listing. Let me define
"equivalence" as the numerical representation in which the symbol is
stored, "value" as the value assigned to the symbol; e.g ., "LABEL"
always has the equivalence $4B2A2l20; its value may be anything ftom
$0000 to $FFFF.

The lister program begins by zeroing a 4-byte memory location, M. It
then scans the symbol table to find the smallest equivalence greater than
or equal to M (the smallest symbol numerically is also the earliest alpha
betically). The value of the found minimum equivalence is incremented
by one and stored in M before the table is searched again. Thus, the table
is searched once for each symbol to be printed. This method is not as effi
cient as a true sort, but it requires less memory . For a table of 100 sym
bols, the output is only slightly slower than the rate at which characters
are written to the screen. After the minimum equivalence has been found
in a particular pass (lines 550-1310), the symbol is decoded into its ASCII
value (lines 1320-1900) . The ASCII representation of the symbol is
searched for multiple characters and converted to the form used by the
assembler for source code (e .g., L666 = $4C363636 _ $4C36FE) [lines
1910-2360) .

Next, the source file is searched for the line defining the symbol (lines
2370-2780). If the symbol is not defined [and this will have caused an

96 MICRO aD the OS1

Listing 1 (continued)

590 IF64 851 8 STA f'TR+!
LDA t o
STA PTR

600 IF66 A900
610 lF68 aS1A
620 lF6A CO 10
630 IF6C BOOE
640 IF6E 98
650 IF6F 0980
660 IF71 A8
670 IF72 ASIA
680 IF74 4980
690 IF76 851A
700 iF7S 1002
710 IF7A C61B
720 IF7C 98
730 IF7D 38
740 l F7E E903
750 iFSQ Ae
760 lFS! 1 8
770 iFe2 651A
780 lFS4 OS
790 IF3S CS18
800 iFS7 [1011
910 lF89 28
820 iFSA A51B
830 IF8C 690C
840 IF8E CS19
850 IF90 !I007
B60 lF 92 A533
870 IF94 C9FF
BBO IF96 1'041
890

LOOP3 CPY tHO
BCS TRN
TYA
ORA USO
TAY
LOA PTR
EOR USO
STA F'TR
BPL TRN
DEC PTR+!

TRN TYA
SEC
SOC t 3

, ,

TAY
CLC
ADC PTR
PHP
CMF' LW
ENE CON T
PLF'
L[lA PTR+l
ADC t o
CMF' LWtl
BNE CMl
UlA Mf't 1
CMF' UFF
ENE PRNT

RTS

DECREMENT Y AS TABLE
IS READ

WHEN Y GETS BELOW .10
ADD oBO ANI' DECREMENT
F'TR BY $BO TO AVOIl'
ADDRESSING ERRORS IF
Y IIECREMENTS FROM
00 TO FF

COMPARE PTRty TO LW
TO SEE IF SE AR CH ENDED

IF MPt1~$FF THEN
SYMBOL TABLE EXHAUSTED

SO QUIT BUT IF
MP+1<$FF THEN A SYMBOL

HAS BEEN FOUND PRINT IT
900 IF98 60
910 ; CHANGE RTS TO JMP $1300 FOR CASSETTE
920 IF99 08
930 lF9A 28
940 IF9B A200
950 IF9D 38
960 IF9E 8llA
970 IFAO F530
980 lFA2 C8
990 lFA3 Bl1A

1000 IFAS F531
1010 IFA7 B8
1020 1FA8 98
1030 IFA9 8S
1040 IFAA BIIA
1050 lFAC F52E
1060 IFAE CB
1070 IFAF BllA
1080 IFBI F52F
1090 IFB3 08
1100 IFB4 EOOO
1110 IFB6 0008
1120 lFB8 28
1130 IFB9 9019
1140 IFBB C8
1150 IFBC A204
1160 IFBE DODD
1170 tFeO 28
1180 IFCI BOll

CMl PHP
CONT FU'

LD X t o
CLOOP SEC

LDA (F'TR) ,Y
SIte H+2,X
INY
LIlA (f'TR), Y
SBC Mt3,X
DEY
DEY
DEY
LDA (F'TR) , Y
site H,X
INY
LDA (f'TR), Y
SBC Mtr,X
PHP
CPX to
BNE TMP
PLP
BCC NXWORD
INY
LDX t4
BNE CLOOP

TMP PLP
BCS NXWORD

1I0UBLE LOOP FOR 32-BIT
SUBTRACT
WHEN x=o, COMPARE
CURRENT VALUE IN SYMBOL
TABLE WITH M IF VALUE
IS < M THEN OMIT 2d LOOP
IF VALUE=)M THEN
COMPARE CURRENT VAL UE
WITH MINIMUM (THIS LOOP)
IN MP IF VALUE=) MP THEN
CONTINUE SEARCH BUT
IF VALUE<MP THEN
REPLACE MP BY
NEW MINIMUM

(contin ued)

Symbol Table Lister 97

assembler error) the lister program prints a ? instead of a line number.
Additionally, if the symbol is more than two characters long, the fourth
character will be an embedded? Finally, the symbol, its value, and the
line number where defined are all printed out (lines 2790-3130). This pro
cess is repeated until all symbols have been found and printed.

Inasmuch as the extended monitor (EM) is always loaded together
with the assembler in OS650, the program uses EM routines where
possible (DIVIDE and PHEX). These routines are listed as comments to
be assembled and used with the cassette-based assembler. Print and
carriage-return line-feed routines are available in both OS65D and
BASIC-in-ROM; addresses are given for both.

The program as given for OS650 uses memory from $IF3E to $218F.
It starts one location above the end of the EM and can be stored on disk
with the EM to be called in each time the assembler is loaded. For 5-inch
disks this is Track 10; for 8-inch disks it is Track 7. The symbol table
lister should be called immediately only after an assembly (AO-A3) has
been run. Then type tCO IF3E in response to the prompt character.

The program listed here begins at $1391 and runs to $1619. The value
in STMEM has been changed accordingly to $161A. Note that this change
must be made as soon as the assembler is loaded, before any source code
is entered. This reduces the space available for an assembler source file by
$289 (649 decimal) locations . If this reduction in space turns out to be
crucial, the lister could be relocated to overlay part of the assembler. If
this is done, the part of the assembler to be overlaid should be stored on
tape. The assembler can then be reused by loading only the short overlay
file rather than the entire program. The lister uses some page-zero loca
tions for storage but does not change any values required by the
assembler, so the assembler can be re-run after running the lister . Output
goes to the print vector at $FFEE, which is a)MP (indirect) to $021A,
021B . These locations are initialized by the monitor to send output to the
screen or tape, depending on the value in $0205 . They can, of course, be
changed to point to a print routine if a printer is available.

98 MICRO on !he OSI

listing 1 (continued)

1190 IFC3 A200
1200 IFC5 88
1210 IFC6 BII A
1220 IFC8 9532
1230 IFCA C8
12.0 IFCB E8
1250 IFCC E006
1260 IFCE DOF 6
1270 IFOO 98
1280 IFOI E905
1290 IF03 A8
1300 IFO. 88
1310 IFD5 88
1320 IFD6 4C6AIF
1330 IFD9 A208
13.0 IFDB A920
1350 irDD 9S1!1
1360 IFDF CA
1370 IFEO DOn
1380 IFE2 B532
1390 IFE< 952E
1400 IFE6 E8
1410 IFE7 E004
1420 IFE9 DOF7
1430 IFEB E630
1440 IFEI! [1002
1450 IFEF E631
1460 IFF! AQOO
1470 IFF3 8413
1480 IFFS A200
1490 IFF7 I<93200
1500 IFFA B5CC
1510 IFFC C8
1520 IFFD 893200
1530 2000 85CD
1540 2002 C8
1550 2003 206221
1560 2006 F046
1570 200B C91 B
1580 200A 900A
1590 ZOOC C925
1600 200E 9')08
1610 2010 AA
1620 2011 BD672 1
1630 20 14 [1004
16.0 2016 6928
1650 2018 69 15
1660 20lA A6U
1670 20lC 951E
16BO 20lE E613
1690 2020 E005
1700 2022 F02 A
1710 2024 E002
1720 2026 D0 0 4
1730 2028 A415
1740 202A DOC9
1750 202C ASC8
1760 202E D004
1770 2030 A5C9
1780 2032 FO! A

LDX to
DEY

MVMP LDA (PTR).y
STA MP,X
INY
INX
CPX t6
SNE MVMP
TYA
SSC t5
TAY

NXWORD DEY
DEY
JMP LOOP3

PRNT LDX t8
LOA U20

STS STA BFR-I.X
OEX
BNE STB

CPM LOA MP.X
STA M,X
INX
Cf'X t4
BNE CPM
INC 11+2
BNE LOOP3.
INC M+3

LOOf'3. LOY to
STY XP

LOOf'4 LDX to
LOOF'4P LDA HP, Y

STA ice
INY
LD A MP,y
STA iCD
INY

LOOf'S JSR OVR
BEQ GADR

NXCHR CMf' UIB
BCC ALPH
eMF' :1$25
Bce NUM
TAX
LDA CHR-$25, X
BNE PP

ALPH ADC U 28
NUM ADC :IU S
PP LDX XP

STA 8FR , X
INC XP
CPX t 5
8EQ GADR
CPX t 2
BNE TSR
LOY YSV
BNE LOOP.

TSR LOA $C8
BNE TSTX
LDA $C9
lIEa GADR

COPY SYMBOL (CODED) AND
ITS VALUE FROM PTR+Y
INTO MP

FILL PRINT BUFFER
WITH SPACES

COPY CURRENT MINIMUM TO
GLOBAL MINIMUM

INCREMENT GLOBAL MIN.
FOR NEXT PASS

NOTE LOOP3. NOT= LOOP3

DECODE MAX OF 6 BYTES
DIVIDE BY 1600. THEN 40

REMAINDERS ARE BYTES
OF SYMBOL

IF QUOTIENT=OI TO $IA THEN
ALPHABETI C ADD 040
IF aUOTIENT=$IB TO $24 THEN
NUMER I C A[OD $15
IF aUOTIENT> $24 THEN : • OR $
TABLE LOOK-UP

PUT ASCII CHAR INTO BFR

(continued)

Listing 1 (continued)

1790 2034 A614
1800 2036 £004
1810 2038 11008
lB20 203A A5CB
1830 203C AOOO
1840 203E 84CB
1850 2040 FOC6
18bO 2042 ASCB
1870 2044- 8SCC
1880 2046 A5C9
1890 2048 B5CD
1900 204A M1S
1910 204C DOB5
1920 204E A200
1930 2050 ElSlE
1940 2052 204-323
1950 2055 EB
1960 ~056 EOOB
1970 2058 DOF 6
1980 205A A205
1990 205C B532
2000 205E 20£919
20 10 2061 CA
2020 2062 8532
2030 2064 20E919
2040 2067 AOOO
2050 2069 A200
2060 206B 8612
2070 2060 B611
2080 206F B91 EOO
2090 2072 CB
2100 2073 C920
2110 2075 FOIC
21202077 CS 11
2130 2079 F014
2140 207B 48
2150 207C A512
2160 207£ F007
2170 2080 9526
21BO 2082 EB
2190 2083 A900
2200 2085 8512
2210 2087 68
2220 2088 9526
2230 208A E8
2240 208B 8511
2250 208[[DOEO
2260 208F C612
2270 209 1 nODe
2280 2093 A512
2290 2095 F003
2300 2097 9526
2310 2099 E8
2320 209A 8610
2330 209C A920
2340 209£ 9526
2350 20AO E8
2360 20Al EOOB
2370 20A3 DOF7
23BO 20A5 ACC 912

TSTX LDX XSV
CPX t4
BNE LPREP
LDA ,CB
LDY to
STY SC8
BEQ NXCHR

Lf'REP LOA $C8
STA SCC
LOA SC9
STA SCD
L[lY YSV
BNE LOOP5

GADR UIX t o
GB$ LDA I:IFR, X

JSR PRINT
INX
CPX t B
SNE GB$
LOX t 5
LDA I'1P, X
JSR PHEX
OEX
LDA MP,X
JSR PHEX
LOY l O
LOX to
STX MCTR
STX CSV

LOOF'6 LIlA BFR,Y
INY
CMP H20
BEQ CXIT
CMf' CSV
BEQ OUf'L
PHA
LOA MCTR
BEG STOR
STA DEST, X
INX
LOA to
STA MCTR

STOR PLA
STA DEST,X
INX
STA CSV
SNE LOOP6

DUf'L OEC MCTR
BNE LOOf'6

CXIT LOA MCTR
BEQ CRTN
STA DEST,X
INX

CRTN STX CC
LDA t$20
STA DEST,X
INX
CPX t 8
BNE CRTN+2
LDY STMEM

Symbol Table Lister 99

f'RINT B CHARS FROM SFR

PRINT SAVED VALUE OF
SYMBOL (CURRENT LOOP)
IN HEX

SET UP SEARCH OF ASC I I
SYMBOL FOR DUPLICATE
CHARACTERS

DECREMENT MCTR FOR EACH
MULTIPLE CHARACTER
IF NO DUf'LICATE THEN
EXIT
STORE NEGATIVE VALUE IN
[lEST IF DUPLICATE CHAR
NOW DEST IS IN ASM
SOURCE FORHAT

,

SET UP SEARCH OF SOURCE

(continued)

100 MICRO on the OSI

Listing 1 (continued)

2390 20A8
2400 20AB
2410 20AD
2420 lOAF
2430 20Bl
2440 20B3
2450 20£1.6
2460 20BB
2470 20BA
2480 20BD
2490 ZOEIF
2500 20C2
2510 20CS
2520 ZOC?
2530
2540
2550

20CA
20Ce
20CF

2560 20D1
2570 2003
2580 20[15
2590 20D7
2600 20DA
2610 ZODe
2620 20DE
2630 20DF
2640 20E1
2650 20[3
2660 20E5
2670 20EB
2680 20EA
2690 20EC
2700 20EF
2710 20F!
2720 20F4
2730 20F6
2740 20rs
2750 20FA
2760 20FC
2770 20FE
2780 2100
2790 2102
2800 2104-
2810 2106
2820 2108
2830 210A
2840 210B
2950 210D
2860 210F
2870 2111
2880 2113
2890 2115
2900 2117
2910 2119
2920 211B
2930 21lt!
2940 211F
2950 2122
2960 21~4
2970 2126
2980 2128

ADCAl2
851 [l
A900
85iC
A200
cefEl2
[lOOA
AS1CI
CUFF!2
D003
4C4C21
205821
8516
205821
8517
205821
30FB
C920
FOF?
{IO03
205821
[1526
[lOOA
EB
E410
FOOE
DOF2
205821
C90D
Foes
205821
DOF7
205821
C920
FOOC
C90D
FOOS
C92A
F004
C93D
DO[4
A920
A205
9535
CA
DOFB
A204-
A516
85CC
AS17
85CD
A90A
BSCE
A900
85CF
206E21
~SC8
0930
9536
CA

LDA STHEM+1
STA F'TR2+1
LilA to
STA F'TR2

GORD LIIX to
CF'Y NL
BNE GORD.
LDA F'TR2t1
CMF' NL+l
BNE GORD.
JMF' QUEST

GORD. J5R INCY
STA LN
JSR INCY
STA LN+l

LS JSR INCY
BMI LS
eMF' 1$20
BEQ LS
BHE TNC

HC JSR INCY
TNC eMP DEST, X

BHE NXLN,
INX
CF'X CC
BEQ FOUND
BNE NC

NXLN JSR INCY
NXLN, CMF' tiOD

BEG GORD
JSR INCY
BNE NXLNo

FOUND JSR INCY
eMF' *$20
BEG TRFIND
eMF' tiOD
BEQ TRFIN[I
CMF' t ' *
BEQ TRFIND
eMP t ' =
BNE NXLN$

TRFI N[I U'A .. 20
LDX t5

STBL STA BCB-l.X
DEX
BNE STBL
LDX t4
LDA LN
STA OCC
LDA LN+1
STA $CD

DVLOOF' LDA tsOA
STA oCE
LDA to
STA $CF
JSR DV10
LDA $CB
ORA .. 30
STA BCfhX
[lEX

CODE FOR SYMBOL

IF SOURCE EXHAUSTED
AND NO HATCH FOUND
THEN PRINT ?

SKIF' LEADING BLANKS
BOTH SINGLE AND MUL T •

COMPARE SOURCE CODE
TO SAVED SYMBOL

MATCH OF CORRECT t
OF CHARACTERS

IF FOLLOWED BY TERMINATOR
THEN TRUE FIND
ELSE BURIED IN LONGER
SYMBOL CONTINUE SEARCH

FILL BCB WITH BLANKS

CONVERT TO ASCII BY
SUCCESSIVE DIVISIONS
BY 10 REMAINDERS
ARE OR ' D WITH 030
TO GIVE ASCII CHARACTERS
BETWEEN 0 AND 9
END WHEN QUOTIENT = 0

(continued)

Symbol Table Lister 101

Listing 1 (continued)

2990 212(~ A5CC
3000 212B 05CD
3010 212D OOE8
3020 212F A003
3030 2131 A920
3040 2133 204323
3050 2136 88
3060 2137 [lOFA
3070 2139 MOO
3080 213B &93600
3090 213E 204323
3100 2141 C8
3 11 0 2142 COOS
3120 21 44 DOFS
3130 2146 20561A
3140 2119 4C5A1F
3150 214C A93F
3160 214E 8536
3170 2150 A900
3180 2152 8537
3190 2154 A006
3200 2156 00[19
3210 2158 BllC
3220 215A CB
3230 2158 D002
3240 215D E610
3250 215F 48
3260 2160 68
3270 2161 60
3280 2162 BD8821
3290 2 165 85CE
3300 2167 E8
3310 2168 &£1 8 821
3320 216B 85CF
3330 216[1 E8
3340 216E 8614
3350 2170 8415
3360 2172 A204
3370 2174 A900
3380 2176 95C7
3390 2178 CA
3400 2179 DOFS
3410 217[. A210
3420 217[1 20D61[1
3430 2180 8A
3440 2181 08
3450 2182 A614
3460 2184 A415
3470 2186 28
3480 2187 60
3490
3500 2188 4006
3500 218A 2800
3510
3520 21BC 3A
3520 218[' 2E
3520 218E 24
3520 218F 3F
3530
3540

LOA SCC
OR A 'lCD
SNE OVLOOP

HRTN LDY 13
5E1: LDA U 20
SB JSR PRINT

SN

DEY
BNE
LDY
LDA
JSR

S8
to
BCB,Y
PRINT

[NY
Cf'Y 15
SNE SN

PXIT JSR CRL
JMP LOOPI

QUEST LDA . ' ?
STA BCB
LDA t o
STA BCB+!
LOY t6
BNE SEc !

IN CY LDA (f'TR2) , Y
[NY
BNE IXT
INC PTR2+!

IXT PHA
PLA
RTS

DVR LOA DVS . X
STA sCE
INX
LDA DVS,X
STA sCF
INX

DV1 0 STX XSV
STY YSV
LDX H
LDA to

STRZER STA sC7. X
DEX
SNE
LDX
JSR
TXA
PHP

STRZER
tSlO
DVD

LDX XSV
LDY YSV
PLP
RTS

PR INT LINE NUMBER

CONTlNUE
SYMBOL NOT FOUND IN
SOURCE PRINT?

; DIVISORS FOR CODED LABELS
DVS .WORD 1600.40

; NON-ALPANUMERICS ALLOWED IN LABELS
CHR .BYTE ' ! .S1 '

• •
; THE SUBROUTINES BELOW ARE ALREADY

,

(continued)

102 MICRO on the OSI

Listing 1 (continued)

3550 • AVAILABLE IN THE OS65D EXrENDED MONITOR • 3560 • WHICH IS ALWAYS IN CORE WITH THE • 3570 • ASSEMBLER • 3580 • THEY ARE LISTED FOR THE CONVENIENCE •
3590 • OF USERS OF THE CASSETTE ASSEMBLER •
3600 • f'HEX PHA • 3610 • LSR A • 3620 " LSR A •
3630 • LSR A • 3640 • LSR A • 3650 • JSR F"HI •
3660 • f'LA • 3670 " f'HI ANn tsOF • 3680 " ORA U30 •
3690 • CMf' U3A • 3700 " BCC F'H2 • 3710 " ADC *6 •
3720 " F'H2 JMP PRINT • 3730 • • 3740 • DIVIDE ROUTINE •
3750 " DIVIDE ROL SCC • 3760 • ROL SCD • 3770 " (lEX •
3780 • BMI DVI • 3790 " ROL SC8 •
3800 • ROL SC9 •
3810 " DVD SEC ENTRY POINT FOR DIVIDE •
3820 • LtlA SC8 • 3830 • SBC SCE •
3840 • TAY • 3850 • LDA $C9 • 3860 • SBC $CF •
3870 • BCC DIVI[IE •
3880 • STA SC9 • 3890 • TYA •
3900 • STA SC8 •
3910 " BCS DIVIDE •
3920 • [lVI LDY SCD •
3930 " LOX SCC • 3940 • RTS •

Symbol Table Lister 103

Sample Symbol Table listing

LS 20CC 2540
ALPH 2016 1640 LW 0018 170
BCB 0036 240 M 002E 220
BFR 001E 200 MCTR 0012 120
CC 0010 100 MP 0032 230
CHR 218C 3:520 MVMP IFC6 1210
CLOOP IF9D 9:50 NC 2007 2590
CMl IF99 920 NL 12FE 280
CONT IF9A 930 NLt1 2018 1650
CPM IFE2 1380 NXCHR 2008 1570
CRL lA56 290 NXLN 20E5 2660
CRTN 209A 2320 NXLN$ 20EB 2670
CSV 0011 110 NXWORD IFD4 1300
CXIT 2093 2280 PHEX 19E9 310
DEST 0026 210 PP 201A 1660
DUPL 208F 2260 PRINT 2343 350
OVD 1006 330 PRNT IFD9 1330
OVLOOP 2117 2900 PTR 001A 180
OVR 2162 32BO PTR2 001C 190
OVS 2188 3500 PXIT 2146 3130
OVI0 216E 3340 QUEST 214C 3150
FOLND 20Fl 2710 SB 2133 3040
GADR 204E 1920 SB, 2131 3030
GB$ 2050 1930 SN 213B 3080
GORD 20Bl 2430 STB IFDD 1350
GORD. 20C2 2500 STBL 2108 2820
HRTN 212F 3020 STMEM 12C9 260
INCY 2158 3210 STOR 2087 2210
IXT 215F 3250 STRT IF3E 420
LL 2FB3 370 STRZER 2176 3380
LN 0016 160 STS 12CB 270
LOOPI IFSA 550 TMP IFCO 1170
LOOP2 IF5E 570 TNC 20DA 2600
LOOP3 IF6A 620 TRFIND 2104 2800
LOOP3. 1 FFI 1460 TRN IF7C 720
LOOP4 IFF5 1480 TSR 202C 1750
LOOP4P 1 FF7 1490 TSTX 2034 1790

LOOP5 2003 1550 XP 0013 130
LOOP6 206F 2080 xsv 0014 140
LPREP 2042 1860 YSV 0015 150

•

-

Smarl Lister 105

Smart Lister

by Kerry Lourash

Since OSI ROM BASIC allows
only 72 characters in a line, it is

often necessary to write code with
no spaces between characters. This
practice produces programs that are
extremely difficult to read when
listed. Smart Lister is a short
machine-language utility that acts
as an improved LIST command, in
serting spaces at strategic places in
the BASIC lines it lists to make the
lines more legible.

I was envious when I first saw
the Apple's method of program
storage . Apple removes non
significant spaces from BASIC lines
when they are tokenized, then adds

spaces when the lines are listed. On closer
inspection, however, the Apple system is not

completely satisfactory. An Apple listing is too spread
out for my taste; I think arithmetic operators (-, +, I, .)

should not be segregated by spaces. Also, when two keywords are ad
jacent, a double space separates them. Apple doesn't check to see if the
previous character was a space before printing a space. Since OSI doesn't
screen out spaces on input, I wanted to include a redundant space check
in my list program.

Here are the rules for Smart Lister:
1. Don't add redundant spaces.
2. Insert a space after every statement (colon).
3. Insert a space after every keyword with a token value equal to or less

than the STEP token.
4. Insert a space before the TO, THEN, OR, AND, and STEP keywords.

To use the routine, simply call Lister as a USR routine and reply to the
lower-case "list" prompt as you would type a LIST command. With
X = USR{X) installed as line zero of a program, Lister can be called with a
RUN command. Lister can be loaded in any part of memory without
modification, and it occupies less than 300 bytes.

•

106 MICRO on the OS!

Listing 1: ROM Version 01 Smart Lister

20 PRINT" SMART LISTER": PRINT" ROM VE"SION "
40 PRINT"START IS NOW AT $6000 ": X='4576
60 FOR I=X TO X+288: READ A: POKE I,A: NEXT
100 DATA169,lOB,32,229,168,169,105,32,229,i69,169,115,32
110 DATA229,16B,169,116,32, 229 ,16B,32 ,B7,163 ,169,19,1 33 ,i95
120 IIATA16 9 ,Q,133,196,32,194,O,144,6,240,4,201,45, 208 ,10B
130 DATA32, 127,167,32,50,164,32 ,1 94,0,240,12,201,4-5, 20th 93
140 DATA32,188, Q,32 ,127,167, 208 , 85 ,165,17, 5 ,18,20B,6,169
150 DATA255,133,17,133,18,160,1,132, 96,177 ,1 70 ,24Q,65,32
160 DATA41,166,32,10B,168,20Q,177,1 70 ,1 70 , 20Q ,177,170,197
170 DATA18,20B,4,228,17,240,2,176,42,132,151,32,94,185,164
180 DATA151,169,32,32,229,16B,133,19, 201 ,34, 208 ,6,165,96
190 DATA73,255,133,96,20Q,177,170,208,27,168,177,170,170
20C DATA20Qj177,170,134,170,133,171,208,183,162,254,154,76
210 DATA116,162.240,230,240 ,213,208, 211 ,208,224,16,69,36
220 DATA96,4S,203,133,20,201,157, 240,16, 201,160 , 240 ,1 2,201
230 DATA168,240.8,201,169,240,4,201,162 ,208,11,169, 32 ,197
240 DATA19,240,5,133,19,32,229,16B,165,20,56, 233 ,1 27 ,1 70
250 DATAI32,151,160,255,202, 240,8, 200 ,185,132,160,16, 250
260 DATA48,245,20Q,185,132,160,48,2B,32,229,168,20a,245, 201
270 DATA58,20S,134,36,96,48,130,32,229,16B,20Q,17 7 ,170, 201
280 DATA3:i240,161,136,169,32,20a,158,41,127,32,229,168,164
290 DATA151,2001177,170,136,201,32, 24Q , 139, 165,20, 201 ,163
300 DATA144,231,201,168,240,227,201,169,240,223,208,1 29
310 PRINT"**LOADEII** "

Listing 2: Disk Version 01 Smart Lister

10 F'RINT"SMART LISTER''' ; f'RINT"[lISK VERSION"
30 f'RINT"START I S NOW HT $6000": X:::24576
50 FOR I =X TO X+291: RE"D A; f'Ol,E I,A: Nt:XT
90 DATA32,247,44
100 DATA169,108,32,238,10,169,1 05 ,32, 23B ,10, lo9,115 ,3l,238
110 DATAI0,169,116,32,238,10,32,BB,5 , 169 , 27 ,1 33 ,199,169,Q
120 IIATA133,200,32,19B,0,144,6,240,4,201,45,20B,108,32,108
130 DATA9,32,51,6,32,198,O,240 ,1 2,2u1,45,208 , 9~ , 3L,192,O

140 DATA32, 108,9,208,85,165,25,5,26,208,6,109,255,133,25
150 DATA133,26,160.1,132,29,177,172,240,65,32,~5,a,j2'115
160 DATA10,200J177,172,170,200,177,172,197,26,2v8'4,228'l~
170 DATA240,2,176~42,132 ,1 50,32 , 220,2B,164,150,169'~L ,32
180 DATA238,10,133,27,201,34,20B,6,165,29,73,255,133,29,200
190 DATA177~172,208,27,168,177,172,170,200,177,172,134,172
200 DATA133,173,208,183,162,254,154,76,116,4,240,230,240
210 DATA213,20B,211,208,224,16,69,36,29,48,203,133,28,201
220 IIATA157,240,16,201,160,240,12,201,168,240,B,201,169,240
230 [LATA4, 201,162,208,11,169,32,197,27,240,5,133,27,32,238
240 DATAI0, 165,28,56,233,127,170,1::;2,150,160,255,202,240
250 DATA8~ 200, 185, 132, 2, 16, 250, 48, 245, 200 , 18~j, 132,2,48,28
260 DATA32,238,10,20B,245,201,5B,20a,134,36,29,4S,130,32
270 DATA238,10,200~177,172,201,32,240,161,136,169,32,208
2BO DATA15S,41,127,32,238,10,164r150,200,177,172,136,201
290 IIATA32,2401139,165,2S,201,163r144,231,201,16S,240,227
300 DATA::Ol,169,24-0,223,208~129
310 PRINT"**LOA[IEII**"

•

Sample of Normal listing

LIST

10 FORX =I TOIO:A (X)=I :NEXTX
20 I FA)21HENGOS IJ B99
3 0 POKEA,E::F'O.'EA +l,C

Sample of ROM Version

Z=USR(S)
listl 0-30

10 FOR X-I TO 10: A(X)=I : NEXT x
20 IF A>Z THEN GOSUB 99
30 PO.~E A,e! POKE A+l,C

Sample of Disk Version

DIS.,!"GO 6000"
list,l-

10 FOR X=I TO 10: A(X)=I: NEXT X
20 IF A>2 THEN GOSUB 99
30 POKE A,B: POKE A+l,C

Smart Lister 107

Surchange 109

SURCHANGE

by Kerry Lourash

SURCHANGE searches for, dis
plays, and changes code in

BASIC programs. As many as
seventy-one characters may be
searched for and changed.
Don't-care characters are allowed in
both search and change strings . The
user may specify change strings
shorter, equal to, or longer than the
search string. To avoid confusion,
here are the definitions of some
terms used in this article: search
string refers to the characters for
which SURCHANGE is told to look;
workspace string is a set of
characters in the BASIC program
that matches the search string; and

change string is the set of characters that
SURCHANGE POKEs into the BASIC program

when it finds a match to the search string.

There are eight options, used singly or in pairs:
Default Print line numbers of lines that contain workspace strings.
1. Print Print line numbers plus workspace strings .
2. . Stmt Print line numbers plus the statements in which workspace

3. Line
4. Quote

. Default

S. Var

strings are found .
Print lines in which workspace strings are found .
Search only within quotes and REM statements (text).
If option 4 is not chosen, search only outside of quotes and
REMs (program).
Search for occurrences of a BASIC variable (specified by the
search stringj.

6. Change Replace all workspace strings with the change string.
Don't-care characters are allowed in both search and change strings .

To illustrate what a don' t-care character is, consider the following example:

SEARCH? YXXX

110 MICRO on !he OS]

listing 1

1 0000
2 0000
3 0000
4 0000
5 0000
6 0000
7 0000
8 0000
9 0000

10 0000
11 0000
12 0000
13 0000
14 0000
15 0000
16 0000
17 0000
18 0000
19 0000
20 0000
21 0000
22 0000
23 0000
24 0000
25 0000
26 0000
27 0000
28 0000
29 0000
30 0000
31 0000
32 0000
33 0000
34 0000
35 0000

•

36 0000
37 0000
38 0000
39 0000
40 0000
41 0000
42 0000
43 0000
44 0000
45 0000
46 0000
47 0000
48 0000
49 0000
50 7DOO
51 7000
52 7000 A200
53 7D02 20947F
54 7D05 8598
5S 7D07 859Er
56 7009 8560
57 7DOB 859C
58 7000 859E

; SURCHANGE
;BY KERRY LOURASH
• •
; ZERO PAGE
• •

BUF=S97
BUFF=SI3

CFLAG=S98
CHRCNT=S6B

CLEN=S6C
OIF=S5D

ORIGIN=S9A
LFLAG=S9B

TEMP STORAGE FOR SEARCH CHAR.
START OF INPUT BUFFER
CHANGE OPTION FLAG
• OF CHARS. IN CURRENT LINE
LENGTH OF CHANGE STRING
CLEN MINUS SLEN

LlNCNT=SSE
PFLAG=S60
POINT=S6E
QFLAG=S9C

START OF WORKSPACE INDEX
LINE OPTION FLAG
• OF SCREEN LINES USED
PRINT OPTION FLAG
POINTER TO BASIC WORKSPACE
QUOTE OPTION FLAG

SCNCNT=SE
SFLAG=S9E

SLEN=S99
STAK=S9D

START=S79

• OF CHARS SINCE LAST CR/LF
STATEMENT OPTION FLAG
LENGTH OF SEARCH STRING
START OF SEARCH BUFFER IN STACK
START OF BASIC WORKSPACE
TEXT FLAG
VARIABLE OPTION FLAG

TEXT=S60
VFLAG=f70

WPOINT=fAA
YINDEX=S9F

YSAVE=S97

ADDRESS OF WORKSPACE STRING
TEMP STORAGE FOR POINT INDEX
TEMP STORAGE FOR PRINT INDEX

• •
; BROM ROUTINES
• •
DELETE=S014F DELETE CHARS FROM PROGRAM

BROM=SA2B4 BROM ROUTINES COPIED FRO" STACK
CHAIN=DELETE+SSA RECHAIN BASIC LINES

FILBUF=SA946 FILL BUFFER ROUTINE
INCHAR=SFFEB INPUT ONE CHAR FROM KYBD •
LETTER=SAD81 CHECK FOR LETTERS A-Z
LIFEED=SA86C PRINT CR/LF
NUMBER=SOOCS CHECK FOR NUMBER 0-9
NUMPRT=SB9SE PRINT NUMBER IN A.X
OUTPUT=SA8ES PRINT ONE CHARACTER
PUSHUP=DELETE+S3S MAKE ROOM FOR LINE
QUESTN=SA8E3 PRINT A QUESTION MARK

RESET=SA477 RESET BASIC POINTERS
SPACE=SA8EO PRINT A SPACE

TOGOUT=SA39D TOGGLE VIDEO OUTPUT FLAG
TOKBUF=SA3AB TOKENIZE LINE BUFFER
TOKTBL=SA084 START OF TOKEN TABLE
WARMST=SA274 ENTRY TO BASIC WARMSTART
• •
*=$7[100
;
OPTION LDX to

JSR PROMPT
STA CFLAG
STA LFLAG
STA PFLAG
STA GFLAG
STA SFLAG

SET PROMPT INDEX
PRINT OPTION PROMPT
ZERO FLAGS

(continued)

SUTchange 111

I'm using "X" for the don't-care symbol; in the actual program it is
CTRL-G, the ASCII BEL character. This search string finds all strings of
four characters starting with a uY" . For an example of don't-care
characters in a change string:

CHANGE? YXXX

This change string changes only the first letter of the workspace string.
The last three letters remain the same.

Using SURCHANGE
SURCHANGE can be called by POKEing its starting address into the

USR vector and typing X = USRIX). To avoid typing the USR command
every time, you could insert the USR command as line zero in the pro
gram on which you are working. Typing RUN then calls SURCHANGE.
First, SURCHANGE prints a list of options and a prompt to select options
(OPTIONS'). Options are selected by typing a combination of digits Ino
commas). If you make a mistake, use the usual OSI backspace Ishift 0).
You may tenninate the line and start over with a shift P, although the
prompt will not be repeated. RETURN signals the end of option selection.
If this procedure seems familiar, it should; you're using the Fill-the
Buffer (FTB) routine of OSI BASIC.

Next, the search prompt ISEARCH?) is printed. The FTB routine is
used here, too. Don't-care characters are input by typing CTRL-G. If you
hit RETURN without an input when typing the search or change string,
SURCHANGE prints the exit prompt. If you type a "Y", SURCHANGE
exits to the immediate mode. Hitting any other key causes a jump to the
start of SURCHANGE.

The change prompt ICHANGE?) appears if you've chosen the change
option . Only the line numbers of changes will be printed when the
change option is selected. If a line is made too long Ilonger than 71
characters), the graphics symbol $E9 is printed after the line number.

I have attempted to provide a paged display of SURCHANGE's output .
It would be nice to be able to count the number of CR/LFs generated by
the video routine to determine when the screen is full. So far, I haven' t
figured out how to accomplish this, short of writing a separate video
routine. After a certain number of lines have been printed, SUR CHANGE

" pauses. If the space bar is hit, the display continues. Any other key causes
an exit to the immediate mode without an "OK" to scroll the screen. If
you use the line-print option (3), you can display lines and edit them
(assuming you have an editor program).

Options
Default options are automatically selected if options 1-3 or option 4 is

not selected. When the change option is chosen, SUR CHANGE

112 MICRO on the OSI

Listing 1 (continued)

59 7DOF 8570
60 7Dll 855E
61 7013 2046A9
62 7DI6 E8
63 7017 B500
64 7019 F023
65 70lB 38
66 7DIC E931
67 7DIE A8
68 7DIF 0002
69 7021 C66D
70 7D23 88
71 7D24 0002
72 7026 C69E
73 7028 88
74 7D29 0002
75 7D2B C69B
76 7020 88
77 702E 0002
78 7030 C69C
79 7032 88
80 71133 0002
81 7D35 C670
82 7037 88
83 7038 DOOC
84 703A C698
85 7D3C 00D8
86 703E
87 703E A698
88 7D40 F006
89 71142 859B
90 7DH 85611
91 7046 859E
92 7048 A570
93 704A 259C
94 7D4C F003
95 7D,E 20E3A8
96 7051
97 7DS1 A2,.C
98 7D53 209+7F
99 7056 202E7F

100 7059 A24E
101 705B 9A
102 705C AA
103 7050 8699
104 7D5F E8
lOS 7060 B513
106 7062 48
107 7[163 CA
108 71164 10FA
109 7066 BA
110 7067 8690
III 7069 A2FE
112 7D6B 9A
113 706C
11+ 706C AS98
115 7D6E F029
116 7070 A2S3
117 7072 20947F
118 7075 202E7F

STA VFLAG
STA LINCNT
JSR FILBUF

OP INX
LDA .O,X
8EQ LOGIC
SEC
sac 1$31
TAY
BNE OPI

DEC PFLAG
OPI DEY

BNE OP2
DEC SFLAG

OP2 DEY
BNE OP3
DEC LFLAG

OP3 DEY
BNE OP4
DEC DFLAG

OP4 DEY
BHE OPS
DEC VFLAG

OPS DEY

,
BitE OP
DEC CFLAG
BHE OP

LOGIC LOX CFLAG
BED LI
STA LFUIG

STA PFLAG
STA SFLAG

LI LOA VFLAG
AND DFLAG
BEG GET SUR
JSR QUESTN ,

GET SUR LOX U4C
JSR PROHPT
JSR INPUT

STACK LOX tHE
TXS
TAX

STX SLEN
INX

ST LOA BUFF ,x
PHA

I

DEX
BPL ST
TSX

STX STAK
LOX UFE
TXS

LDA CFLAG
BED SEARCH

CETeNG LDX U53
JSR PROMPT
JSR INPUT

GET CHOICE OF OPTIONS
AFTER FILBUf, X=SI2
EXAMINE BUFfER CONTENTS
BRANCH If OONE
CONVERT ASCII TO NUMBER

NUMBER TO Y REG.
SET CORRECT FLAG

BR.ANCH ALWAYS

IS CHANGE FLAG SET?

FORCE OEFAULT OPTION

BOTH V & Q FLAGS SET?

PRINT A QUESTION MARK

PRINT SEARCH PROMPT
GET SEARCH STRING
SET STACK PTR TO $OI,E

SLEN TO X REG.

PUSH SEARCH STRING
ONTO STACK

START OF SEAR.CH STRING
TO STAK
RESET STACK

PRINT CHANGE PROMPT
PRINT & STORE CHANGE STRING

(continued)

SUlcbange 113

automatically selects the default display option. If options 4 and 5 are
both selected, SURCHANGE prints a question mark in front of the search
prompt, since it is unlikely the user would look for a variable in the text
area of a program. The default display option displays the line numbers of
lines that contain workspace strings. The numbers are displayed with a
single space separating them. If a number is printed more than once,
more than one workspace string is present in the line. This option allows
a very dense display and calls attention to multiple occurrences of a
workspace string in a line.

Option 1 displays line numbers plus the workspace string. Due to the
presence of don't-care characters in a search string, the workspace string
may not be identical to the search string. This option is handy when
don't-care characters are used. Also, option 1 emphasizes multiple occur
rences of workspace strings in a line, although its display fotmat is not as
compact as the default option's .

The statement option 12) prints the line number and the statement in
which the workspace string is found la line may contain multiple
statements). Colons found at the beginning and end of the statement are
also printed. The presence or absence of colons indicates the statement's
position in the line.

x = 3:-statement at start of line
:X = 3:-statement in middle of line
:X = 3 -statement at end of line
X = 3 -statement is the entire line

Option 2 allows the user to follow the use of a variable throughout a pro
gram or to examine all occurrences of any token land its arguments} in a
program. A statement is printed only once, even if it contains more than
one workspace string. For example, in the statement A = A - 3 the
variable A occurs twice . If "A" were the search string, the statement
would be printed only once.

The line option 13) lets the user see the entire line that contains the
workspace string. This option displays a maximum amount of informa
tion but also fills the screen rapidly . Like the statement option, the line
option prints a line only once, even if it contains more than one work
space string. The line option can be used as an aid to edit individual lines .
With SURCHANGE, find the lines to be edited, exit the SURCHANGE
program, and either use an editor to change the lines or retype them.

The quote option 14) searches the text portion of a BASIC program.
Text includes PRINT statements, INPUT prompts, string variables,
string DATA elements, and REM statements. Due to the structure of
SUR CHANGE, the initial quotation mark of a string is not considered to
be part of the text. If the quote option is not chosen, SURCHANGE
searches the program area outside of quotes and REMs. The reason fat
defining two areas of search is that BASIC tokenizes its keywords IUSR,

114 MICRO on the OSI

listing 1 (continued)

119 7I178 856C
120 7D7A
121 707A A296
122 7D7C A089
123 7D7E BDB4A2
124 7DBI 994EOI
125 7DB4 CA
126 7DB5 E067
127 7DB7 D002
128 7DB9 A25A
129 7D8B 88
130 7D8C DOFO
131 7D8E A960
132 7090 8D8001
133 7D93 80A801
134 7D96 8DB801
135 7099
136 7099 A579
137 7D9B 856E
138 7D9I1 A57A
139 7D9F 856F
140 7DA1 A003
141 7DA3 849A
142 7DA5 A900
143 7DA7 8560
144 7DA9 E69A
145 7DAB M9A
146 7DAD A6911
147 7liAF 9A
148 7DBO 68
149 7DBI F04D
150 7D83 C907
151 7DB5 [1002
152 7DB7 Bl6E
153 7{1B9 8597
154 7DBB B16E
155 7DBII AA
156 7DBE FOIE
157 7DCO EOSE
158 7DC2 FOll
159 7DC4 E022
160 7DC6 FOOD
161 7DC8 A59C
162 7DCA C'560
11.3 7DCC DODB
164 7DCE E497
165 7DDO 00Il7
166 711D2 CB
167 7DD3 DODB
168 7DD5 A560
169 7007 49FF
170 7DD9 8560
171 7DDB 4CCElD
172 7[1I1E
173 7DDE A8
174 70IlF B16E
175 70El AA
176 7DE2 C8
177 70E3 B16E
178 7 DES a66E

-
STA CLEN -•
LDX t$96 "OVE BRO" ROUTINES
LOY t$89 TO STACK

COPY LDA BROM.X
STA DELETE-l.Y
DEX
CPX U67
BNE CP
LDX USA

CP DEY
BNE COPY
LDA t$60 INSERT RTS INSTRUCTIONS

STA DELETEU31
STA DELETEU59
STA DELETEts69

• •
SEARCH LOA START

STA POINT
LDA STARTtl
STA POlNT+l

NEXLI N LOY t3
STY ORIGIN
LliA to

STA TEXT
SEnUF INC ORIGIN

LDY ORIGIN
LliX STAK
TXS

NEXBUF PLA
BEQ HATCH
CMP t7
BNE STOBUF

BASIC YORKSPACE POINTER
STOREDIN POINT. POINTtl

SKIP LINE POINTERS

INITIALIZE TEXT FLAG

SET STACK POINTER TO
START OF SEARCH BUFFER
GET SEARCH CHAR.
FOUND A HATCH?
DON'T CARE CHAR?

LliA (POINT)'Y
STOBUF STA BUF SAVE CHAR. IN BUF

NEXBYT LDA (POINT).Y

REM

TAX
SEQ FIXUN
CPX U8E
SEa TOGGLE

QUOTE CPX t'"
SEa TOGGLE

CKTEXT LDA QFLAG
CMP TEXT
BNE SETBUF

COMPAR CPX BUF
BNE SETBUF
INY
SNE NEXBUF

TOGGLE LOA TEXT
EOR UFF
STA TEXT
JMP COMPAR

• •

END OF BASIC LINE?
REM TOKEN?
YES. TOGGLE TEXT FLAG

CHECK TEXT FLAG

DO CHARS HATCH?

INCREMENT WORKSPACE INDEX
BRANCH ALWAYS
TOGGLE TEXT FLAG

FIXLIN TAY SET POINT TO NEXT LINE
LDA (POINT), Y
TAX
INY
LtIA (POINT),Y
STX POINT (continued)

•

Surchange 115

POKE, NULL, etc.), unless the words are in REMs or quotes. A token is a
one-byte code for a keyword. BASIC saves memory space and increases
execution speed because it stores and reads only one byte instead of a
whole keyword. Thus, if you're searching for "ON", SURCHANGE
needs to know whether you mean the word "ON" or the one-byte token
for the keyword ON.

The variable option (5) helps search for a BASIC variable. In a normal
search, looking for the variable "A" might find other variables such as
A$, AB, A(X), etc. When the variable option is chosen, every variable
found is tested to be sure it's not a subset of another variable.

The change option (6) enables modification of a BASIC program.
Change strings may be shorter, equal in length, or longer than the search
string. This is a powerful option and should always be used with caution.
Unless changing text, SURCHANGE will tokenize the change string
before it is inserted in the program. Therefore, the change string may
look deceptively longer or shorter than the search string when it is
printed on the screen. For example, "RETURN" is one byte long when
tokenized, while" A = 6" is three bytes long. If "A = 6" is substituted for
RETURN, all lines changed will be two bytes longer. If a line is longer
than 71 bytes, it can still be LISTed, SAVEd, and even RUN. When you
try to LOAD a long line, however, you'll find that the line is too long to
fit into the input buffer. SURCHANGE prints a graphic character $E9
after a line number when the line becomes too long. Be sure to remember
which lines are too long; they are identified only when the line is being
changed, not during search operations.

Finding Your Way Around

SURCHANGE takes getting used to. I suggest you type in a ten- to
twenty-line program and practice finding and changing things before you
do any serious work. Here are a few tricks I use. To delete all non-text
spaces in a program, select option 6. Type a space and a don't-care
character for the search string. Now, type a single don't-care character for
the change string. This gets rid of almost all single spaces and partially
erases multiple spaces. Repeat as needed to erase all spaces . This strategy
may work with other items you wish to delete.

When typing in a program, use a "%" or other seldom-used character
to stand in for a phrase, which is inserted by SURCHANGE after the pro
gram is completed. Of course, you must be careful not to make a line too
long by the insertion. Lines of up to 255 characters can be created with
the change option. They use less memory space and run faster than nor
mal lines. The big disadvantage of long lines is that they have to be saved
and loaded in a machine-language format.

116 MICRO on the OSI

listing 1 (continued)

179 70E7 856F STA POINT+l
180 711E9 DOB6
181 70EE<
182 7DEB A25A
183 7DED 20947F
184 7DFO 20EBFF
185 7DF3 C959
186 7DF5 F003
187 7DF7 4C007D
188 7DFA 4C74A2
189 7DFD 4C1C7F
190 7EOO
191 7EOO 88
192 7EOl 849F
193 7E03 A2FE
194 7E05 9A
195 7E06
196 7E06 A570
197 7E08 FOIC
198 7EOA A49A
199 7EOC C004
200 7EOE F006
201 7El0 88
202 7Ell 816E
203 7E13 20237F
204 7E16 M9F
205 7EI8 C8
206 7E19 B16E
207 7EIB C924
208 7E1D FODE
209 7EIF C928
210 7E21 FODA
211 7E23 20237F
212 7E26
213 7E26 A002
214 7E28 B16E
215 7E2A AA
216 7E2B C8
217 7E2C B16E
218 7E2E 205EB9
219 7E31 E8
220 7E32 BDOOOI
221 7E35 DOFA
222 7E37 866B
223 7E39
224 7E39 A56D
225 7E3B 0044
226 7E3D A59E
227 7E3F F02E
228 7EH M9F
229 7E43 B16E
230 7£45 FOn
231 7EP C8
232 7E48 C922
233 7E4A D006
234 7E4C A560
235 7HE 49FF
236 7E50 8560
237 7E52 2460
238 7E54 30ED

BNE NEXLIN END OF PROGRAM'!'
• •
END LDX USA

JSR PROHPT PRINT EXIT PROMPT
JSR INCHAR GET CHAR. FROH KYBD.

CHP .' Y
BEG DONE
JHP OPTION LOOP TO START OF SURCHAKGE

DONE JHP WARHST GOTO IMMEDIATE MODE
RET JHP RETURN
;
MATCH DEY SAVE WORKSPACE INDEX

STY YINOEX
LDX I'FE RESET STACK

TXS
;
VARIBL LDA VFLAG TEST VARIABLE FOUND

BEG LINE
LDY ORIGIN INDEX TO START OF STRING
CPY 14 FIRST CHAR, IN LINE'!'
BEll VO
DEY GET PREVIOUS CHARACTER

LDA (POINT h Y
JSR LEGAL 15 IT A ALPHANUMERIC CHAR!

VO LDY YINDEX GET CHAR. IN FRONT OF STRING
VI INY

;
LINE

LIN

;
PCHECK

SCHECK

so

51

LDA (POINThY
CHP I"
BEG RET
CHP I' (
BEG RET
J5R LEGAL

LDY 12 GET 2-BYTE LINE.
LOA (POINT h Y
TAX
INY
LDA (POINT)'Y
J5R NUHPRT CONVERT TO ASCII. PRINT
INX PUT • OF DIGITS IN CHRCNT

LDA tOl00.X
BNE LIN
STX CHRCNT

LDA PFLAG
BNE FINI
LDA 5FLAG
BEll LCHECK
LDY YINDEX FIND END OF LINE
LDA (POINT).Y OR TERHINATING COLON

BEG 52
INY
CHP .'.
BNE SI
LDA TEXT
EOR UFF
5TA TEXT
BIT TEXT

BHI SO

TOGGLE TEXT FLAG
IF GUOTE IS FOUND

LOOP IF IN TEXT

(continued)

•

•

Surchange 117

Changing SURCHANGE
C2/4P owners should change the COUNTR routine, as noted in the

listing. They may also want to eliminate the CR/LF between the two
lines of options in the option prompt. The easiest method is to substitute
two spaces ($20J for the $D, $A after "3-LINE" in TABL at the end of the
program. If you wish to examine the BASIC-in-ROM routines copied to
the stack, or if you must move them to another location, simply change
the DELETE label to the start of the new location. SURCHANGE is
relocatable from object code with the exception of references to the
prompt table (TABLJ. All references to TABL should be adjusted to con
form to its new location.

Two more changes may be made: the graphic character (#$E9J in line
337 (TOOLINGJ may be changed to an asterisk (#$2AJ for compatibility
with printers; and the output pager may be disabled by deleting lines
279-280 or replacing the code with Naps (#$EAJ.

How SURCHANGE Works
SURCHANGE occupies three pages of RAM and uses part of the stack

for BASIC-in-ROM routines and the search buffer. It wipes out the NMI
and IRQ vectors. To conserve zero-page space for other accessory pro
grams, SURCHANGE uses only zero-page addresses normally used by
BASIC . The change buffer is located in the line buffer ($13-SAJ.

To start, OPTION prints a list of options and the option prompt. The
option flags are zeroed and FILBUF is called to find out what options are
wanted. When the options have been specified, their respective flags are
set. LOGIC selects the default-print option if the change flag is set, and
prints a question mark in front of the search prompt if both the variable
and quote flags are set. GETSUR prints the search prompt and calls
INPUT. INPUT zeros the video character counter ($EJ so a full
7l-character line can be typed without a premature CR/LF. FILBUF is
called again to store and print the search string. Nter the search string is
typed in, the nnmber of characters in the string is counted. If no string
has been input, the routine goes to END to see if the user wishes to start
over. If the search is to be conducted within quotes, the tokenize-the
buffer routine (TOKBUFJ is skipped. The number of characters in the
string is returned in the A register. INPUT returns to STACK, where the
stack pointer is set to $014E and the length of the search string is stored
in SLEN. The search string is pushed onto the stack and the stack pointer
position saved in STAK. The stack pointer is then reset to the top of the
stack.

If the change option has been selected, GETCNG prints the change
prompt and INPUT is called to get the change string. When INPUT
returns, the length of the change string is stored in CLEN. COpy
transfers BASIC-in-ROM routines for inserting, deleting, and rechaining
BASIC lines to the stack, and inserts RTS instructions to make them
subroutines.

118 MICRO on the OS]

Listing 1 (continued)

239 7E56 C93A CHP .':
2<\0 7ES8 00E9
2 -4-1 7ESA 88
2 <\2 7ESB 8<\9F
2<13 7ESO A49A
2«1 7E5F 816E
2<\5 7E61 88
2<\6 7E62 C93A
247 7E6<\ FOO<\
2<lS 7E66 C003
2<\9 7E68 OOF5
250 7E6A C8
251 7E6B 8HA
252 7E60 0012
253 7E6F A59B
25<\ 7E71 F03E
255 7E73 AHF
256 7£75 CB
257 7E76 816E
258 7E78 DOFB
259 7E7A 88
260 7E78 8<\9F
261 7E70 AOO<\
262 7E7F 8HA
263 7E81 20EOA8
264 7E84 204E7F
265 7E87
266 7E87 E65E
267 7E89 A568
268 7E8B C917
269 7E80 9008
270 7EBF C92F
271 7E91 9002
272 7E93 E65E
273 7E95 E65E
274 7E97 A55E
275 7E99 C90F
276 7E9B 900E
277 7E90 A900
27B 7E9F 85sE
279 7EA1 20EBFF
280 7EM C920
281 7EA6 F003
2B2 7EA8 <\C7DA2
2B3 7EAS 206CAB
284 7EAE 4C1C7F
285 7E81
286 7EB1 A598
287 7ES3 F067
288 7ESS 18
289 7EB6 A59A
290 7EB8 656E
291 lEBA B5AA
292 7EBC A46F
293 7ESE 9001
294 7ECO C8
295 7ECI 8<\AB
296 7EC3 38
297 7EC4 A56C
298 7EC6 E599

S2
BNE SO
DEY
STY YINDEX SAVE NEW END OF STRING
LOY ORIGIN LOOK BACK THRU LINE

BACKWD LDA (POINT),Y
DEY

BA

CMP t':
SEQ BA
CPY .3

BNE BACKWD
INY
STY ORIGIN

BNE FINI
LCHECK LOA LFLAG

LC

FINI

• ,

8EG CHANGE
LDY YINDEX

INY
LOA (POINT)'Y
BNE LC
DEY
STY YINDEX

LOY t4
STY ORIGIN
JSR SPACE
JSR PLINE

AT START OF LINE?

SAVE NEW START OF LINE

FIND END OF LINE

SAVE END OF LINE

START OF LINE
PRINT SPACE
PRINT LINE

IS ALW/lYS 4

CHECK. OF CHARS, IN LIN£ COUNTR INC LINCNT
LOA CHRCNT
CMP U17

BCC CHEC
CMP U2F

BCC ADDI
INC LINCNT

AND INCREHENT COUNT AS NEEDED
** C2P: CHANGE TO t'3F **
** C2P: CHANG!' TO U7F **

ADD 1 INC LINCNT
CHEC LOA LINCNT

CMP UF
BCC CONT
LDA to
STA LINCNT
JSR INCHAR
CMP H20
BEQ CONT
JMP tA27D

CONT JSR LIFEED
JHP RETURN

• ,
CHANGE LOA CFLAG

BEG RETURN

COUNT <= 15 LINES?

GET KYBD, INPUT
IS INPUT A SPACE CHAR?

GOTO IMH. HODE; NO OK HESS.
PRINT CR/LF
RESUHE SEARCH

CLC CALCULATE ABSOLUTE ADDRESS
LOA ORIGIN OF START OF WORKSPACE STRING
ADC POINT
STA WPOINT
LDY POI NTtI
BCC CH
INY

CH STY WPOINTtI
SEC
LOA CLEN FIND CLEN HINUS SLEN

SBC SLEN
(continued) j

1

•

Su(change 119

The start-of-BASIC workspace pointer is transferred to SUR
CHANGE's workspace pointer IPOINT) . NEXLIN sets the Y register to
index the start of the BASIC line, and TEXT, the quote status flag, is
cleared. ORIGIN is initialized to the start of the line, the stack pointer is
set to the start of the search buffer, and a character is pulled from the
stack. Naturally, the contents of the stack are not altered by this opera
tion, and SURCHANGE can re-examine the search buffer any number of
times. If the character is a null, SUR CHANGE has found a match to the
search string and goes to the MATCH routine. If it is a don't-care
character, the next character in the BASIC workspace is stored in BUF.
Later, when the workspace character is compared to BUF, the two will
match . If the search character is not a null or don't-care byte, it's stored
in BUF.

NEXBYT tests the next character in the workspace . If the workspace
character is a null, the end of the BASIC line has been reached. The rou
tine branches to FIXLIN to reset POINT to the next line or to exit, if at
the end of the program. If the workspace character is a REM token or a
quotation mark, the TEXT flag is toggled . This means if TEXT is zero, it
is changed to #$FF, and vice versa. If TEXT is not equal to the quote
option flag, SURCHANGE loops back to SETBUF. Finally, at COMPAR,
the search character is compared to the workspace character . If the two
are identical, the next search character is pulled from the stack and the
NEXBUF loop is done again. If the characters don't match, the stack
pointer is reset to the start of the search buffer, the workspace counter
IORIGIN) is incremented, and SUR CHANGE starts looking for a work
space string again.

FIXLIN, as mentioned before, transfers the BASIC next-line pointer to
POINT. If the high byte of the pointer is zero, the end of the BASIC pro
gram has been reached . The stack pointer is set to the top of the stack,
"EXIT?" is printed, and SURCHANGE waits for an input. At this point,
the user can hit Y and exit to the BASIC immediate mode or hit any other
key to rerun SURCHANGE.

If a match to the search string is found, the workspace index IY) to
POINT is stored in YINDEX. The stack pointer is set to the top of the
stack. If VFLAG is set, V ARIBL tests the characters adjacent to the
workspace string to see if the string is a subset of another variable. If the
correct variable has not been found, LEGAL jumps back into the search
loop . LINE finds the current line number in the workspace and prints it.
lt also counts the number of digits in the line number for later use in the
COUNTR or LONG routines . PCHECK prints a space and the workspace
string if the print flag is set.

SCHECK finds the terminating colon of the statement or the end of
the line. BACKWD finds the start of the statement or the start of the line.
II was strapped for space here so I didn't include a check in BACKWD to
be sure a colon is really a statement separator and not part of a string.)
LCHECK finds the start and end of the line . The start is easy - always

120 MICRO on the OSI

Listing 1 (continued)

299 7EC8 F02E
300 7ECA 900C

BEQ CEOUAL
BCC MOVDWN

301 7ECC 85'5D
302 7ECE C6S[l
303 7EI10 208401

NOVEUP STA OIF
DEC DIF

304 7E03 20857F
305 7ED6 301A

JSR PUSHUP
JSR REPLAC

BHI MV3

IF CLEN = SLEN

MAKE ROOM FOR LONGER STRING

INSERT CHANGE STRING

306 7E[l8 M7B
307 7EDA 8471
308 7EOC MAR

HOVDWN LOY t7B
STY t71

SET UP VARIABLES FOR OELETESUB

309 7EDE 8474
310 7EEO 48
311 7EEI 38
312 7EE2 A599
313 7EE4 ES6C
314 7£E6 18
31'5 lEE7 6SAA
316 7EE9 9001
317 7EEB C8
318 7EEC 8472
319 7EEE 68
320 7EEF 204FOI
321 lEF2 2077M
322 7EF5 20A901
323 7EF8 20857F
324 7EFB 209M3
325 7EFE AOFF
326 7FOO 849F
327 7F02 A004
328 7F04 20507F
329 7F07 209DA3
330 7FOA 18
331 7FOB AS6C
332 7FOD 6S9A
333 7FOF 8S9F
334 7Fll AS6B
335 7Ft3 C947
336 7F15 9005
337 7F17 A9E9
338 7F19 20E5A8
339 7F1C A49F
340 7FIE 849A
341 7F20 4CA970
342 7F23
343 7F23 20C500
344 7F26 90F4
345 7F28 2081AO
346 7F2B BOEF
347 7F211 60
348 7F2E
349 7F2E 850E
350 7F30 2046A9
351 7F33 88
3S2 7F34 C8
353 7F35 891300
354 7F38 DOF A
355 7F3A 88
356 l F3B 1 003
357 7F30 4CEB7D
358 7F40 98

MV2

MV3

LOY WPOINT+l
STY t74
PHA
SEC
LOA SLEN
SRC CLEN
CLC
AOC WPOINT
BCC MV2
INY
STY t72
PLA
JSR DELETE
JSR RESET
JSR CHAIN

CEOUAL JSR REPLAC
LONG JSR TOG OUT

LIlY UFF
STY YINDEX
LDY H
JSR PLINE+2
JSR TOGOUT
CLC
LOA CLEN

AOC ORIGIN
STA YINDEX
LOA CHRCNT

CMP tH7
BCC RETURN

TOOLNG LOA nE9
JSR OUTPUT

RETURN LOY YINDEX
STY ORIGIN
JMP SETBUF

;
LEGAL JSR NUMBER

BCC RETURN
JSR LETTER

BCS RETURN
RTS

• ,
INPUT STA SCNCNT

JSR FILBUF
DEY

LILOOK INY
LOA BUFF,Y
ONE LILOOK

TOKIZE DEY
BPL TKO
JHP END

TKO TYA

ERASE XTRA CHARS FROM
RESET BASIC POINTERS
RECHAIN LINE POINTERS

CHECK FOR LONG LINE

FIND NEW END OF STRING

IS LINE TOO LONG?

PRINT GRAPHIC CHAR.

RESUME SEARCH

IS CHAR =0-91

IS CHAR =A-z?

PROGRAM

ZERO VIDEO CHAR COUNTER
PRINT AND STORE INPUT
Y=UFF
COUNT t OF CHARS. IN INPUT

IF NULL INPUT
SHOULD STRING BE TOKENI~ED?

(continued)

I

I ,
I
I
j
I
I ,
I ,
I
•
•

,

•

SUIchange 12 1

the fourth byte from the beginning of the line. FINl prints a space to
separate line number and line, and then PLINE prints all or part of the
line and counts the characters in the line . COUNTR looks at the number
of characters in the line just printed and decides whether LINENT, the
line counter, shall be incremented by one, two, or three. CHEC decides if
enough lines have been printed. If so, it calls INCHAR, which waits for a
keystroke. Any other key causes an exit to the immediate mode, without
the IIOK" message.

CHANGE tests CFLAG and, if it is set, subtracts the length of the
search string (SLEN) from the length of the change string (CLEN). If the
two are equal, CHANGE goes directly to CEQUAL, where the change
string replaces the workspace string. If CLEN is longer than SLEN,
MOVEUP calls PUSHUP, a routine copied from ROM. PUSHUP makes
room in the BASIC workspace for the longer change string . REPLAC is
called to insert the change string into the BASIC program. LONG tests
the new line length to see if it's longer than 71 characters. A graphics
character $E9 is printed after the line number if the line is too long. If
CLEN is less than SLEN, CHANGE branches to MOVDWN. Part of the
BASIC-in-ROM line delete routine is paraphrased in MOVDWN, then
DELETE is called to move the BASIC lines down and delete the extra
bytes in the program. REPLAC is called to insert the change string.
CHAIN rechains the BASIC line pointers . RETURN resets the BASIC
workspace index (ORIGIN) and jumps back into the search loop .

Developing SUR CHANGE was a real challenge. Many thanks to Earl
Morris for advice and for finding the bugs in the program .

122 MICRO on the OSI

Listing 1 (continued)

3~9 7F41 A49C LDY IlFLAG
8NE RTN
INX

360 7F 43 DOOB
361 7F4~ E8
362 7F46 20A8A3
363 7F49 9B
364 7F4A 38
36~ 7F4B E906
366 7F40 60
367 7F4E
368 7F4E A49A
369 7F50 8497
370 7F~2 B16E
371 7F~4 FOF7
372 7F56 101E
373 7F58 3B
374 7F~9 E97F
375 7FS8 AA
376 7F~C AOFF
377 7F~E CA
378 7F~F F008
379 7F61 CB
380 7F 62 B9B4AO
3Bl 7F65 10FA
382 7F67 30F~
3B3 7F69 C8
384 7F6A B984AO
3B~ 7F 60 3007
386 7F6F E66B
387 7F71 20E5A8
388 7F74 OOF3
389 7F76 297F
390 7F78 20E~A8
391 7F7B E66B
392 7F7D A497
393 7F7F C49F
394 7F81 CB
395 7FB2 90CC
396 7FB4 60
397 7F85
398 7F8~ A46C
399 7F87 B91300
400 7F8A C907
401 7F8C F002
402 7F8E 91AA
403 7F90 BB
404 7F91 10F<
40~ 7F93 60
406 7F94
407 7F94 BDA07F
408 7F97 E8
409 7F9B C60E
410 7F9A 20E~A8
411 7F9D DOF~
412 7F9F 60
413 7FAO
414 7FAO
415 7FAO 00
41~ 7FAl OA
415 7FA2 S3
415 7FA3 4S

JSR TOKBUF TOKENIZE STRING
TYA FIND LENGTH OF STRING
SEC
SBC .6

RTN RTS
;
PLINE

PO

TOKEN

TO

T1

T2

PRINT

;

LOY ORIGIN PRINT WORKSPACE STRING
STY YSAVE
LDA (POINT)'Y
BEll RTN END OF LINE?
BPL PRINT BRANCH IF NOT A TOKEN
SEC FIND KEYWORD IN TABLE

SBC U7F
TAX
LOY UFF
OEX
BEa T2
INY PRINT KEYWORD
LDA TOKTBL, Y
BPL T1
BHI TO
INY
LDA TOKTBL, Y
BHI PRINT PRINT LAST CHAR. IN KYWORO
INC CHRCNT
JSR OUTPUT
BNE T2
AND 'S7F ZERO HI BIT
JSR OUTPUT PRINT CHARACTER
INC CHRCNT
LOY YSAVE DONE PRINTING LINE?

CPY YINDEX
INY
BCC PO
RTS

REPLAC LOY CLEN INSERT CHANGE STRING
REO LDA BUFF,Y

CHP .7 DON'T CARE CHAR?
BEQ REI
STA (WPOINT),Y

REI DEY
BPL REO BRANCH ALWAYS

RTS
;
PROHPT LOA TABL,X

INX
PR I NT A HESSAGE

AVOID AUTO CR/LF DEC SCNCNT
JSR OUTPUT
BNE PROMPT

RTS

PRINT ONE CHARACTER
LOOP IF CHAR NOT A NULL

• ,
TABL
.BYTE SD,SA,'SEARCH '

(continued)

,
I

•

I
•

, , ,
•

I
•

)

I

listing 1 (continued)

~15 7FA+ 41
415 7FAS 52
415 7FA6 43
415 7FA7 4B
415 7FAB 20
416 7FA9 4F
416 7FAA 50
416 7FAD 54
416 7FAC 49
416 7FAD 4F
416 lFAE 4E
416 7FAF 53
416 7FBO 3A
416 7FB1 OD
416 7FBZ OA
417 7FB3 20
417 7FB4 31
417 7FB5 2D
417 7FBb 50
417 7FB7 52
417 7FBB 49
417 7FB9 4E
417 7F8A 54
417 7FBB 20
417 7FBC 32
417 7FBD 2D
417 7FBE 53
417 7FBF 54
417 7FCO 40
417 7FC1 54
418 7FCZ 20
418 7FC3 33
41B 7FC4 2D
418 lFC5 4C
418 7FC6 49
418 7FC7 4E
418 7FCB 45
418 7FC9 00
418 7FCA OA
419 7FCB 20
419 7FCC 34
419 7FCD 2D
419 7FCE 51
419 7FCF 55
419 7FOO 4F
419 7F01 54
419 7F02 45
419 7F03 20
419 7FD4 35
419 7F05 2D
419 7FD6 56
419 7FD7 41
419 7FOB 52
419 7FD9 20
419 7FDA 36
419 7FDB 20
420 7FOC 43
420 ?FOD 4B
420 7FDE 41
420 7FOF 4E

.BYTE 'OPTIONS! ' ,tD,_A

.BYTE ' I-PRINT 2-STKT'

.BYTE ' 3-LINE' .SO.SA

• BYTE ' 4-DUDTE 5-VAR 6-'

• BYTE 'CHANGE'. so. SA

SUIchange 123

(continued)

124 MICRO on the OSI

listing 1 (continued)

420 7FEO 47
420 7FEI 45
420 nE2 OD
420 7FE3 OA
421 7FE4 4F
421 7FE5 SO
421 7FE6 S4
421 7FE7 49
421 7FE8 4F
421 7FE9 4E
421 7FEA S3
421 7FEB 00
422 7FEC S3
422 7FED 45
422 7FEE 41
422 7FEF 52
422 7FFO 43
422 7FF! 48
422 7FF2 00
423 7FF3 43
423 7FF 4 48
423 7FF5 41
423 7FF6 4E
423 7FF7 47
423 7FF8 45
423 7FF9 00
424 7FFA 45
424 7FFB S8
424 7FFC 49
424 nFlI 54
424 7FFE 3F
424 7FFF 00

• BYTE 'OPT! ONS' .0

• BYTE ' SEARCH', 0

.BYTE 'CHANGE'.o

• BYTE 'EXIT?'. 0

•

An Improved Breakpoint Utility 125

An Improved
Breakpoint Util

by John S. Seybold

A while back I wrote a very basic
breakpoint utility for the CIP,

which was published in MICRO
149:84). Since then I have written an
enhanced version of that utility. The
new routine has several improve
ments over the original, including a
hexadecimal display. I urge anyone
who is interested in learning more
about machine-language program
ming to read on, as you do not have
to be an expert to use this utility.
For those who may have missed the
first article, I will start with a review
of the use and operation of a break
point routine.

A breakpoint utility is used as an
aid in machine- or assembly-language pro

gramming. The idea is to allow the programmer
to stop the execution of a machine-language program,

check various processor parameters, and then resume program
execution. This is done by setting breakpoints at certain locations in

the program. This particular utility displays the contents of the A, X, and
Y registers, and the status flag register .

To set a breakpoint in the program, I use the 6502.'s BRK (break) in
struction. When the 6502. encounters a BRK instruction, it treats the in
struction as a software interrupt. In other words, it stops whatever it is
doing and jumps to an interrupt routine - in this case, the breakpoint
utility. When the processor is finished with the interrupt routine, it
returns to the original program and resumes execution where it left off.

When the 6502. receives an interrupt or executes a BRK instruction it
stores the contents of the status register on the stack and the address of
the next instruction that it was going to execute. This is the only ap
parent difference between an interrupt request and BRK instruction. If a

126 MICRO on the OSI

Listing 1

10 0000
20 0000
30 0000
40 0000
50 0000
60 0000
70 0000
80 0000
90 0000

100 0000
110 0000
120 IFSQ
130 lFSO
140 lFSl
150 IF54
160 IF'5S
170 IF56
180 lF59
190 IF5C
200 IFSF
210 If61
220 IF6 3
:'30 IF64
240 lF66
250 IF69
260 1FbC
270
280
290
300
310
3;>0
330
340
350
3bO
370
380
390
400
41 0
420
430
44 0
450
460
470
480
490
500
510
520
530
540
'" t:' 0 .. ~,

560
570
580

IF6[1
lF70
lF71
lF73
IF73
lF 73
lF 73
IF75
lF78
lF7A
1F?!!
lF7F
IF8 2
IFS4-
lFS7
lFSA
IFBFI
IFBn
iFBn
iFBtI
IFsn
lF 90
lF93
lF9 6
IF99
l F9C
lF9F
IFA2
lFA5
lFA 8
IFAB
IFAE

D8
8[1E 7 1F
68
48
8[1E81F
8EE9lF
BCEAIF
A207
290 1
18
6930
9[150D3
AtlE8tF
4A
8DE81F
CA
10EE

A941
SDBA02
A958
8DCA{l2
A959
8DOAD3
A207
B[I[lFl F
9D l 003
CA
10F7

AIIE71F
20C51F
8E8CD2
8C8DD2
ADE91F
20C51F
8ECCD2
BCCDII2
ADEAIF
20C5 1F
8EOC[l3
9CO[l[l3

;**********************
;* BREAKPOINT UTILITY *
;* * i* BY JOHN s. SEYBOLD *
;**********************
• ,

• ,

• ,

SCR·.n310
SCR.A.SCR-$86
SCR. X·SCR-$46
SCR.Y·SCR-$6

*· $lF50

LOOP

CLD
STA
PLA
PHA
STA
STX
STY

A.SAVE

LDX
AND
CLC .

STATUS
X.SAVE
Y. SAVE
t7
U

STATUS REG DISPLAY
A-REG. DISPLAY
X-REG. DISPLAY
Y-REG. DISPLAY

SAVE
PULL
PUSH
SAVE
SAVE
SAVE

A-REGISTER
STATUS REGG.
IT ON STACK AGAIN
STATUS
X
Y

MASK LO BIT OF STATUS

ADC U30 CONVERT TO ASCII
STA SCR+.40,X PRINT STATUS BIT
LOA STAT US
LSR A
STA STATUS
[lEX
BPL LOOP

GET NEXT BIT

LOOP I F NOT DONE

;U***UPRHH LABELS*******
• ,

• ,

LDA t ' A PRINT ' A' LABEL
STA SCR,A
LIlA t ' X PRINT 'X' LABEL
STA SCR.X
LDA t ' Y PRINT ' Y' LABEL
STA SCR.Y
LDX .7

L1 UIA TABLE,X PRINT STATUS LABELS
STA SCR,X
DEX
BPL L1

;*******PRINT REGISTERS*******
• ,

LDA A.SAVE
.]SR CONVRT
STX SCR.A+2
STY SCR. A+3
LDA X. SAVE
JSR CONVRT
STX SCR.X+2
STY SCR. X+3
LDA V,SAVE
JSR CONVRT
STX SCR. Y+2
STY SCR . Y+3

GET A-REG. CONTENTS
CONVERT TO HEX •
PRINT HEX ON SCREEN

GET X
CONVERT TO HEX
AND PRINT

GET Y
CONVERT AND PRINT

(continued)

An Improved Breakpoint Utility 127

BRK instruction is executed, the processor skips one byte when it returns
from the routine. Hence, the first byte following a BRK instruction is
never executed by the processor. When a BRK instruction is executed, the
processor sets the B bit in the status register so that it can differentiate
between a BRK instruction and a hardware interrupt.

Once the processor has executed the BRK instruction, you may use it
to display information on the screen. The processor then jumps to the
CIP's keyboard routine and waits for a key to be depressed. (This is how
you make it wait for a command before returning to the original
program.) You must be careful not to change anything that might affect
the main program. Therefore, save all the registers before you change
them. After you release the processor from the keyboard, the utility
restores all the registers to their previous values and returns to the main
program via the RTI (return from interrupt) instruction.

In addition to displaying all three of the user registers, the breakpoint
utility prints the contents of the status register on the screen. Since the
last thing the processor does before entering the breakpoint routine is
save the processor status register, that register is the top element on the
stack. To retrieve it, simply put the contents of the A register in a safe
place and execute a PLA (pull accumulator) instruction. Now you have
the processor status register in the accumulator and can display it on the
screen. The loop in lines 2.00 to 2.80 of the breakpoint utility listing
displays the ASCII equivalent of each bit of the register on the screen;
i.e., 11011 or 11111.

Lines 32.0 to 42.0 of the breakpoint routine print the labels for the
registers A, X, and Y, and for each of the status bits. Lines 460 to 570
print the contents of the user registers in hexadecimal on the screen. A
sample printout is shown in figure 1. Once everything has been printed,
the routine restores the X and Y registers and then jumps to the keyboard
routine, which uses only the A register. If an "5" is entered from the
keyboard, the processor will jump to the CIP monitor rather than back to
the main program. If any key other than an "5" is depressed, the pro
cessor restores the A register and returns to the main program and con-

• • tlnues executIOn.

Figure 1: Semple Status Output

128 MICRO on the OS]

Listing 1 (continued)

590 lFBl
600 lFBl
610 lFBl
620 1FS! AEE 91F
630 lFB4 ACEA1F
640 lFB7 2000FD
650 lFBA C953
660 lFBC D003
670 lFBE 4COOFE
680 1Fel ADE 71 F
690 1FC4- 40
700 lFC5
710 1Fes
720 1Fe5
730 lFe5 48
7 4 0 lF C6 290F
750 lfes 20D6 1F
760 lFCB A8
770 lFCC 68
780 lFCD 4A
790 lFCE 4A
800 lFCF 4A
9 1 0 IF[iO 4A
820 IF[ll 20D61F
830 lFM AA
8 +0 lFIr5 60
850 lFD6
860 lFll6 0930
870 lFD8 C93A
880 lFDA 9002
890 lFDC 6906
900 lFDE 60
910 lFDF
920 lFDF 4E
920 lFEO 56
920 lFEl 20
920 lFE2 42
920 lFE3 44
920 iFE4- 49
920 iFES 5A
920 lFE6 43
930 lFE7 00
940 lFES 00
950 lFE9 00
960 lFEA 00

• ,
• ,

• ,
DONE

LDX X.SAVE
LIlY Y.SAVE
JSR SFDOO
CHP t 'S
BNE DONE
JHP SFEOO
LtIA A.SAVE
RTI

RESTORE X AND Y

POLL KEYBOARD
IS IT AN 'S'?

TO HONITOR
RESTORE A-REG.
AND REENTER PROGRAM

;*******SUBROUTINES*******

• ,

• ,

• ,
CONVRT PHA

AND
JSR
TAY
PLA
LSR
LSR
LSR
LSR
JSR
TAX
RTS

TEHP . SAVE A-REG.
tzOOOOll11
CHECK LO NYBBLE TO ASCII

SAVE IT IN Y
RESTORE A-REG.

A
A
A
A
CHECK

HOVE HI NYBBLE TO LO

CONVERT
SAVE IT

TO ASCII
IN X

CHECK ORA tS30 ADD t$30 TO GET ASCII
CHP ts3A GREATER THAN 10'
Bce FIXEr.
AUC .6 ADD t7 FOR A-F

FIXED RTS

TABLE • BYTE ' NV BUI 2C '

A. SAVE .BYTE 0
STATUS .BYTE 0
X.SAVE .BYTE 0
Y.SAVE .BYTE 0

An Improved Breakpoint Utility 129

2: Status Bit Definitions
-----.:...; :,::.:..:: -~-,- ---,

-w

Using the Utility
An experience common to most machine-code programmers is having

a program consistently return with odd results or, worse yet, not return
at all. When you use the Breakpoint Utility, you can go through the pro
gram in small steps and isolate the problem. In most cases, breakpoints
can be added to the program without reassembly.

Give the utility a try. You will have to enter the machine code into
your computer through the monitor or, if you have an assembler, enter
the source code and assemble it. Once the program is in memory,]
recommend you make a copy of it on tape before proceeding.

The first thing you must do to set up the utility is to point the IRQ
vector to the utility. When the 6502 receives an IRQ (interrupt request' or
a BRK instruction, it will jump to whatever address is held in the last two
bytes of memory. This is where aS] systems have their ROMs and the ad
dress in those two locations is $OlCO. The first step, then, is to use the
monitor to enter $4C,50, IF starting at $OlCO, which tells the processor
to jump to $lF50 (the address of the utility' when it executes a BRK in
struction. Once this is done, you can try using the utility.

Enter a short test program at $0500 Isee figure 3,. The Nap Ina opera
tion, instruction is only a place-keeper to remind you that the 6502 will
skip a byte when it returns from the utility. The Nap is never actually
executed. To remind yourself that one byte is skipped upon return, you
should use a Nap instruction in this spot each time you use the routine.
If the BRK instruction is put in over a three-byte instruction, be sure to
fill in the rest of the instruction Itwo bytes' with Naps so the processor
does not resume execution in the middle of an instruction.

130 MICRO on !he OSI

Figure 3: Test Program
f--,-----7, .. ::--.. ·s •.• -,.cr· •• ·~· -".. - .7 ...•.•... ,.--,.-,"' ••.. -,-,-..:...-------------,."-' .. '=" . . --,.

500 18 CLC
501 A900 LDAHO
503 AA TAX
504 AS TAY
505 00 Lob PBRK
506 EA NOP
507 6940 ADC #$40
509 4C0505)MPLOOP

•

Now go to $500 and run the test program. Immediately you should see
a display like that in figure 4. If you do not, check the test program and
then the Breakpoint Utility for errors. Once you have the display on
screen, the processor waits for you in the keyboard routine. Examine the
display before resuming.

Figure 4: Test Program Status

A 00
X 00

el y 00 NV BPIZC.
0011Q110 .

First notice that the C bit is indeed zero, as it should be since the first
instruction in the test program cleared it. Also notice that all the registers
contain $CC and the Z bit is set, since the last instruction before the
breakpoint transferred $00 into Y. You can also see that the N and V bits
are zero, as they should be . The B bit is set indicating that the processor
has executed a BRK instruction, as expected. The blank spot is an unused
bit in the status register. The status bits are defined in figure 2. For fur·
ther information on the status bits, consult the reference at the end of
this article .

•

An Imrpoved Breakpoint Utility 131

Now, if you press any key except" 5" , the program will go through its
loop once and return to the utility . Observe that the contents of A is $40
and that the Z bit has been cleared, indicating that the result of the last
operation was not zero. If you depress a key again, the Breakpoint Utility
comes back with $80 in A and with the N and V bits set. N was set
because the most significant bit of the result of the last operation was set,
meaning that it is a negative number in two's complement arithmetic .
The V bit is set because there was a carry from bit 6 to bit 7 in the result,
which implies a sign change in two's complement arithmetic.

If you send the program through the loop again, the V bit is cleared
and the contents of A change again . The next time through the loop the
contents of A is $00, the Z bit is set, the N bit is cleared, and the C bit set.
If you go through the loop once more, you see that since the C bit was not
cleared, it was added in with the result so $41 is in A.

The Breakpoint Utility can give you a lot of information with very lit
tle effort about what is happening in your program.] thought it would be
nice to have the contents of the program counter also printed out so you
could keep your place when using multiple breakpoints, but] felt it
would make the program too long . If you have more than 8K of memory,
you may wish to relocate the utility . This should not be too difficult, but
be sure you change all the subroutine calls and table references and do not
forget to put the new starting address into locations $OlCl and $01C2.
You might be able to modify the utility for use on bigger OS] machines,
but I am not sure what changes would be necessary.

Review of Operating Instructions

I. Load Breakpoint Utility into memory .
2. Enter $4C,SO, IF into memory starting at $OlCO.
3. Add breakpoints to program under test by keying in BRK instructions

($001 at the desired locations . Remember that the byte following the
BRK instruction is ignored.

4. Press the "5" key to stop the utility and jump to the monitor. Press
any other key to return to the program under test.

Reference

I. De long, M ., Programming and Interfacing the 6502 with Experiments,
Sams, 1980.

,

Polled Keyboard for C1P/ Superboard 133

Polled Keyboard for
C I P/Superboard

by Michael J. Alport

I had been thinking of writing a pro
gtam that would enable the OSI

keyboard to operate as an ordinary
typewriter in conjunction with a
word processor when an article ap
peared in MICRO (22: 17) describing
just such a program. I was pleased at
the thought of having a debugged
progtam that had to be keyed in only.
My joy was short-lived, however,
when I realized that Edward
Carlson's program was written for
the 542 board and would not work
with the 600 board found in the
C1P / Superboard microcomputer.
The difference between the two
boards is quite simple . Instead of

polling the rows/ columns with a byte con
sisting of a combination of seven a's and a 1, the

600 board uses a combination of seven l's and a a. I
suspected that a simple fix would be to replace all Mr.

Carlson 's STA $DFaa and LDA $DFaa instructions with JSR
$FCBE's and JSR $FCCF's, respectively. These are monitor routines that
use an EaR #$FF to invert the bit pattern, replacing 1 ' s with a's and vice
versa . However, it is sometimes easier to rewrite a complete program
than to attempt to modify someone else's. So while I was rewriting the
progtam, I took the opportunity to add a number of features that were not
included in the original program.

The progtam itself should be self-explanatory, especially when read in
conjunction with Mr. Carlson's article. I will, however, make a few com
ments about the additional features included in my program.

The shift-lock key is continually polled to determine whether it is in
the up or down position . If it is in the down position, control is trans
ferred to the normal monitor keyboard routine beginning at $FEED. If the

134 MICRO on the OSI

listing 1

10 0000
20 0000
30 0000
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
2 10

240
250
260

0000
0000
0000
0000
0000
0000
0000
IFOO
IFOO
IFOO
IF03
IF06
IF09
IF OC
IF OE
IFII
IF14
IFI6
IF i s
IFlA
IF1C
IF IF
IF21

202 11F
8lt8BIF
202DBF
20F51F
A900
8ilOOIIF
ADOODF
C9FF
FOO{
C9FE
lIOFO
20F51F
FOltF

270 lF 21 A2FE
290 lF23 8EOODF
290 lF26 AE OODF
300 IF29 8E8AIF
31 0 lF2C EOFE
320 lF 2E D003
330 IF30 4COOFD
3'0 IF33
350 1 F33 E07F
360 lF35 Il004
370 IF37 AliSBIF
380 IF3A 60
390 IF3B EO[tF
4(}O lF3D [1003
410 IF3F A91B
420 lF41 60
430 IF42 A007
44 0 1F44 88
4·50 iF 45 30DA
, 60 IF 47 A207
410 IF49 CA
480 IF4A 30F8
490 IHe B9EEIF
500 iF 4F BDOODF
510 1 F52 ADOODF
520 iF S5 DDEE1F
530 iFS8 rlOEF
540 IF 5A 8E89 1F
550 l F5D A900
560 IF5F 18
,,70 1F60 88
580 lF61 3004-

;************************
j* elF' POLLEn KEYBOAfUI *
a * ;* BY MICHAEL J. ALPORT *
;************************
• ,

• ,
• ,

• ,

• ,

CRTEMU=$BF2D
KBPOLL =$FDOO
KYPORT=$DFOO

*=$lFOO

EN TER JSR KEYBRD
STA LOC
JSR CRTEMU
JSR I'ELAY

KYDONE UtA to
ST A KYF'ORT
L[lA KYPORT
CMP UFF
BEG Nl

NEXT CMf' UFE
BNE KYltONE

NI JSR DELAY
LOOP BEQ ENTER

PRINT CHAR TO SCREEN
KEYBOARlt F'OLLING ROUTINE
KEYBOARlt PORT

MAIN ROUTINE
SAVE CHAR FOR REPEAT
F'RINT CHAR ON SCREEN
DEBOUNCE KEY

DEB OUNCE KEY
BRANCH ALWAYS

KEYBRlI L[tX tZIl111110
STX KYPORT

CHECK CTRL ROW

CONT

,

NREP

CHAR
ROW

COL

CALC

AGAIN

LliX KYPORT
STX CTRL
CPX tZII1I11I0
BNE CONT

SAVE UNTIL LATER
SHIFT LOCK •
UP, CONTINUE

JMP KBPOLL DOWN, TO REG. ROUTINE

Cf'X tZ01l11111
BNE NREF'

REPEAT?
NO

L[tA LOC RETURN WITH LAST CHAR.
RTS
CPX HII Ol1111
BNE CHAR

ESC·
NO

L[tA UIB
RTS
LlIY t 7
lIEY
BMI KEYBRlI
LliX t7
[lEX
BMI ROW
LIlA MASK,Y
STA KYPORT
LliA KYPOf:T
CMP MASK,X
BNE COL
STX XREG
L[tA t o
CLC
DEY
BM I AII[lX

RETURN WITH $1 B

SET UP ROW COUNT
BEGI N ROW SEARCH
NO CHAf:ACTER, TRY AGAIN
SET UP COLUMN COUNT
BEGIN COLUMN SEARCH

LOAn MASK BYTE

COMPARE WITH MASK BYTE
NOT A MAT CH
SAVE COL . COU NT
CAL C. CHAR. POSITION

(continued)

•

Polled Keyboard for C 1P/ SuperboaId 135

shift-lock is up, the new keyboard routine is executed. Therefore you can
use the new keyboard routine in conjunction with BASIC by placing the
address of this keyboard routine in BASIC's input vector location .

I found it necessary to add a delay routine lin addition to the original
KYDONE routine) to eliminate excessive contact bounce found on my
keyboard. This delay routine may not be needed on other keyboards.

listing 1 (continued)

590 lF63 6907 Anc . 7
600 lF 65 90F9 BCe AGAI N
610 lF67 6DB91F AttnX ADC XREG
620 lF6A AB TAY
630 lF6B ADBA1F LIlA CTRL CHECK FOR SHIFT KEY
6010 lF6E 2906 AND t %00000110
650 lF70 C906 CM F' t %00000110
660 l F72 F005 BEQ NSHIFT NOT SHIFT
670 lFH lB CLC SHIF T- ADD 49 TO CHAR F'OINTER
680 l F75 9B TVA
690 lF76 693 1 AnC H9
700 lF7S A8 TAY
710 lF79 BE8ClF· NSHIFT LDX CHRTBL,Y GET CHAR FROM TABLE
720 lF7C A[lBA1F LDA CTRL CHECK FOR CTRL KEY
730 lF7F 2940 AtHt *%01000000
740 lF81 D004 Bf~E NCTRL NOT CTRL
750 lF83 SA TXA
760 lFB4 09BO ORA *%1 0000000 SET HI BIT
770 l F86 60 RTS
7BO lF87 • ,
790 l FB7 BA NCTRL TXA
800 l FBB 60 RTS
810 lF89 • ,
820 lF89 00 XREG .BYT E 0 X-REG . STORAGE
830 lF BA 00 crRL .BYTE 0 CTRL KEY STORAGE
B40 l F8B 00 LaC .BYTE 0 KEY STORA GE
850 lF8C • ,
860 lF8C 31 CHRTBL .BYTE ' 1234567890 : - '
860 1 FBII 32
860 lF8E 33
860 lF8F 34
860 lF90 35
360 lF91 36
860 lF92 37
860 lF93. 38
860 lF94 39
860 lF9~j 30
860 lF96 3A
860 lF97 2D
B70 lF ~8 7F .BYTE .7F,$20 , ' .10 ' ,$A,$D,S20 ,$ 20
870 lF99 20
870 lF9A 2E
8/0 lF9 B 6C
870 lF9C 6F
HiO lF9[l OA
8i'(l lF9E OD
BiO lF9F 20
870 lFAO 20 (continued)

136 MICRO on th e OSI

Listing 1 (continued)

8BO lFAl 77 , BYTE 'wE'rt,'::I ui sdf~hjKxcvbn lll "
880 lFA2 65
880 lFA3 72
880 lFM 74
880 lFA5 79
880 lFA6 75
8AO lF A7 69
BflO !fAS 7 :1
aBO lFA9 6.
BBO l FAA 66
8HO lF AB 67
880 lFAC 68
B80 lFAD 6A
BBO lFAE 6B
BBO lFAF 78
880 lFBO 63
BBO lFBI 76
880 lFB2 62
B80 lF83 6E
B80 lF84 6[1
880 lFB5 2C
890 lFB6 71 .BYTE ' aaz' ,$20, '/ ;p '
B90 lFB7 61
890 lFBB 7A
890 lFB9 20
890 lFBA 2F
890 lFBB 3B
890 lFBC 70
900 lFBD 21 • BYTE I !" t$Z& I ,$27, I ()0*= '
900 lFBE 22
900 lFBF 23
900 lFCO 2,
900 lFCI 25
900 lFC2 2 6
900 lF C3 27
900 lFC4 28
900 lFC5 29
900 lFCb 30
900 lFC7 2 A
900 lFC8 3D
91 0 lFC9 7 F ,BYTE $7F,$20, ')LO ' ,$A,$D
910 lF CA 20
91 0 lFCB 3E
910 lF CC 4C
910 lF CD 4F
910 l FeE OA
91 0 lF CF OD
920 lFDO 20 .BYTE S20,S20, ' WERTYU I SDFGHJKXCV8NM'
920 lFDI 20
920 lF02 57
920 lF03 45
920 lF O, 52
920 l FD5 54
920 lFOb 5 9
92 0 lF D7 55

(continued)

Polled Keyboard lor C1P/ Superboard 137

listing 1 (continued)

9 20 lF DS 49
9 20 lFD9 53
920 lFDA H
9 20 lFDB +6
9 20 lFOC +7
920 lFOD +8
920 IFOE 4A
920 IFOF 48
920 IFEO 58
920 IFEI +3
920 IFE2 56
920 IFE3 4 2
920 IFE4 4E
920 IFES 40
930 IFE6 3C .BYTE '<gAZ ' ,$20, ' ?+P '
930 IF E7 51
930 IFES H
930 IFE9 SA
930 1FEA 20
930 IFEB 3F
930 IFEC 28
930 IFED 50
940 IFEE • •
950 IFEE 7 F MASK .BYTE . 01111111
960 IFEF BF .BYTE nO lll111
970 IFFO DF .BYTE Xll011111
980 IFFI EF • BYTE X11101111
990 lFF2 F7 .BYTE Xllll0111

1000 IFF3 FB • BYTE XII111011
1010 IFH FD .BYTE Xllll1101
1020 1FFS • •
1030 IFFS A2H DELAY LDX UFF DEBOUNCE ROUTINE
1040 IFF7 A020 LPI LOY 1$20
10SO IFF9 88 LF'2 DEY
1060 IFFA lIOFO BNE LP2
1070 lFFC CA rlEX
1080 IFFlI liOF8 BNE LPI
1090 IFFF 60 RTS

,

•

Something for Nothing 139

Something for Nothing

by Leo Jankowski

A frustration encountered when
using the C 1 P is the presence of

dead keys, particularly ESC. I
became fed up with having to type
' PRINTCHR$(27I ' whenever I
wanted to hit the ESC key. A
disassembly of the ROM BASIC code
reveals that all the necessary
routines are there in ROM, so it's
just a matter of using them. If you're
in a hurry, use the following:

.0222/20 BA FF C91 B FO 07 C9 7F FO
03 4C 99 A3 4C 69 FF

Then warm start and POKE
538,34:POKE 539,2. Hit RUB OUT
for a rapid screen clear!

Since I use an Epson MX-80 printer that
possesses a plethora of codes, the next step was

to program a few keys to access all those codes, thereby
controlling the printer. Unfortunately, placing printer com

mands in a program still demands a command like this:

10 PRINTCHR$(27);: PRINT" E"

The ClP will print the ESC symbol in a line of BASIC but will not
remember it. On the other hand, PRINT " 0 E" will work.

Another annoyance is the CIP's habit of mixing graphics with the
error codes and then proceeding to tell you that everything is OK. Actually
you lose a line on the screen and the cursor!

The following program gets rid of the lot. The new cursor is
CHR$(187J. If you enter the program in machine code, then the entry
point is $0222. Everything after that is automatic; <BREAK> W (or cold
start! I does not affect the program. The table lists the keys that access all
the Epson codes.

140 MICRO on the OSI

Listing 1

10 0000
20 0000
30 0000
40 0000
50 0000
60 0222
70 0222 A2FF
80 0224 9A
90 0225 A949

100 0227 8504
11 0 0229 A902
120 022B 8505
130 022[1 A962
140 022F 801802
150 0232 A902
160 0234 8D1902
170 0237 A922
180 0239 8501
190 023B A902
200 023D 8502
210 023F 4C74A2
220 0242
230 0242 OD
230 0243 OA
230 0244 00
240 0245 OD
240 0246 OA
2 40 0247 00
250 0248 60
260 0249
270 0249 48
280 OHA AD65D3
290 024D C93F
300 024F D008
310 0251 A!I67D3
320 0254 297F
330 0256 8D67D3
340 0259 68
350 025A A002
360 025C A942
370 025E 4CC3A8
380 0261
390 0261 00
400 0262
410 0262 8£6102
420 0265 AE0002
430 0268 A9BB
440 026A 9000D3
450 026[1 AE6102
460 0270 20BAFF
470 0273 207C02
480 0276 4C99A3
490 0279
500 0279 4C69FF
510 027C
520 027C C91E1
530 027E FOF9
5 40 0280 C90A

;t************************ ;* SOMETHING FOR NOTHING *
it * ;* BY L.J. JANKOWSKI *
;*************************
*=$0222

;

• •

• •
• •

• •
• •

LDX t$FF RESET STACK
TXS
LDA t$49 MESSAGE PRINTER VECTOR
STA $04
LOA .2
STA $05
LOA '$62 INPUT VECTOR
STA $0218
LOA t2
STA f0219
LOA ,f22 WARHSTART VECTOR
STA t01
LDA t2
STA $02
JMP fA274 JUMP TO WARHSTART

.BYTE SO,$ArO

RTS

PHA
LDA f0365
CHP t'?
BNE S0259
LDA SD367
ANO ts7F
STA f0367
PLA
LOY ts02
LOA U42
JMP fA8C3

XSAVE • BYTE 0

ERROR HESSAGE CORRECTOR
ERR. MESS. ON SCREEN?

NO, BRANCH
GET 2ND CHARACTER
FIX IT
AND PUT IT BACK

PRINT LF.CR

STX XSAVE PRINT NEW CURSOR
LOX $0200
LDA UBB
STA SD30Q,X
LOX XSAVE
JSR SFFBA
JSR S027C LOOK FOR CONTROL CODES
JMP fA399

OUT JMP $FF69 REGULAR OUTPUT ROUTINE

CHECK CMP tUB
BEa OUT
CI'tP I.A

ESC?

LINE FEED?

(continued)

,

Table 1: Control Codes for

FF
HT
VT

SO
DC4
SI
DC2

NUL
DCI
DC3

.. ,., .

CAN
DBL

fOlm feed
horizontal tab
vertical tab

'lehift ant
Cancel SO
shift in
cancel S[

null
select
deselect
cancel
delete

Something for N othing 141

Printer

CTRL
L
I
K

t~ N
" T
o
R

RUBom;

'---',' .,-' --' ----"-' --

The program has been designed for easy editing. If you want to add
more keys to the list just tack the code onto the end of the program.
Always end with an RTS ,

144 MICRO on the OS!

KHz - are tapped from the 74LS163 divide-by-13 counter IU57). These
three signals are fed into the 74LS151 multiplexer, which is installed at
location U44. The binary combination at pins 11 and 10 is chosen by the
switch position and determines which of the three signals are present at
the output of the multiplexer Ipin 51. The output is then divided by two
with the 74LS74 0 flip-flop to correct the asymmetry of the signals from
the divide-by-13 counter. The output of the flip-flop is then selectable at
4 .7, 9 .5, and 14.2 KHz . This is the frequency for the TX clock of the ACIA
IU141. By increasing the frequency of the TX clock, you are decreasing
the length of the tone burst used for each data bit, which of course speeds
up the saving and loading processes .

74LS l

U57

1

Voo
10K

--

1 ·74LS151
1·74LS163
2· 10K Yo W RESISTORS
1 . 14-f'IN DIP SOCKET
1 • l&f'IN DIP SOCKET

Figure 1

74LS74

U63

74lS151

U44

13 & 4
- -+ OF THE

6850

U28

,

Saving Time with Your C1P 145

• ConstruCtIOn

I recommend that you use the sockets for the Ies to prevent damage
while soldering. I also suggest that you install them and bend the pins to
hold them in place and not solder them until all connections to each pin
have been made. This way you avoid the possibility of soldering one of
the holes shut, as well as the necessity of heating each pad twice. For
hook-up wire I used 2S-guage wire-wrap wire. This works well -
especially for making the connections to U57 (as there is no place to do
this conveniently).

The 74LS151 should be mounted at the U44 slot on the board (next to
the crystal). so install the 16-pin socket there and bend the leads to hold
it in place. The 74LS74 goes in slot U2S, so mount the 14-pin socket
there . Locate the two resistors in U29. The resistors should be mounted
between pins 2 and 13 and between pins 3 and 12. Leaving one lead of
each resistor straight, bend the other lead so that it makes a 45° angle
with the body of the resistor. Now strip l-i inch of insulation from the end
of a 3-inch piece of wire. Starting at the bottom of the board, run the bare
end of the wire up through the hole at pin 2 and then down through the
hole at pin 3. Next, insert the straight end of the resistors through the
holes at pins 2 and 3 of U29 and the bent ends through pins 13 and 12.
Pins 2 and 3 can be soldered now and the leads underneath clipped. The
other end of the 3-inch piece of wire should be shortened, stripped, and
connected to the positive power bus along the edge where it is the widest.
I could not find a hole for this connection, so I just cleaned a spot on the
bus, laid the wire on it, and soldered it into place.

Strip 3/S inch from the end of a 2-inch piece of wire and, starting from
the top of the board, connect pins 6 and 7 of U29 and connect the other
end to pin 7 of U2S(the 74LS74). Pin 7 of U2S may be soldered, but wait
to solder the two connections on U29. Now, using a 12-inch to IS-inch
piece of 22-guage stranded wire, insert one end into the hole at pin 7 of
U29 and solder. The other end should be soldered to the center lead of the
baud-select switch.

Using two more 12-inch to IS-inch pieces of 22-guage stranded wire,
connect the bent lead of each resistor to one of the outer two leads on the
baud-select switch. The easiest way to do this is to strip l-i inch of insula
tIOn from one end of each wire and wrap the end around the bent resistor
lead, soldering as shown in figure 2.

146 MICRO on the OSI

• •

Figure 2

BAUD SELECT SWITCH

•
•

+ Vc TRACE - - ----- - -
BOTTOM SIDE

OF BOARD

Next, connect the foil pads from
pins 10 and 11 of U44 to pins 12 and
13 of U29 Ithe bent ends of the two
resistors!, respectively, and solder
all four connections. Note that it
does not matter which resistor lead
is connected to which pin of U44 as
the switch can be turned around and
have the same effect. In all cases,
the center position is the 300 baud
setting. All the connections to the
two resistors are shown in figure 2.

Pins 7, 8, and 9 of U44 all should be connected to ground. The hole
next to pin 9 is ideal for this. Use wire-wrap wire and work from the top
of the board. You should be able to get all three wires into the ground hole
and then solder them into place. Pin 16 of U44 should be connected to the
positive bus using a short piece of wire run to the hole right in front of it.

Pins 1, 2, and 3 of U44 now can be connected to pins 11, 12, and 13,
respectively, of U57. Starting from the top of the board, hook one end of a
piece of wire to pin 1 of U44 and solder. Then run the other end back and
down through anyone of the holes between U58 and U43 . Flip the board
over and cut the wire to length . Strip \4 inch of insulation from the end,
carefully heat thefoil pad of pin 11 of U57, insert the end of the wire into
the hole along with the IC pin, and add just a bit of solder. Repeat this
procedure for the other two wires, using the other hole between U58 and
U43 for routing the wires. The last wire to be connected to U44 is run
from pin 5 to pin 3 of U28.

There are two adjacent foil cuts that must be made near the ACIA.
The two cuts are made at W5, just behind pin 13 of the 6850. This cut
should disconnect pin 9 of U63 from pins 3 and 4 of the 6850. You may
wish to verify this with an ohmmeter. Now run a wire from pin 5 of U28
to the leads from pins 3 and 4 of the 6850. This connection is easiest to
make right at W5, as the leads from both 3 and 4 are there and have holes
I see figure 3) .

To finish connecting the 74LS74,
hook pins 1, 4, and 14 to the positive
bus . The best way to do this is to
connect all thtee pins together and
run a wire to pin 5 of location U29 .
Now connect pins 2 and 6 of U28 and
solder them, as well as any other un
soldered foil pads with connections.
This completes the construction.
Make a careful visual check of the
board and if an ohmmeter is avail
able, use it to verify all connections.

Checkout

Saving Time with Your elP 147

WIRE FROM
PI N 5 OF U28

o
- MAKE CUTS HERE

_0

TO 13 TO '4

13 OS 50 12

Figure 3

lnstall the two rcs in their respective sockets with pin 1 towards the
keyboard and connect the S-volt supply to the board. With the baud select
switch in the center position, load a short BASIC program . If you are
unable to load a program, refer to the following section on trouble
shooting. Once a program has been loaded, put the machine in the save
mode and list the program.

When you change the position of the baud select switch, you should
notice the speed of the listing increasing. It is relatively easy to determine
which position corresponds to which baud rate. Now try saving and
reloading the program at a higher speed. To avoid confusion, you will find
it a good idea to label all your tapes with the baud rate at which they were
recorded.

Troubleshooting
If you have trouble, the first thing to do is turn off the power and

verify all connections with an ohmmeter against the schematic shown in
figure 1. Next, with the power on, check voltages on all the pins that
should be grounded, or at 5 volts to see that they are. Also, with the baud
select switch in the center position, check that pins 10 and 11 of the
74LSlSI are at 5 volts.

148 MICRO on the OSI

If you still cannot locate the problem, you will need to use an
oscilloscope to verify that the signals from pins 11 , 12, and 13 of U57 are
getting to pins 1, 3, and 2 of the 74L5151. Then check to see if changing
the switch position changes the signal at pin 5 of the 74L5151. If it does
not, check the two-bit binary number at pins 10 and 11 of the 74L5151; it
should be at either 1, 2, or 3 with pin 10 as the most significant bit .

If you have trouble with errors, you will have to adjust R57 , the input
filter center-frequency adjustment. This pot affects only the input cir
cuit; to adjust it, tape a program at 900 baud and then start loading it . For
best results, adjust the volume and tone controls of the cassette deck first
so the number of erroneous characters appearing in the listing is
minimized. IOn my cassette recorder, I set the volume at one-third and
the tone control in the center of its range.j Next adjust R5 7 until you no
longer see any errors. Continue turning the potentiometer until you start
to get errors again . Now set it between the two settings where the errors
start to occur and where they stop. Once the adjustment has been made
at 900 baud, it will be correct for the two slower settings. Changing the
setting of R57 does not affect the Kansas City receiver circuit significantly
at 300 baud. Any old tapes that were made at 300 baud should still work,
as will any tapes that you purchase.

Conclusion
Once R57 has been adjusted, the circuit is ready to use. On my sys

tem, I found the reliability at the two higher speeds virtually the same as
that at 300 baud. Besides saving time and tape, I have made use of the
higher rates for doing quick line searches while programming. If you
want, you can change speeds while listing so you can find a certain part of
your program quickly. This must, of course, be done while in the save mode.

Extended I/ O Processor 149

Extended 1/0 Processor

by Michael r Keryan

"Cursor Control for the CIP,"
by Kerry Lourash (MICRO

36:75), added nine utility functions
to the input and output routines. I
have pieced together the desirable
features of most of these smaller
programs and added a number of
new ones, such as automatic line
number generation . In all, over thirty
routines are now available for use
during keyboard input, screen out
put, etc. User-supplied software/
hardware additions for a printer,
bell, and bug-free garbage collection
are also supported. An improved
monitor program is included, which
can be called at any time. All the

constants - screen parameters, subroutine
vectors, and flags - were put into tables rather

than imbedded into machine code, making changes
relatively easy . The program originally was written for a

C2-8P, but the version described here is for a CIP with 8K of
memory . The 2K program is ROM able, assuming all the references to the
high byte of subroutines ($18 through $IF! are translated to higher memory.

The Video Screen
Several screen parameters are stored in page zero memory, as shown

in figure 1 and table l. There are no restrictions on screen size or video
memory location; 32, 64 , or non-standard line widths can be supported,
as well as video memory at locations other than $Dxxx. Figure 1 shows
the window starting near the top of the screen and the flags and monitor
fields (described later! near the bottom, but all locations can be modified.
During initialization, the parameters are copied from tables within the
program (default locations! to lower memory. The parameters can be
changed by POKEing into pages zero and two, but the default values will
be re-established on each warm start. Therefore, if the default values do
not suit you, change them in the upper memory tables.

150 MICRO on the OSI

Figure 1: CRT Screen Parameters

BEGI NNING I- COLUMN MAX • 1
OF I VIDEO RAM

STAAT COLAIGHT

WINDOW
SIZE

CATHOR
f-

EN D _LL

I-
OFFSET

ADDRESS
QUESTION - 1 I I I

• I I' OFFSET • • ENDOF
STATUS VIDEO RAM

COLMA)(- 1 '" COLU MN MAX - 1
CRTHOR + 1 = CATHOR + 1
COL l - R = (COLU MN MAX) - (CATHOR) - (COL RIGHT) + 2
OFFSET - P REGISTER = COLUMN MAX - 1/1

Table 1: Parameter Location and Values (for C1 P)

DEFAULT DEFAULT
PARAMETER LOCATION LOCATION VALUE

• CURSOR-La SOOEO SlCOO AO
CURSOR- HI SOOE! Sl C01 DO
START I- LD SOOE2 Sl C02 AO
START I-Hi SO OE 3 Sl CO 3 DO
ENCI-LO SOOE4 Sl CO 4 CO
END I- HI SOOE 5 $lC05 D2
QUEST ION-LO SOOE6 SlC06 C5
QUEST ION-HI SOOE7 SlC07 D3
OK SYMBOL SOOES Sl CO 8 E5
CURSOR SYf-lBOL $00E9 SlC09 A4
CO LUMN MAX $OOEA SlCOA 20
COLMAX-l SOOEB SlCOB IF

CO L L- R SOOEC SlCO C 07
COL RIGHT SOOED SlCOD o 1
CRTHOR+ 1 SOOEE SlCOE 1A
ST ATUS FLAGS SOOEF $ l COF 82
CONTROL C FLAG SO 212 SlC36 00
Aur OLINE-LO S02DO $1 CI0 90
AUTOLl NE - H I $ 0 201 SlC11 00
AUTOLl NE INCREMENT S02D2 SlC12 10
LINES/PAGE-CRT S02D3 SlC13 12
LINES/PAGE- PRINTER S02D4 SlC14 30
5T ART2 -LO S02D6 SlC16 01
5TART2 - H i SO 2 D7 SlC17 D3
END2-LO S02D8 $lC18 80
EN02-t-lI $02D9 $lC19 D3
HOVE CURSOR-LO $02DA $lCIA AS
MOVE CURSOR-HI $0 20B SlClIl DO
OFFSET-STAT US $02 DC Slele 00
Of FSE T -A[)DRE 5 5 $ 0 200 $lCI0 08
QFFSET - P REGI STER $02DE $ ICl E 12

Extended li D Processor 151

Cursor Movement
The cursor position is stored in locations $OOEO Ilow by tel and $OOEI

Ihigh by tel. Tbe cursor-movement functions print tbe character under
tbe cursor, move the cursor, and print tbe cursor symbollstored in loca
tion $00E91 at the new position . No otber output to tbe CRT or printer is
affected. Tbe following control cbaracters will cause non-destructive cur
sor movement to any screen location :

Up one line Control-U 1$151
Oown one line Control-O 1$041
Left one space Control-L I$OC!
Rigbt one space Control-R 1$121
Rigbt eight spaces Control-! 1$091

Using these cursor movements can put the cursor outside an active
window . Tbe following movement controls keep tbe cursor witbin an ac
tive window:

Return to the left of a line Control-Q I $lll
Home cursor Ito bottom of windowl Control-B 1$021
Backspace llike Control-L, but stays in marginsl Control-H 1$081
Move cursor Ito a preset locationl Control-N I$OEI

Control-N moves the cursor to the location stored in $020A Ilow by tel
and $020B Ibigh by tel. It is now set for tbe top left corner of tbe screen.
Note tbat if tbe preset location is outside tbe window, Control-N causes
the cursor to leave the window.

Window Controls
Active window boundaries are stored in START: $00E2, $00E3, and

ENO : $00E4, $00E5 . All CRT output, scrolling, etc., is maintained
within tbese boundaries. An alternate window is stored in START2:
$0206, $0207, and EN02: $0208, $0209. Tbe two windows could be
eqUivalent, partially overlapping, or completely separate. Tbe two win
dows can be switcbed by pressing Control-W 1$1 71- In addition to tog
gling the windows , the cursor is homed in the new active window .

Tbe window boundaries can be cbanged by POKEing into tbe appro
priate locations, but are easily cbanged by using tbe Control-X 1$181 key .
To use Control-X, first place tbe cursor anywhere on the desired line by
using Control-U or Control-O, then press Control-X. You will be
prompted for anotber key with a question mark lat location $00E6,
$OOE7I and a beep lif this function is implemented!, until either a T Ifor
top of window I or a B Ifor bottom I is pressed . Control-X will change only
boundaries of the active window; to change the other window's boun
daries, first use Control-W .

152 MICRO on the OSI

If the cursor is placed above the window, it will naturally move down
into land be trapped inl the window. If the cursor is placed below the bot
tom boundary, however, it will not move by itself from that line. This
can be used for a one-line non-scrolling window, but a two-line window
is the minimum required to give readable text.

Scroll Controls
If the cursor is placed near the top of the window, it will move down

the screen as lines of text are output . No scrolling occurs until the cursor
attempts to move down when at the bottom of the window; the whole
window then scrolls upward and the home line is blanked. An upward
scroll can be forced at any time by pressing Control-Y 1$191; similarly, a
downward scroll is forced by Control-Z l$lAI. These functions control
only the location of the text, which is moved up or down on the screen;
they do not move the cursor, which remains stationary. The scrolling
functions are useful in editing and in game programs.

Clear Controls
To erase the entire screen, press either Control-T 1$141 or ESCAPE

l$lBI. To erase only the active window, press RUB OUT 1$7FI; this also
homes the cursor in the window.

Edit Text

Text can be entered by typing it in as usual, or by plaCing the cursor
anywhere on the screen and pressing Control-E 1$051. This causes
whatever is under the cursor to be entered into BASIC; it has the same
effect as typing the character. The cursor is then indexed one space to
the right .

When entering a line of text, characters can be deleted with shift 0
1$5FI; this moves the cursor one space backwards, deletes the character
from BASIC, and erases it from the CRT. The function of shift P 1$641 is
not changed; it scratches from BASIC the line being worked on, but does
not erase the line from the CRT.

To summarize, text is entered by typing characters lor spaces I or by
using Control-E over text. Text can be deleted by typing spaces over text
when using Control-E or with shift O. Text is not changed by using cur
sor controls; these are used only to position the cursor to allow use of a
combination of Control-E, character input, or space input .

Autoline
To facilitate easy entry of text, an automatic line-entering system can

be invoked by inputting Control-A {$Oll. Control-A toggles the autoline
mode off or on at any time. Also it can be changed by POKEing the status
flag. When the autoline mode is on, an A appears near the bottom of the
screen. Then you enter a carriage return to activate autoline.

Extended I/ O Processor 153

When the system is initialized, the starting line number is 100 and
the increment is 10, resulting in lines numbered 100, no, 120, ... , 9990.
Tbe line number and increment can be changed at any time by POKEing
locations $0200 and $0201 Iline number) and $0202Iincrement) . These
are packed BCD numbers, four bits per digit . The default values are re
established on warm start.

When the autoline mode is on, the input routine looks at both the
character being entered and the last character. If the last character was a
carriage return, you are now at the beginning of a new line, possibly in
need of a new line number . Entering any character other than a space, a
control character, a number from 0-9, a shift-O, or a rubout, automatically
generates a new line number before the key is entered. These exceptions
allow certain things to be done without getting a line number pnt on it:
immediate mode commands are invoked by first typing a space, then the
com mand; new line numbers can be inserted between or over existing
lines; and all cursor and editing commands can be used . The autoline
mode can be toggled off by using Control-A.

Flag Changes

To change a status flag, use Control-F 1$06) . You then get a prompt.
You must enter the flag number Ifrom 1 to 8), followed by either a 0 If or
off) or 1 Ifor on). The flag code numbers are:

Flag
Number Code Description

1 H Hard copy Iprinter) mode
2 C CRT output mode
3 I Intermittent output Ipaging) mode
4 T Trace mode
5 S Step mode
6 A Autoline mode
7 M Monitor save mode
8 E Extended I/ O mode lall functions)

After the flag number and status is entered, the status of all flags are
displayed near the bottom of the screen I these can be erased by escape or
Control-T). The status can also be changed at any time le.g., during ex
ecution of a BASIC program) by POKEing bits into location $OOEF; the
flag number corresponds to the bit number. Note that if the E flag is
cleared, you can get back into the extended 110 mode by POKEing a
number greater or equal to 128 1$80) into $OOEF, or a warm start.

154 MICRO on the OSI

CRT and Hardcopy Flags
When these flags are set to 1, a corresponding output to the screen or

printer is created. These flags are independent. To get printed output, a
user-supplied printer subroutine must be included: change the NOP s at
$IEF7 to JSR $YYXX (20 XX YYJ, where $YYXX is the address of your
subroutine. Prior to this subroutine call, 16 page zero locations ($OOEXI
are freed for additional use by the print routine and are restored before
returning to the CRT output.

Print Window

At any time, a Control-P ($101 from the keyboard causes the entire ac
tive window to be output to the printer, character by character. The H
flag need not be set. The CRT display is not affected.

Intermittent Output

If the I flag is set, the number of lines output to the CRTlprinter are
counted and stored in locations $02F6/ $020S. These are compared to
constants stored in locations $0203/$0204. If the line count is equal to
the preset page size, the computer prompts you and waits for a keyboard
entry before continuing. This allows you to copy (or readl CRT text
before it scrolls off, or change to a new sheet of paper on the printer.
These counts are independent; both are reset to zero on warm start.

Stop/Restart Output

In addition to the above intermittent output mode, a program or
listing can be stopped at any time by pressing Control-S ($131 and then
restarted by Control-R ($121. These commands are functional only during
output. In many cases, the Control-SIR sequence is preferred over
Control-CICONT since no extraneous output is printed.

Step and Trace Modes

If the Step mode is invoked by setting the S flag, only one line of
BASIC code is executed during RUN. You are then prompted for a
keyboard entry, after which the next line is executed, and so on.

If the Trace mode is invoked by setting the T flag, the BASIC line
number is printed when that line is executed. The output is then a mix
ture of line numbers with the normal program output. The program can
not be LISTed while in T mode.

The Step and Trace modes are independent, but for most purposes, are
used together for debugging programs. The Control-C flag (at location
$02121 must be cleared (enabledl to activate either Step or Trace: this is
done on Wa1lll start.

Extended I/ O Processor 155

View Tape
Pressing Control-V ($16) causes entry into the cassette-view mode,

where BASIC tapes can be read and displayed on the CRT, but are not
entered. To exit this mode, enter a space. This routine uses the old 110
vectors to eliminate accidental control-character routine activation dur-
• • • mg vlewmg.

Bell

An audible prompt is used in several of the above routines . This bell
function is also used when a Control-G ($07) is either input or output.
$07 is output if you attempt to enter more than 71 characters on a line. As
an additional feature, the bell is also sounded once after the 64th
character, like a typewriter, to warn you that the end of the line is near.
To use the Bell feature, you must supply a subroutine at location $lCEC
and the appropriate hardware modifications. (See MICRO 38:65, "A
Typewriter Bell for Your Microcomputer.")

Carriage Return on BASIC Input

With OSI computers, if you respond to an input statement with only a
carriage return, you will be kicked out of your program into the im
mediate mode. Usually you can jump back in with a CaNT statement,
but this is frustrating. On most large computers such a response is legal.
This feature has been added to the input routine. A carriage return is ac
cepted as a zero for numeric inputs, such as INPUT A, or as a space ($20)
for string inputs, such as INPUT A$.

Other Jumps

An input of $10 causes a jump to the menu ($FFOO). This duplicates
the function of the Break (Reset) key and makes it easy to jump there
from inside a BASIC program. Inputs of $lC, $lE, or $lF are not used.
You can add your own functions by adding your vectors to the tables
located at $1800-$183F.

Escape Sequence on Output

Most of the functions are accessed by entering a control character
($Ol-$lF) from the keyboard, either in immediate mode or in response to
an INPUT statement. These functions also can be accessed on output,
either in immediate mode or by a BASIC program. An escape sequence is
used. The escape code ($lB, decimal 27) is output, followed by the con
trol code. For example, to toggle windows, execute:

PRINT CHR$(27);CHR$(23);
•

156 MICRO on the OSl

The last semicolon is used to keep the display from scrolling. To output
the graphic character for $IB, output two consecutive escapes:

PRINT CHR$(27);CHR$(27);

Not all functions are suitable for use during a BASIC run but many are,
including cursor movements, scrolling, window toggles, screen clear,
bell, print, etc. A summary of control functions is shown in table 2.

Table 2: Summary of Control Key Functions

CONTROL KEY HEX DECIMAL FUNCTION

-
A
B
C
o
E
F
G
H
I
J
K
L
M
N
o
p

Q
R
S
T
U
V
W
x
y

Z
ESC
-
-
-
-

00
0 1
02
03
04
as
06
07
08
09
OA
OB
OC
00
OE
OF
10
11
12
1 3
14
15
16
1 7
1 8
19
lA
IB
IC
10
IE
IF

a
I
2
3
4
5
6
7
8
9

10
11
12
1 3
14
15
16
17
IS
19
20
21
22
23
24
25
26
27
2S
29
3 0
31

NONE-NULL
AUTQLINE TOGGLE
BOTTOM CURSOR (HOME)
NONE-CONT C
DOWN CURSOR
ED IT
FLAG CHANGE
BE LL
BACKSPACE CURSOR
INCREMENT CURSOR ' S SPACES
NON E- LINE FEED
MON IT OR
LEFT CURSOR
NONE - CARR . RETURN
MOVE CURSOR
NONE-CONT 0
PRINT WINDOW
RETURN CURSOR
RIGHT CURSOR I RESTART
STOP ouTPUT
CLEAR SCREEN
UP CURSOR
VIEW TAPE
WINDOW TOGGLE
SET WINDOW
SCROLL UP
SCROLL DOWN
CLEAR SCREEN
--
JMP TO $FFOO (MENU)
--
--

LOCATION

$185C
$loF5
$19F7
$185C
$IS3o
$187E
$1000
$1 CE C
$1905
$ 1924
$l85C
$IA48
$18F2
$185C
$1946
$185C
$IEA 3
$1919
$190E
$185 C
$ICAO
$1920
$1885
$18A8
$18BC
$1894
$189E
$ICAO
$185C
SlC7A
$IS5C
$l85C

Extended I/ O Processor 157

New Monitor
An improved machine-language monitor routine is accessed by input

ting Control-K I$OB) . This monitor is significantly better than OS1's
minimal monitor but not as versatile as commercial monitors. The
advantage of this monitor is that it can be called at any time - in
immediate mode, in the middle of a BASIC program, or by a)SR machine
language call.

Once the monitor is entered, data appears at the bottom of the screen,
as shown in figure 1. The screen locations of this data are set by constants
stored at $00E61l0w byte) and $00E7 Ihigh byte), and offsets $0200 and
$020E. There are eight fields shown:

L - Location Ifour character address I
H - Hexadecimal data stored in L
C
S

- Ascn character stored in L
- Stack pointer

P - Processor status register Iflags)
A - Accumulator
X
Y

- X register
- Y register

The "cursor" in the monitor mode is controlled by the keys II /' and "." .
These keys were chosen because the symbols for the left arrow and right
arrow appear on these keys. The", I' moves the cursor left, the' I." moves
it right. The cursor actually changes the lower-case letters I, h, c, etc., to
the upper-case letter to be changed. Any field is changed by typing new
data into it. The C field allows any character lexcept "," and "."1 to be
entered; the other seven fields allow only hexadecimal 10-9, A-FI
characters.

Machine-language programs thus can be entered, or memory reviewed
or changed, one byte at a time. The space bar is used to step forward
through memory; the carriage return key is used to step backwards . Type
R to return to where you were before you entered the monitor.

To jqmp to a subroutine Iwhose location is shown in LI type); if the
subroutine executes correctly and is terminated by an RTS 1$60), control
returns to the monitor. All flags and registers IS, P, A, X, and YI are
changed to what was shown on the screen just before the jump occurred.
When returning to the monitor, the contents of S, P, A, X, and Y shown
on the screen reflects their status at the time of return . No provisions are
made for single step, trace, trap, etc.

When the monitor mode is entered, several things happen; all flags
and registers are saved, and the P field is initialized to $04 lignore inter
rupts and clear decimal model. The S field is adjusted to prevent change
to the stack. If the P register is changed, it will be restored automatically
on return. However, if the stack is disturbed, you may run into problems

•

158 MICRO on the OS!

when returning, unless the original page one I$OlXX) was saved. If the M
flag of $OOEF is set, the first three pages of memory - page zero IBASIC
constants and routinesj, page one Ithe stackj, and page two IBASIC and
Extended 1/ 0 constants) - are saved in the top three quarters of screen
memory 1$0000-$02FF). This allows you to use these lower memory
locations for your machine-language programs. They will be restored
from the screen memory when exiting the monitor mode IR). If the M flag
is clear, these three pages are not saved. Leave the M flag cleared if you
merely want to examine or change a few memory locations or if you don't
want the screen display disturbed.

Garbage Collector

A bug in OS!'s BASIC-in-ROM may cause your program to bomb if you
make extensive use of dimensioned strings. Provisions have been made
to allow you to add a foolproof machine-language garbage-collection
routine. This routine is called through the revised Control-C routine if
fewer than 512 bytes of free memory are available; this keeps OSI's defec
tive routine from being called. To use this function, insert $20 XX YY at
$1072, where $YYXX is the location of your new garbage-collection
routine. In addition, the approximate number of free pages can be
monitored at any time by PEEKing at $02F8 . This can be used in lieu of
FREIXJ; never call FREIX) when using dimensioned strings, as this forces
a fatal garbage collection by the defective routine.

Initialization

First cold start, then Break-M, load the tape containing the Extended
I/O routines, Break-M, then type .101FG. The initialization routine
will then be run. The input, output, and Control-C vectors are pointed to
new routines. The warm start and OK routines are replaced by new ones.
Tables are copied from within the program to page zero and page two,
where they are used by the new routines. The memory size is adjusted
to keep BASIC from overwriting the new routines. The stack is adjusted
to prevent an OM error after a W31l11 start, then a message is written to
the screen.

Odds and Ends

A subroutine that decodes a byte into two ASCII characters is located
at $lCF7. Place the byte to be decoded into $0055. A JSR $lCF7 leaves
the high-nibble character in $0053, the low one in $0054. An example of
this routine is shown in listing 1. The simple program generated the !:lex
adecimal dumps of table 3. Lines 100 and 200 tllrued the printer on and
off. Line 160 set the USR vector to $lCF7.

p

Extended 1/ 0 Processor 159

A dump of the entire 2K program is shown in table 3; the underlined
bytes are those that require changing if the program is relocated. Here are
the locations that require changing if your OSI computer is not a CIP:

Location

$1C7E
$IC81
$IC84
$1050

Function

Old Output Routine
Old Output + 3
Old Input
Old Control-C Routine

elP Location
(low, high)

69FF
6C FF
BA FF
9B FF

However, you must have a support ROM (or EPROM) containing indirect
vectors for these routines, which vector through page two of memory.

The control keys can be redefined any way you see fit by changing the
pointers shown in table 2; these are stored at the beginning of the pro
gram ($1800-$183F). You may want to eliminate some functions (such as
printer routines) and add others. You may want to let some keys generate
predefined strings that can be entered into BASIC, such as DATA, or FOR
I ~ ITO, etc. For hints on how to do this, study the autoline code. You
may want to make some changes. I have yet to use a program that didn't
need a few alterations.

$1800 -
5C F5 57 5C 3D 7E DO EC as 21t 5C 1t8 F2 5C 1t6 5.C Table 3:
AJ 19 DE 5C AD 20 85 AS Be 94 9E AD SC 7A 5C 5C Hex Dump of

E3 80 09 0 80 DC 02 AS E2 80 DB 02 60 A9 20 48
20 40 II ALi Eit An ES 68 20 OA 02 EE DB 02 00 03
EE DC 02 CC DB 02 DO FO EC DC 0; DO EB 60 AD 01
02 80 02 02 60 20 F4 FF 20 83 Ie 20 70 Ie AD 03
02 DO F5 60 20 94 li 20 AD li 20 89 li 60 20 91t
!2. 20 52 II 20 89 !.2. 60 A2 03 65 E2 48 BD 06 02
95 E2 68 9D 06 02 CA 10 Fl ltC 57 li 20 6e !.2. 48
AS El 48 20 09 !.£. C9 54 00 09 68 85 E3 68 85 E2
18 90 OA (9 42 DO EC 68 85 ES 68 85 Elf 60 20 SO
U 20 CF l.i AS ES 85 El AS Eft 20 6E li 85 EO 18
90 61 20 94 1.9. AS EC 48 A9 00 85 EC 20 78 U. 68
&5 EC 18 90 4E 20 94 l..9. 20 J4 !.2. 18 90 45 20 94
!..2. E6 EO 00 3E E6 E 1 DO 3A 20 94 a 20 6C !.2. 85
EO 18 90 2F A2 08 20 OE U. CA 00 FA 60 20 94 12.
A5 EO }8 E5 EA 85 EO 60 lA C6 El DO 16 20 94 l.2.
20 50 !.2. 18 90 00 20 94 U. AD OA 02 85 EO AD DB
02 85 El 20 89 !.2. 60 20 94 !.2. 4c E4 !..! A5 EO 18
65 EA 85 EO 90 02 E6 El EA EA EA 60 A5 EO 05 EB
38 E5 EE 60 20 6C !i C5 EO DO OB A5 EO 38 E5 EC
85 EO 60 02 C6 El C6 EO 60 AO 00 81 EO 80 01 02
A5 E9 DO 03 AD 01 02 AD 00 91 EO 60 A5 E8 00 FJ
20 40 ~ 18 65 EA 90 03 EE 09 02 80 08 02 A6 E4
A4 E5 20 OJ 02 EE 08 02 00 03 EE 09 02 EE OB 02
00 03 EE OC 02 EC OB 02 00 E8 CC DC 02 00 E3 A4
EB A9 20 91 E4 88 10 Fe 60 AD 02 02 C9 20 BO F8
AA BU 00 U 80 Fl 02 BO 20 U 80 F2 02 6C fl 02
EE 05 02 EA EA EA 18 90 IB A9 20 20 97 li 20 20

Complete Program

(continued)

T
ab

le
 3

 (
co

nt
in

ue
d)

SI
A

O
O

- lA

1

8

go

10

C
6

DE

A
9

2
0

8

0

0
1

0

2

20

9
7

19

20

7

4

If
 2

0

9
0

ll
.

4C

F
6

.!...
E.

fA

EA

fA

8
0

0

1

0
2

20

 9
7

!..2

..
e6

EO

A

S
EO

05

fB

38

E

5
ED

C5

EO

DO

1

7
E

E
F

6
0

2

2
0

6c

l.2

 A
5

EO

c
5

E

4
A

5
E

l
E

5
E

5
AO

04

4

c

4
0

 g

E
A

20

AD

l
i
 2

0

89

l
i
 6

0

0
8

4

8

S
A

4

8

9
8

4

8

S
A

CA

86

4

3

2
4

E

F
5

0

Ie

A
2

00

65

0
0

9

0

00

DO

CA

DO

F
a

BO

00

01

9
0

0

0

0
1

CA

DO

E

7
BO

0

0

02

9
0

0

0

02

CA

DO

F7

A
S

e6

1
8

6

0

D
O

02

85

4

9

A
2

00

SA

20

98

lA

A
2

0
4

86

4

4

6
0

D

E
02

20

9

8

lA

A
S

E
7

85

4A

20

-
-

A
8

lA
 2

0
22

U

1

8
90

F7

95

48

69

06

95

4

e
69

04

95

40

69

04

95

4E

60

EA

A

2
07

8

4

48

8
0

lA

~

91

49

eA

10

F6

A
6

42

8
4

48

8

0

lA

18

29

O
F

91

49

A
2

07

B5

40

20

FE

l.A
 B

4
48

20

O

F
lJ

i
CA

EO

01

DO

F

l
AO

00

61

40

A

4
40

e8

9

1

49

20

FE

1.&
 A

4
4e

20

O

F
16

AS

41

20

FE

lA

A

4
46

20

O

F
1B

AS

40

20

FE

lA

-

-
-

-
20

O

F
!1

!.
60

29

O

F
F

a
1

8

69

90

69

40

0
8

6

0

48

4A

4A

4A

4A

20

F4

lA
 8

5
53

6

8

20

F4

lA
 8

5
54

60

e8

AS

53

91

49

e8

A

S
54

91

"*

9
60

6C

6

8

6
3

7

3

70

6
1

78

7

9

20

83

~

e9

2C

DO

09

C
6

42

10

04

A
9

07

85

42

60

e9

2E

DO

0
0

E6

42

A

6
42

EO

0

8

90

04

A
9

00

85

42

60

A
6

42

EO

02

DO

05

A
2

00

81

40

bO

e9

0
0

DO

09

A

5
40

DO

02

e6

41

e6

40

6

0

C
9

20

DO

07

E6

40

DO

02

E6

41

60

e9

4A

00

27

BA

86

48

A
6

43

9A

A
6

46

A
4

47

A
S

44

48

A
S

45

28

20

8E

16

08

85

45

-
68

85

44

84

47

86

46

6A

86

43

A

6
48

9A

60

6C

40

00

,
e9

52

00

2E

6

8
6

8

AD

00

DO

e9

4
e

DO

IE

EA

EA

A2

00

BD

00

DO

95

00

eA

DO

F8

BO

00

0
1

9
0

00

01

CA

00

F7

6

0

00

02

9
0

00

02

CA

DO

F7

6

8

A
8

6
8

AA

6

8

28

60

48

20

9
3

FE

10

02

6

8

60

A
8

6
8

98

A

6
42

00

DE

A

2
03

06

40

26

41

CA

10

F9

OS

40

85

40

60

EO

01

DO

O

F
85

4

8

A
2

00

A
l

40

OA

OA

OA

OA

05

48

81

40

60

16

40

16

40

16

40

16

40

15

40

95

40

60

,
$l

eo
o

-
A

S
0

0

A
O

DO

CO

0

2

C
5

D
3

E
5

A
4

2
0

IF

0

7

0
1

lA

8

2

9
0

0

0

10

12

30

0
0

0

1

0
3

80

0

3

A
S

DO

0
0

AS

1

2

2
5

A9

A

2
AD

10

20

C3

A

S
60

fA

4C

IF

ID

4e

9A

IE

FE

is

S

f
.!.

..E
.

42
 ~
 A

9
00

80

12

02

A

9
00

 8
0

F6

02

 A
9

AA

80

F
4

02

A
2

O
F

BO

00

1£
 9

5
EO

CA

10

F

a
A

2
O

F
BO

10

Ie

9

0

DO

02

C
A

10

F

7
A

9
1

8

85

86

A
9

00

8
0

-

-
0

5

02

fA

fA

A
2

05

BO

29

1£
 9

5
0

0

CA

10

FB

A
2

05

B
O

2

F

!£
 9

D

1
8

0

2

C
A

10

F

7
6

0

4C

0
0

F

f
4C

6

9

F
F

4C

6C

fF

4C

SA

F

f
fA

fA

48

SA

48

A

2
O

F
BO

EO

02

48

6

5
EO

9D

EO

02

68

9

5

EO

CA

10

F
I

68

AA

6
8

60

48

9

8

48

AD

00

A
9

20

99

00

07

99

00

06

99

00

05

99

00

0
4

99

DO

03

99

DO

02

99

00

01

99

DO

DO

e8

00

ES

68

A

S
68

60

20

DO

Ie

C

9
OA

BO

F9

48

6

8

60

20

09

Ie

20

9
3

FE

30

F8

bO

20

E

e
Ie

A

2
00

A

9
3F

-

-
81

E6

20

83

!.£

.
48

A

9
20

81

E

6
6

8

60

48

EA

EA

EA

EA

EA

EA

EA

EA

68

60

AS

55

4
e

FE

1A

48

20

16

10

C
9

BE

DO

10

A
9

F
7

20

18

1
0

C

9
7F

50

 0
7

20

09

iC

-
-

C9

12

DO

F9

6
8

60

A

9
FE

80

00

O

F
AD

00

O

F
60

20

AO

1£

 A
D

F
4

02

C
9

AA

FO

00

A
9

00

80

05

02

80

F6

02

EA

EA

EA

20

35

Ie

EA

EA

20

20

Ie

A
2

FE

9A

4C

-
-

74

A
2

AD

12

02

DO

IE

AS

E
F

29

10

F
O

 0
3

20

09

Ie

A
5

E
F

29

0
8

FO

0

3

20

5A

B
9

20

66

10

4C

96

FF

EA

-
EA

EA

EA

EA

EA

60

A

S
82

3

8

E5

80

80

F
8

02

C9

02

BO

03

EA

EA

EA

60

A
2

08

A
9

01

80

FO

02

8A

18

6
0

DC

02

A

S
AD

FO

02

25

E

F
DO

04

A

9
20

DO

03

8

0

99

!Q

91

E6

DE

FO

02

CA

DO

E
4

60

45

40

41

S3

54

49

43

48

45

78

74

65

6E

6"
*

65

64

20

49

2F

4F

20

50

72

6F

6
3

6

5

73

73

6F

72

0
0

OA

43

31

50

20

56

65

72

73

69

6F

6E

20

63

2E

40

4B

20

31

39

38

31

00

20

C

6
!..

f
AA

A

9
01

CA

FO

0

3

OA

DO

FA

48

20

c6
 I

f

DO

OA

6
8

49

FF

25

E

F
85

E

F
18

90

05

68

05

EF

85

E

F
20

76

10

60

A

9
20

45

E

F
85

EF

4

c
76

10

AD

02

-

-

(c
on

ti
nu

ed
)

~
 g ~ o g s. ~ g

T
ab

le
 3

 (
co

nt
in

ue
d)

$l
EO

O

-
02

C9

SF

FO

44

C9

7F

FO

40

C

9
21

90

3C

c9

3A

BO

04

C9

30

BO

34

18

F

a
AD

DO

02

6

0

02

02

8
0

DO

02

4

8

A
D

0

1

0
2

6

9

0
0

8

0

0
1

0

2

4
8

0

8

A
2

0
0

itA

it

A

it
A

itA

2

0

lo
A

IE

6

8

2
9

O

F
2

0

it
A

lE

6

8

4
8

itA

itA

itA

itA

-

-
20

itA

ll
.

6
8

2

9

O
F

2
0

4A

ll
.

6
0

0

9

30

9
5

1

3

f8

Lt

C
lA

!.A

 2
0

'1

0
!J

..
A

S
E

5
8

0

0
9

0

2

8
0

D

C
0

2

A
S

E
it

0
5

fB

8

0

D
B

0
2

3

8

E
5

E
A

BO

0

3

C
E

0
9

0

2

8
0

0

8

0
2

A

6
E2

A

4
E3

20

0

7

02

CE

0
8

02

DO

03

CE

09

02

CE

0

8

02

00

0
3

CE

DC

02

EC

DB

02

00

E

8
CC

D

C
02

DO

E3

A

4
fB

A

9
20

91

E

2
88

10

FB

60

A

9
aD

20

SE

IF

4C

-

g
c
!
i

fA

48

SA

48

9
8

48

A

S
EO

48

AS

E

l
4

8

fA

EA

fA

fA

A
S

E
2

8

5

EO

A
S

E
3

8

5

E
l

A
D

0

0

A
9

0
0

2

0

F
4

IE

A
6

EA

8
1

EO

2

0

F
4

IE

E

6
EO

DO

0

2

E
6

E
l

eA

DO

F2
 A

9
0

0

2
0

F

4

II

 A
5

E
I

e
s

E
S

9
0

E

S
A

S
EO

C

S
E

4
90

O

F
FO

D

O

EA

EA

E
A

E

A

6
8

85

E

 1

6
8

8S

EO

6

8

A
8

6
8

A

A

6
8

6

0

2
0

8

8

Ie

E
A

E

A

E
A

2

0

8
8

Ie

6

0

A
S

E
F

--

-
30

0

3

4
e

8
3

1£

 2
0

8

3

!£

 8
0

0

2

0
2

9

8

4
8

8A

4

8

A
9

40

e
s

O
E

DO

0
3

2

0

E
e

Ie

A
9

0
0

c
o

F

3
0

2

DO

1
8

c
o

-

0
2

0

2

DO

0
8

A

9
2

0

2
0

4

e

ts
 1

8

9
0

0

9

A
S

E
F

2

9

2
0

F

a
0

8
2

0

FE

!.Q
.

8A

A
8

6
8

9

8

4
8

A

D

0
2

0

2

e9

7F

DO

0
3

2

0

D
E

!..
§

2
0

0

9

!.2
.

E
A

E

A

E
A

E

A

E
A

E

A

EA

E
A

E

A

A
D

02

0

2

8
0

F

3
0

2

6
8

A

A

6
8

A

8
A

D

0
2

0

2

6
0

4

8

8
0

02

0

2

A
S

E
F

3

0

0
4

6

8

4
e

7
0

~

8A

4
8

9

8

4
8

2

0

F
e

l..t
..

A
S

E
F

2

9

0
1

FO

Ie

A

S
E

f
2

9

0
4

fO

10

A

D

O
S

0
2

CD

0

4

0
2

9

0

0
8

2

0

0
9

I

e
A

9
0

0

8
0

O

S
02

 ~
O

0
2

0

2

-
20

F

4
1£

 A
S

E
F

2
9

0

2

FO

S
F

A

S
E

F

2
9

0

4

FO

10

A
D

F

6
02

C

D

0
3

0

2

9
0

0

8

2
0

0

9

Ie

A
9

0
0

8

0

F
6

0
2

A

D

-
02

0

2

e
9

O

A

DO

0
3

4

e
fO

1

3

e9

0
0

DO

0

3

4C

F
9
l
i

e9

SF

DO

0
3

4

e
0

4

lA

e
9

0

7

DO

0
3

2

0

E
C

Ie

e9

1

8

-
-

DO

1
1

A

D

F
5

0
2

DO

0

7

A
9

0
1

8

0

F
S

0

2

DO

lA

A
9

0
0

8

0

fS

0
2

A

D

F
5

0
2

FO

O

A

2
0

0

9

!.i
.

A
9

0
0

8

0

F
5

0
2

FO

0

6

A
D

0

2

0
2

2

0

lA

lA

6
8

A

8
6

8

A
A

6

8

4
e

80

Ie

-
-

-
-
-
-

--
--

-
-

L
is

ti
n

g
 1

:
B

A
S

IC
 P

ro
gr

am
 t

o
 P

ri
n

t
a

H
e

x
D

um
p

1
0

0

P
O

K
E

2
3

9
,1

3
1

1

0
5

PR

IN
T

:P
R

IN
T

"$
lB

O
O

"
1

1
0

fO

R
I=

6
1

4
4

T
0

6
6

5
5

S
T

E
P

1
6

1

2
0

P

R
IN

T

1
3

0

F
O

R
J
=

O
T

0
1

5

1
4

0

K
=

I +
J

1
5

0

A
=

P
E

E
K

(K
)

:P
O

K
E

8
5

,A

1
6

0

P
O

K
E

ll
,2

4
7

:P
O

K
E

1
2

,2
8

1

)0

X
=

U
S

R
(0

):
C

=
P

E
E

K
(B

3
):

D
=

P
E

E
K

(B
4

)
1

8
0

P

R
IN

T
C

H
R

S
(C

);
C

H
R

S
(O

);
"

I'
;

1
9

0

N
E

)H
J,

 I

2
0

0

P
O

K
E

2
3

9
,1

3
0

\;' i :::. o ~
 '" ~

-

Enhanced Video
for CIP

Enhanced Video for elP 163

by David Cantrell and Terry Terrance

Y OU can add five chips and cut
only two traces to add several

features to your C1P video section.
There is a trade-off for these
features, however. To keep the hard
ware and software as simple as
possible, you lose lower-case
alphanumerics when these features
are implemented. But no software
support is necessary, no cumber
some POKEing, and no software
drivers to scroll a background screen
Ibecause there isn't any). You simply
release your SHIFT-LOCK key
whenever you want to en ter
modified video . Your machine's
video will interpret lower-case

characters as modified video whenever
this modification is enabled. Since the rest of

your machine simply "sees" lower-case alpha
numerics, they can be put into strings and then simply PRINTed

to the screen. The video modification can be disabled with either a
hardware or software switch.

The circuit keys on Video Data Bit 5 IVDSI and Video Data Bit 6
IVD6). Whenever these bits are high and the modification is enabled,
VDS and VD6 will be masked, tuming lower case into upper case, and an
upper-case character in the selected mode Ii. e., inverse, dim, etc .) will be
displayed instead of the lower-case character. Since characters above 128
also have VDS and/ or VD6 set, gating is used to restore VDS and VD6 and
disable the modification whenever VD7 is set, retaining your graphics
characters.

First we will discuss OSI's video as implemented on the C1P. Even
though you may have spent the past couple of years squinting at your
elP's screen almost daily, some of its subtleties may have escaped you.

164 MICRO on the OS!

When the screen is filled with CHR${161! {OSI's solid white block
character! and is viewed from about two feet away, all but the poorest TV
or video monitor will show faint dark vertical lines on character-cell
boundaries . You may have attributed these lines to a one-dot-wide inter
cell space. Closer inspection reveals that the whole screen is filled with
evenly spaced dots - no blank spaces appear between cells. As the rows
of dots of each character are clocked out of the shift register U42, the first
dot in each row is held only one-third as long as the others in that row.
Since this happens for the first dot of each row and for each character, the
end result is faint dark bars when viewed from a distance . This is the
subtle video defect alluded to earlier . It's so subtle that most OSIers do
not notice it, or pass it off as intercell spacing. If C4 users are wondering
why this effect can't be seen, the effect is reversed on the C4 . The first
dot is accentuated giving rise to bright vertical lines . This minor problem
wouldn't be worth mentioning except the timing defect that causes it
must be fixed if you are to add modified video.

Before you begin construction, here are a few warnings . Keep all wires
as short and direct as possible. You'll be dealing with your video signal at
RF frequencies. You'll want to avoid re-radiating your game of invaders
all over your house and quite possibly to the neighbors' too. Do not
substitute 74LSXX series components for 74XX series components or
vice versa. This circuit is carefully balanced regarding timing and current
drive capabilities; tampering will probably overheat all the components
in the circuit.

The parts list is short. You will need the following:

U1
U2, U3
U4, US
R1

74LS08
74LSOO
7474

R2
SWl-SW4

Quad 2-Input And Gates
Quad 2-Input Nand Gates
Dual D Flip-Flop
ISO Ohm resistor
SK Ohm potentiometer
SPST switch

Since there are five chips in the circuit, it cannot be assembled in the
proto area of your C1P. You can assemble the circuit on perfboard or
solderless breadboard using wire-wrap {or any technique you prefer! . The
circuit assembles in a straightforward manner. In figure 1 the chips
numbered U1-US refer to the components of the modification; all other
" U" numbers refer to chips on your C1P.

The schematic does not show how to wire in SW1-SW4, which are the
mode selection switches; each one should connect its associated line to

ground. We have not found it necessary, but good circuit design would
dictate that the lines SWl-SW4 should be pulled up to + 5 by 3.3K p.lll-up
resistors . Figure 1 does not show supplying + SV and ground to all of the

Enhanced Video for CIP 165

chips in the circuit. All the chips used have the standard DIP power and
ground pins . For 14-pin packages, all pins 7 should be wired to ground and
all pins 14 should be supplied with + SV.

Figure 1: Schematic for Enhanced Video

U25-3
U41-23

1 4
Ul '6

101
Ul 3

8 2 5 Ul 5
U41-22 6

9 U2 4 1 , 3

U41-19 2
U2

U42-1

SW4

9
8

U2
10 "-

SW3
12 13

1 2
U2 3 C

SW2 U3
U4

Yll
R,l

A

R2
3 2

0 0
5 U70-6

U42-9 12 1500 5KO

U3
1 1

12 9 13 0 0 10
8 20 0

5
U4

9
U3 U70-2

U42-1

U42-7

1 1 0 8 4 U5 C 6
U3

5 3
C

1
U42-2

SWl 12 0 - 8
0

U5

U42-2 1 1
C

Once the circuit is assembled, you must splice it onto your C1P. Cut
the trace running from U41 pin 2.3 to U40 pin 13 and the trace running
from U42. pin 9 to U70 pin 2.. Connect U2.S pin 3 to U 1 pin 1. Connect
U41 pin 2.2. to U1 pin 9 and U41 pin 19 to U2. pin 2.. Connect Ul pin 6 to
U41 pin 2.3.

166 MICRO on the 051

We'll stop for a moment and explain what this part of the circuit does.
U2S pin 3 is VOS and U41 pin 22 is V06, the data bits that the circuit
keys on to know whether or not to output modified video. U41 pin 19 is
V07. Three gates of UI and two gates of U2 perform logic to accomplish
the following functions: if VOS and V06 are high and SW2 is high and
V07 is low, UI pin 6 is low, causing lower-case characters to be read as
upper case and activating the rest of the circuit via U2 pins 9 and 10; if
either V06 or VOS is low or SW2 is low, UI pin 6 will be high and the
screen will behave normally.

Continuing with connections, U42 pin 9 is brought into U3 pin 12.
U42 pin I is brought into U4 pin ll; U42 pin 7 is brought into U3 pin S.
Connect U42 pin 2 to US pin 3 and connect U42 pin 2 to US pin 8. Signals
coming out of the circuit on US pin S must be connected to U70 pin 2.
The output of the potentiometer R2 should be brought to U70 pin 6.

This is where the circuit starts modifying video. If the first part of the
circuit has recognized a modified video situation (i.e ., VOS V06 VO?
SW21, then U2 pin 8 goes high. The signal is now fed to parts of U2 and
U3 where, combined with the states of switches SW3 and SW4, the
inverse and dim options are selected. If dim is selected, either alone or in
combination with inverse, the signal on U2 pin II is used to enable the
flip-flop U4, which is clocked at the shift-load rate (i.e., CLK/81 and
through the RI-R2 network modulates the video for a dimming effect. R2
controls the level of brightness from almost fully bright to almost dark .
SW3 controls the inverse option. If it is low, the normal video signal is
passed from U42 pin 9 out to US pin S without inversion (but with latch
ing as you will see in a momentl. When SW3 is high, the shift-load clock
(from U42 pin 11 and the inverse shift register output are combined by
sections of U4 and U3 to produce inverse video. The section of US that
immediately follows fixes the video defect we mentioned earlier. Instead
of the dots being cut off by the video chain clock, it is now latched for the
whole period of the system clock and, therefore, maintains full bright
ness. This part of the circuit operates regardless of whether or not any
modified video options are selected.

SWI and the other half of US combine, along with your system's
clock, to produce the blank screen option mentioned earlier. When SWI
is high, your screen will not show any display. Video memory will still be
updated, however, so that whenever SWI is brought low the whole
screen will be restored. This could be handy to do screen set-ups, hide
your game moves in a two-player game, etc.

Enhanced Video fOT CIP 167

Table I offers a recap on the operation of switches SWI-SW4.

'0

':., ;

Table 1: Operation of Switches SW1-SW4
• •

SWITCH I
I 234

Ff){ X X .
L L X X
LFfLL
LFfFfL
LFfLFf
LFfHH

~ODE

13~ SC;:REl!N
NORMAL SCR1lEN
UPPER CASE ONLY

" INVERSE UPPER dSE 0;
DIM UPPER CASE
DIM 1DilVERSE UPP!R C4.~J>

,~, ,

X-Don't care
• •

.-~>.!

:%1-,:,"",' ,
• '. - . '.'
--, .

To test the modification, be sure all of the mode selection switches
ISWI-SW4j are in the low state; this ensures that you will have a normal
screen to look at while you're setting up. Ffere is a little program to fill
the screen with mixed upper- and lower-case characters like the one below:

10 FORX=1T012
20 PRINT"Aa8bCcOdEeFfGgHhliJj"
30 NEXT

This should fill your screen with alternating upper- and lower-case letters .

•

Using the mode selection switches, select inverse upper case; according
to table I this should be L Ff H L. With the switches thus set, all lower
case letters should now be displayed as inverse upper case. Step through
all the other modes to ascertain that they are working properly. 1£ not,
carefully check your wiring of both the circuit board and its interconnec
tions to your eiP.

Programmable
Reverse Video

Programmable Reverse Video 169

by Charles L. Stanford

T he reverse video option requires
modification to your CIP, some

additional circuitry, and some soft
ware. You need above-average skills
in electronic construction, as well as
substantial programming ability to
do this modification. While I've
tried to make the actual changes on
the main board as easy and risk-free
as possible, it 's still close to the
equivalent of minor brain surgery on
your best friend.

OSI's Video System
Unlike many other machines,

the C 1 P video refresh is completely
hardware-based. In other words, the

microprocessor devotes no time or effort
to keeping a proper display on the screen, but

modifies the video RAM only when required to do so by
the program. As a result, the video display has no undesirable

streaks caused by software timesharing. You are, however, unable to
make relatively simple program changes to achieve full control of the image.

Programmable Reverse Circuit Description
The circuit is relatively simple . It requires only three chips, can fit on

a very small add-on board, and allows you to convert your computer back
to its original hardware configuration almost instantly. It does cost a
little in lost versatility: the upper 128 graphics characters are "lost" to
use while the video reverse switch is closed. I have found that to be no in
convenience since the reverse video is generally used to enhance pro
grams that employ alphanumerics only .

170 MICRO on the OSI

The add-on circuit consists of primarily three elements: the de teeter,
the latch, and the inverter. The de teeter is connected, in series, with the
most significant bit of the video data. As shown in figure I, NAND gates
Ib and Id each detect the status of the bit. Treatment of the bit is also
conditioned by the status of switch SI. ICld either inverts it or ignores it;
IClb either detects it or ignores it. If Sia is open, the bit is passed along
through IClc and appears unchanged to character generator U41; also,
IClb ignores it and its output remains high. IC2a, half of a dual-D flip
£lop, acts as a latch. It is clocked by the same latching signal used by U42,
the parallel-serial shift register, and retains the status throughout the
time needed to send one character to the screen.

U40

1d

,.

51

Figure 1: Reverse Video Modification

+5V

"
1b

To

U41

•

• SEE TEXT

u42 PIN1
(U19 PIN 8)

U42

+5V

~~_+5V

52

--

U70
3 --

DB
,

The inverter uses two gates of a very versatile IC - the 7486 "ex
clusive OR" chip. In this circuit, it acts as both an inverter and a non
inverting gate. IC3a passes the serial video signal unchanged as long as
pin I is held high, but pulling that pin low causes the signal to invert! In a
similar manner, IC3b is used to condition the signal from the detecter
and the latch circuits. Holding switch S2 high allows the signal from the
latch to pass. Closing the switch inverts the output, effectively causing
the image to be inverted constantly.

Programmable Reverse Video 171

The net result of this circuit is to allow four conditions: when both
switches are open, the computer acts normally; closing SI inverts those
characters that have a "1" in the left-most bit position (bit 7); closing S2
inverts the entire screen; and closing both causes the characters that have
bit 7 high to be normal and the remainder to be inverted.

As I mentioned earlier, the price of this reverse video capability is the
loss of the top 128 graphics characters . As long as switch SI is open, the
entire 256-character font of the character generator ROM is available. But
closing that switch causes any character with a code greater than 127
($7F) to detect the most significant bit and change it to low. Then the
lower 128 graphics characters show up on the screen normally, and the
upper half show up as their inverted complements. For example, POKE
ing the graphics character 51 ($33) to a screen location will cause the
character "3" to appear. POKEing the character 179 ($B3) with switch SI
closed will cause an inverted "3" to show. Essentially, the top bit is
checked, stripped off, and changed to "0". If the same sequence is per
formed with SI open, the graphics character normally corresponding to
179 will appear.

Modifying the 600 Board
Since I am leery of damaging the PC board while making additions

and modifications, I used an add-on board for this project. In addition, I
devised a plug-in method that restores the main board almost instantly to
its original configuration. Figure 1 shows the only two traces on the main
board that need to be cut . These are marked by en "X". Then wires are
run from either side of the cuts to prototype socket U28 . By connecting
the leads as shown in figure 2a, a properly jumpered DIP header can be
used as a shunt in place of the plug from the add-on board, restoring nor
mal operation.

Figure 2a: Socket U28
- Top View

9 8
v- • • • •

Figure 2b: Jumper Header
for U28 - Top View

9 8
U19 Pin 8 (See Text) • • • •

U70 Pin 2 • • U42 Pin 9 • • • • • • • • • •
U41 Pin 19 • • U40 Pin 11 • • • • • • • • v+ • • 16 1 16 1

172 MICRO on the OSI

Start by installing a 16-pin soldertail IC socket at U28. Be sure to use a
low-wattage pencil-type iron, and practice on an old board if you're rusty.
Next cut the traces . You should use a jeweler's loupe or other magnifying
lens and carefully scratch away about 118 inch of the trace with a sharp
knife blade. Cut the line on the top of the board Icomponent side) be
tween U40 pin 11 and U41 pin 19. It starts at U40 but soon runs under
U41's socket. Cut it about 14 inch from pin 11 of U40.

Now find the trace that leaves U70 pin 2 and heads for the keyboard. It
runs only one inch before passing through the board. IRemember the
location of this plated-through hole. It is used later .) The trace now runs
on the bottom toward the right and, again, passes through to the top . It
runs from there toward the front again, ending at U42 pin 9. Cut the trace
on the bottom of the board near the hole by U70.

Next connect the socket at U28. Using fine-gauge insulated wire, con
nect each pin as shown in figure 2. It's easier to connect U40 and U41 by
slipping the wire down into the sockets at the proper pin than to try to
solder to the small bit of PC board trace showing. If necessary, carefully
remove the ICs . For the other jumpers, use the two holes where the trace
passes to the bottom of the board for your wire connections. Note that a
connection to U42 pin 1 is marked "see text." I suggest that you use
figures 1 and 2 as they appear until the new display reveals timing prob
lems serious enough to require the fourth IC shown in figure 3. So for
now, hook U42 pin 1 Iwhich also connects to U19 pin 8) to U28 pin 8.
Connect the positive and negative buses to pins 1 and 9, respectively.

Figure 3a: Piggybacking ICs Figure 3b: Connections
for Optional Ie

co

Cl-=~
C2----;

T1
(U43 PIN 3)

U19A __ TO te3 PIN 12

Finally, solder jumper wires across a 16-pin DIP header as shown in
figure 2b. Install the header and try your computer. It should work nor
mally . If not, troubleshooting should be easy since you've made only
minimal changes.

Programmable Reverse Video 173

Building the PC Board
You can use one of several techniques to build your board. In this

case, wirewrap is probably the best option. Equipment and supplies are
readily available and easy to use . You must use a check list or schematic,
and carefully check all connections when finished . Check the board
under power, first without ICs and then with ICs, and measure current
drain with a good volt/ ohmmeter. Insert the ICs correctly . These ITL
ICs will take a lot, but they cannot stand even a short period of inverse
voltage, so make sure they are inserted properly.

The switchles) can be mounted on your keyboard near either the left
or right rear Ijust below the nameplate) . When drilling, be careful not to
mar the finish or get metallic cuttings in the works . Use stranded in
sulated wire to connect the small board with the switch and on the sec
ond IC header. You might want to use some sort of socket/ plug in the
leads to the switch if you expect to disassemble your machine often; this
cuts down the stretching and bending of the wires .

Testing the Add-On
Warm up the TV or monitor before the computer is powered. Then, if

the screen doesn't show a reasonable display, turn the power off im
mediately and check all wiring carefully. Using an ohmmeter, make sure
every point is properly connected to, and only to, the other proper points .
Since your machine will have been without power for some time, the
RAM probably will be scrambled, and at least a few graphics characters
will appear. Don't hit Break at this time; try the switches and get a feel
for the way they work.

You should also look for timing problems now. Compare the reversed
characters with the OSI Graphics Reference Manual. If the timing from
U19 pin 8 is delayed too much by passing through ICs 2 and 3, the screen
will reverse a bit late and change back a bit late. Reversal of characters in
a row will be noticeable only at the beginning of the first row and the end
of the last row. This phenomenon occurs when the signal from U42 is
reversed just slightly out of sync with the latch trigger from NAND gate
019. Two solutions are possible: use faster gates Isince the cause of delay
is the extra transmission time in IC2a, IC3b, and IC3a); or use 74S-ICs
Iwhich have fast throughput) to reduce differential delay to the point that
it is virtually unnoticeable on the screen. A few disadvantages to this
modification are the extra cost, difficulty finding Schottky chips, and ad
ditional power drain . Since I couldn' t wait for a mail-order delivery
taking several weeks, another solution seemed practical - equalize the
delay. I did this by installing another 74LS20 on top of U19 with all but
pins 7, 9, 10, 12, and 14 bent out so they don't make contact. This is called
"piggybacking" and is a neat and effective way to add additional circuits
to an existing board.

174 MICRO on the OSI

Listing 1

10 PRINT "VIDEO REVERSE DEMO": PRINT: PRINT
30 INPUT "ENTER A STRING"; X$
.0 A$=XS : GOSUB 190 :X$=AS: PRINT XS
60 INPUT "ENTER A NUMBER"; X
70 A=X : GO SUB 170 :X$=AS: PRINT X$
90 END
160 REM --REVERSE NUMBERS--
170 A$=STR$(A)
180 REM ·--REVERSE STRINGS--
190 B$="'
200 FOR X= 1 TO LEN (AS)
210 C$=CHRS(ASC(MIDS(A$.X.l» OR 128)
220 B$=U + C$
230 NEXT
240 A$=BS: RETURN

Listing 2

10 0000
20 0000
30 0000
40 0000
SO 0000
60 0000
70 0000
80 0000
90 0000

;*************************** j* *
;* REVERSE VIDEO ROUTINE *
;* *
;* BY CHARLES STANFORD *
; * *
;*************************** • •

LINE FEED
CARRIAGE RETURN 100 0000

110 0000
120 0000
130 0000
140 0000
150 0000
160 0000
170 OODS
ISO oons

LF=$OA
CR=$OD

ESC=$lB
CTRLI=$09

BRANCH=LBLC+1
OUTPUT=SFF69
GETCHR=SFFBA

ESCAPE CHARACTER
CONTROL I CHARACTER
SELF-MODIFIED BRANCH
"ONITOR OUTPUT ROUTINE
GET CHARACTER ROUTINE

190 OODS 20BAFF
200 OODB C909
210 001'0 D005
220 OODF A200
230 OOEI 86F7
240 00E3 60
250 00E4
260 00E4 C91B
270 00E6 D004
280 00E8 A202
290 OOEA 86F7

*=SOOD8

JSR GETCHR
CMP tCTRLI
BNE LELA
LDX to
STX BRANCH
RTS

;

;
GET A CHARACTER
IS IT A CONTROL I 1

IF YES. "ODIFY BRANCH
TO REVERSE CHARACTERS

• •
LBLA C"P tESC IS IT ESCAPE ?

BNE LBLB
LDX 12 IF YES. RESET BRANCH TO
STX BRANCH DISPLAY NORMAL CHARACTERS

(continued)

Programmable Reverse Video 175

U19 uses the gating of CO, C1 , C2, and T3 to trigger the latch in the
parallel-serial shift register U42 Isee the 600 board schematicJ. T3 is
merely the clock signal delayed through three gates to match delays
already present in the video circuits. It would seem that a lesser delay in
the trigger to latch IC3 might even things out. Accordingly, U19A piggy
backed to U19 can use three of the signals, and pin 13 can be connected to
U43 pin 1, the Tl signallclock with only one gate of delayJ . Use pin 8 of
U19A instead of pin 8 of U19 to trigger latch IC2a. U43 has some solder
pads that make the jumper connection very convenient. To prevent
damage to the ICs, be sure to put a dab of solder on each of the pins com
mon to U19 and U19A. Again, a good magnifying glass is invaluable. Pins
1 through 6 are left unconnected.

When you test the computer again, carefully check the reversed
characters to be sure that they are completely in sync with the reversing
circuit. You may need to use the clock itself, or T2, but T1 seems to be
just about right.

Programming Techniques
There are at least a half dozen ways to use BASIC or machine-language

software to capitalize on your new character-reversing capability . Using
the CHR$, ASC, LEN, and MID$ functions, entire strings can be readily
inverted by a relatively short and straightforward subroutine. The
demonstration program in listing 1 also can be used in a game or financial
planning program to highlight certain inputs or headings. Either inputs or
internal strings will reverse, and numeric variables also can be reversed
by using the STR$ function .

The machine-language program in listing 2 is more sophisticated. It
can reside in the unused Iby BASIC! RAM at the top of page zero, but
remember that the monitor does use the space when you break. The pro
gram intercepts both the "character-get" and the "screen-write"
routines of BASIC by changing the indirect addresses at $0218 and $021A.
Then the data can be processed as needed for reverse video.

When the routine is in place, tbe first five lines get the character from
the keyboard as usual and act only if either the control-lor escape key is
detected. The control-I causes the routine starting at $00E4 to force a " 1"
into the left bit of the character. Once the control-I is pressed, every
character coming from either the keyboard or the ACIA will be inverted
before passing to the screen output or program storage. Hitting the escape
key will return action to normal. Notice that the routine ignores carriage
returns and line feeds . All other characters get the fl reverse" treatment.
Therefore, be careful to use the routine only for those items that go to the
screen or are within quotes . Trying to invert characters involved in pro
gram entry will confuse the BASIC interpreter and lead to a program crash.

176 MICRO on the OSI

Listing 2 (continued)

300 OOEC 60 LBLB RTS
310 OOED • •
320 OOED C90D CtlP tCR CARRIAGE RETURN 1
330 OOEF F009 BED LBLD YES. DO NOT CHANGE
3~0 00F1 C90A CtlP tLF LINE FEED 7
350 00F3 F005 BED LBLD YES. DON'T CHANGE IT
360 00F5 18 CLC
370 00F6 9002 LBLC BCC LBLD BRANCH ALWAYS (tlODIFIED ABOVE)
380 00F8 ,
390 OOFB 0980 ORA t%10000000 SET HIGH BIT
400 OOFA ~C69FF LBLD Jl'Ip OUTPUT TO MONITOR OUTPUT ROUTINE

Listing 3

3000 PRINT "HACHINE LANGUAGE"
3010 PRINT "REVERSE VIDEO ROUTINE"
3020 REH - - SET INPUT VECTOR--
3030 POKE 536.216 : POKE 537.0
3040 REM --SET OUTPUT VECTOR--
3050 POKE 538.237 : POKE 539.0
3060 FOR 1'1=216 TO 252: READ D: POKE ".D: NEXT
3070 DATA 32.186.255.201.9.208.5.162.0.134.247.96
3080 DATA 201.27.208.4.162.2.134.247.96.201.13.240
3090 DATA 9.201.10.240.5.24.144.2.9.128.76.105.255
3100 PRINT" VECTORS SET & LOADED"

Programmable Reverse Video 177

If you are familiar with the method Microsoft uses to store BASIC
Source Code starting at $0300, you will be able to devise methods for
actually changing the characters by modifying the program itself. It isn't
too hard to write a BASIC program that will scan the source code for a
particular line number and then invert any characters between quotation
marks within that line. I'm sure you will find many creative ways to use
this new capability.

Parts List
RI, R2 - lKOhm \4 watt
ICI - 74LSOO
IC2 - 74LS74 (option 74S74, see text!
IC3 - 74LS86 (option 74S86, see text)
IC4 - (optional - 74LS20)
SI, S2 - SPST miniature toggle switches (Radio Shack 275-324)
S lA - optional in place of S 1 and S2

SPDT center off min toggle switch (Radio Shack 275-325)
Misc. - PC board, IC sockets, IC header, Molex connector, wire, etc.

•

OSI ClIC2 ROM BASIC Mem ory Map 179

051 ClfC2 ROM
BASIC Me Map

by Michael M. Mahoney

T hiS map is a compilation of data
collected from a variety of

sources, including but not limited to:

M I A COM-OSI
Ron Fial

Aardvark Technical Services
Stan Murphy

CREATIVE COMPUTING
Gordon Cannady

MICRO
Ed Carlson

COMPUTE!
T .R. Berger

Earl Morris
and my own investigation

My thanks to all.
The map is not represented as complete or error

free, so please feel at liberty to send any corrections or
additions to :

Michael M. Mahoney
4136 NE 14th Avenue
Portland, Oregon 97211

180 MICR O on the OS!

Memory Map

HEXLOC NAME DESCRIPTION
--
OOOO-OOFF

0000-0002

0003-0005
0006-0007
0008-0009
OOOA-OOOC
0000

OOOE

OOOF

0010
0011-0012
0013-005A
0058
005C
0050
005E
OOSF
0061t:1
1/11361
0062
0063
0064
0065-0067
006B-0070
0071 - 0072

01373- 13074

0075-0078

0079-Q07A
007S-007C

007D-007E
007F- 0080
0081-0082

WARM

JPRNT
USRINP
USRQUT
USRVEC

HARDWARE PAGE 0

Initially Jump to Cold Start ($8011) then
becomes Jump to Warm Start <$A274)

Jump to Message printer at SABC3
USR input argument vector
USR output argument vector
USR Vector

NULFLG NULL FLAG- number of NULL 's output to ACIA
in addition to BASIC's normal 10.

TRMCNT Terminal character count-* of chars printed
since last CR - a150 used as Line Buffer Ptr

LINLEN

TRWOTH
BINARG
BUFFER
DELIMl
OELIM2
CHRCNT
DIMLET
VARTYP
MFLAG

IRFLAG
COMPFL
CTRLQ

TMPTRl

TMPTR2

RESACC

TXTTAB
VARTAB

ARRTAB
ENDTAB
STRSPC

Output line length (default is $4B - 72)
Length of output line before auto CR / LF
'0' gives automatic dOLLble spacing.

Terminal width for comma spaced columns
Misc Args of stmts like PEEK, POKE, etc.
BASIC's Line Input Buffer
Used by decimal to binary converter etc.
Scan between quotes flag, etc.
• of characters in BUFFER ~ Subscript Flag
Default DIM flag,LET flag
Variable Type ($FF-String $OO-Numeric)
Misc flag (DATA, LIST, QUOTE FLAG, Etc.)
Subscript Flag=0, FN Flag=$B0
READ/INPUT flag ($OO=INPUT $98~READ)
Comparison evaluation flag
Control 0 flag ($BO-Discard output)
Temp String Descriptor Stack Pointer
Temp String Descriptor Stack
Temporary Pointer for Garbage Collector,

D.c to Bin converter, etc.

Temporary Pointer for NEW LINE, DELETE LINE,
VAL, Etc.
Reserve FP Accumulator

Staging area for MULTIPLY

Start of BASIC Text Pointer ($0301)
Start of Variable Table pointer

(End of Program + 1)

Start of Array Table pointer
End of Array Table POlnter
Start of String Space pointer

goes from here to end of memor y .

(continued)

OSI ClIC2 ROM BASIC Memory Map 181

Memory Map (continued)

HEXLOC NAME DESCRIPTION
--
0083-0084
0085-0086
0087-0088
OOB9-00BA
OOSB-OOBe
OOBD-OOBE
008F-0090
0091-0092
0093-0094

STRPTR
MEMSIZ
XQTLIN
OLDLIN
OLDPTR
CATLIN
DATPTR
INPPTR
VARNAM

Work point~r into String Space
End of memory + 1
Current Line * - ('BS=.'FF if Direct Mode)
Line. at 'BREAK· or 'STOP'
Pointer to BASIC Code for 'CONT'
Lin_ * for Current DATA statement
Addre~5 of next DATA statement
Addre55 of next value in Current DATA stmt
ASCII name of present v~riable

011:)95-012196 VARPNT Address of present variab le
0097-0098 FORPTR Address of Variable to be assigned value

by LET - also FOR/NEXT pointer

0099-00AO
00AI-00A3 JUMPER

OOA4-00A9
OOAA-OOAB VARPTR
OOAC-OOBO ACCUHl

OOAD-OOAE
OOAE-OOAF FAC
OOBO
OOBl
00B2
00B3-00B7 ACCUM2
OOB8
00B9
OOBA-OOBB

OOBC-OOD3 CHRGET

OOC2
00C3-00C4
0001-0007
0004-0007
OODB-OCIFA
OOFB
OOFC
OOFO
OOFE-OOFF

OIOO-OIFF

OlOO-Oloe
0130-0131
OleO-OICI
0133-01FC

CHRGOT
CHRPTR

RNOX

NMI
IRQ
STACK

Various work pointers etc.
a.neral purpose JMP instruction - Put target

Address in $A2-.A3

Various work and storage area
Pointer to next line after LIST
Floating Point Accumulator * 1 - Format is

1 byte Exponent-3 bytes Mantissa-t byte Sign

Contents are printed in Decimal by $8962
Where INVAR Rtne at $AEOS puts it"s Argument
Sign of Floating Accumulator *1
Series evaluation Constant pointer
ACCUMI high order (overflow) word
Floating accumulator *2 (Format - EMMMS>
ACCUNI/ACCUM2 5ign comparison result flag
ACCUMl low order (rounding) word
Series point.r

PARSER subroutin.-get. next byte from (.C3)
Returns with charact.r in "A- CARRY clear
if value i. ASCII 0-9 .ls. CARRY s.t.
"A" will .qual zero if end of line. Ignore.
spaces. Copied from _BCEE at Cold Start.

Entry to get current charact.r
Code Address pointer for CHRGET routine
Used by both BASIC & Extended Monitor
Random number Seed for RNO
Not used by BASIC or MONITOR
ACIA / KEYBOARD flag for MONITOR
Temporary storage for MONITOR
Temporary Data storage for MONITOR
Temporary Address storage for MONITOR

HARDWARE PAGE 1

Number conversion to ASCII storage area
NMI interrupt vectored h.re
IRQ interrupt vectored here
BASIC"s 5tack are.

(continued)

182 MICRO on the OSI

Memory Map (continued)

HEXLOC NAME DESCR I PTI ON
--
0200-02FF

0200
0201
0202
0203
0204
0205
0206
0207-020E

020F-0211
0212
0213
0214
0215
0216
0217
0218-0219
021A-021B
021C-021D
021E-021F
0220-0221
0222-02FF

0300-09FF

AOOO-BFFF

CURSOR
SAVER
CRTWRK
LOADFL

SAVEFL
BAUD
VEB

CFLAG
KBWORK
OLDKEY
NEWKEY
DBOUNC

CIINP
ClOUT
CICTLC
CILOAD
CISAVE

HARDWARE PAGE 2

Current Cursor offset
Character to be printed
CRT emulator work byte
LOAD flag <a-OFF l=ON)
CRT temporary
SAVE flag (O=OFF l~ON)

CRT Emulator BAUD rate (O~FAST 255-SLOW)
Volatile Execution Block For screen scroll

NOT re-entrant

Not used by BASIC
CTRL C flag <>0 is disable
Keyboard Poll work byte
Keyboard Poll last key
Keyboard Poll this key
Keyboard Poll deb ounce
apparently un-used
C1 INPUT vector
C1 OUTPUT vector
C1 CTRL C vector
Cl LOAD vector
Cl SAVE
Not used

vector
by BASIC

(~$FFBA)

(-SFFb9)
(=.FF9B)
(=.FFBB)
(=.FF69)

BASIC workspace (U.er RAM)

•• ROM BASIC ••

AOOO-A037 INIDIS Initial Keywords Dispatch table
(= Address of routine minus 1)

A038-A065 FUNDIS Functions Dispatch table
(= actual address of routine>

A066-A0 83 ARITHD Arithmetic Operation Table
3 bytes (l=precedence 2 and 3-Address)

A084-A163 KEYTBL Ke yword Tables - in Token order
in ASCII with last byte of each Keyword
bit 7 on. End of table marked by Null.

(contin ued)

OSI ClIC2 ROM BASIC Memory Map 183

Memory Map (continued)

HEXLOC NAME DESCRIPTION
--

A084-AOFO
AOFI - A114
Al1S-A163
A164- A185

A186-A18C
A18D-A191
A192- A198
A199- AIAO
AlAI-AleE

AICF- A211
A212-A21E
A21F-A24B
A24C
A24E

A274
A27D
A284-A34A

A29S
A2A2
A31C-A34D
A357
A38b
A399
A3Ab-A431
A432-A4bO

A46!-A479
A463
A468
A477

A47A
A482
A4BE
A491
A495
A4AO
A4A7

INITLK
SECNDK
FUNCTK
ERRTBL

ERRMSG
INMSG
OKMS6
BRKMSG

CKSTAK
CKMEM
OHERR
ERRPRT

WARHST
INMAIN
INSERT

DELL IN
CHAIN
LININP
CHRINP
TOGGLO

FINDLN

Initial Keywords
Secondary Keywords
Functions Keywords
Error message table-Hlgh Blt of 2nd character set

ASCII Msg-~ ERROR ',SOO
ASCII Msg - > IN ',$0(1
ASCII Msg-CR,LF,'OK ' ,CR,LF,$OO
ASCII Hsg-CR,LF,'BREAK ' ,$OO
Look back thru BASIC Stack for most rec ent

GOSUe or FOR

Open space in memory
Check for 'OM' and Stack overflow
Check free memory available
Out of Memory error
Error message printer-enter with X=offset

of message from table at SA164

Warm start location
BASIC input routine
Inserts tokeniz@d line into Tex t area and

Adjusts all forward ptrs e x its by JHP INMAIN

Tokenize Buffer and store in text area
Deletes line from Text area
Rebuild chaining of BASIC lines in Memory
Input and fill buffer-put null at end
Input ~ character - calls IFFEB
Toggle CTRLO - Output flag
Tokenize in Buffer
Find BASIC line whose * <- contents

of BINARG and place address in $AA- AB
Cmrry Flag Set if line found, Clear if not
ending with a NULL ($flfl) or a col on

NEWCMD NEW routin_

CLEAR

Put $0 in Start Text ($0301-0302) - then
Reset VARTAB to TXTTAB+2 - then
Reset CHRPTR - then

Reset STRSTC
Reset ARATAB
Do RESTORE -

to equal MENSIZ - then
Be ENDTAB to ... VARTAB -
then

Put *$68 into Address $65 - then
Reset BASIC St.ck to •• Fe - then
Disable 'CONT' Be zero Subscript Flag
Initialize Code Pointer (CHRPTR) to

the beginning of progr.m (10301)

then

(contin ued)

184 MICRO on we OS1

Memory Map (continued)

HEXLOC NAME DESCRIPTION
--
A4B5 LSTCHD
A536-ASFE FOReNC
ASC2- A619
ASFC
A61A-A628
A629
A636
A63B
A63A
Ab61 - Ab7A
A67B
A6BC
A691 - A69B
Ab9C- Ab88
AbB9- A6ES
AbEb- A70B
A6F4
AbF7
A70C- A719
A71A- A73B
A71D- A73B
A73 C- A74E
A74F-A75E
A7SF-A77E
A77F- A7BB

A785

A7e9-A828
A82Q-ABC2
ABb6
ABbG
AB7B
ABBB
A8A2
ABC3-ABDF

ABEO

ABEl
ABE5

A904
A923- A945
A925

XQT
RSTCMD
CTLC
CTLCMD
STPMCD
ENOCI10
CNTCHD
NULCI10
CLRCMD
RUNCMD
GSBCHO
GTOeMO
RETCHD
RGERR
USERR
DATeMD
NXSTMT
NXLINE
IFCHD
REI1CMD
ONeMO
EVAL

LETCMD
PRTCI1D

DOCRLF
OONULL
COMCOL
SPCTAB
MSGPRT

SPCQUT

QI10UT
AOUT

BADINP
I NPCI10

LIST
FOR

routine
routine

Main BASIC e x ecution loop
Entry to BASIC e xecute loop
RESTORE routine
CTRL C routine
CTRL C entry point
STOP rout ! ne
END
CONT
NULL
CLEAR
RUN
GOSUB

routine
routine
routine
routine
routine
routine

GOTO routi ne
RETURN routine
Return WI O G05ub error
Undefined Statement error
DATA routine
Scan for nex t BASIC Statement
Scan ~or next BASIC Line
IF routi ne
REM routine
ON routine
Evaluate e x pression whose beginning

address is in CHRPTR~ Convert ASCII to
~i x ed with result appearing in BINARG~

Same as EVAL without %eroin~ the result
~ield ~irst (BINARB)

LET routine
PRINT routine - Entr y at $A82F
Puts null at end o~ buffer - then
Output CR/LF - then
Output Nulls irom NULFLB and RTS
Handle comma separators in PRINT routine
Do SPC and TAB in PRINT routine
Print ASCII message. Enter with ADDR HI

in Y,ADDR LO in A. Message is ASCII
ending with a NULL '.00)

Outputs one space (• •)

Outputs question mark (·7')
Outputs character in A updates TRMCNT

and checks for Line Length over~loK

Handle bad input data
INPUT routine - CI •• rs CTRL 0
INPUT without clear CTRL 0

A946- A94E QINPLN Prompt with .? • then receive INPUT
vi~ Jump to LININP (.A337)

(continued)

OSI ClIC2 ROM BASIC Memory Mop 185

Memory Map (continued)

HEXLOC NAME DESCRIPTION
--
A94F
AA1C-AA2C
AA2D- AA3F
AA40
AAAD

AABC
AACl
ABAO
ABAC
ABDB
ABFS-ABFA
ABFB
ABFE
AC01
AC03
Acoe
AC1S

AC27-AC65
AC66-AC93
AC69-AC93
AC96-ACFD
AD01-ADOA
ADOB-ADSO

AD 53

ADS l -ADSA
ADBB-ADE5
ADE6-ADF6
ADF7- ADFA
ADFB-AE16
AEOS

REACMD
XTRMSG
RDOHSG
NXTCMD
FRMEVL

THERR
FRMEV2
NUMEVL
STREVL
NOTCMD

CKRPAR .
.cKLPAR
CKCOMA
CKCHR
SNERR
GETVAR

QRCMD
ANDCMD

DIHCMD
FNDVAR

FNDSIM

CKLETR
CRES1M

INTEVL
INVAR

READ routine
ASCII Msg-' ? EXTRA IGNORED·,CRJLF,.OO
ASCII Msg-'?REDO FROM START',CR,LF,$OO
NEXT routine
Formula Expression Evaluator

Gets Value from BASIC line (Evaulates
Literals, Variables or Expre~~ion5).
Puts value in ACCUM1, does TN check.

Type Mis-match error
Same as FRMEVL without TM check
Numeric Expression Handler
String Expression Handler
NOT routine
Evaluate expression within parentheses
SN Error if next character not .) •
SN Error if next character not· (.
SN Error if next character not·,'
SN Error if next char not = contents of A
Syntax Error
Find Variable, put addr in $AD-AE, check

Variable type, and if Numeric transfer
Value to ACCUM1.

Setup and JMP to Functions
OR routine
AND routine
Perform
DIM

Comparisons
routine

Get variable name from BASIC line,
put name in VARNAM, find and put
of variable In VARPTR and In A ~

Find or Create Simple Variable

address
y

Ex pects variable name in VARNAM, finds
and puts address in VARPTR and A ~ y

Check if char in A is A-Z, Set carry i f yes
Create Simple variable in table
Array pointer subroutine
FP Constant (-32768)
Evaluate Integer Expressions
Convert ACCUM l to i n t ege r (+/-32 768) in $AE, $AF

(continued)

186 MICRO on the OSI

Memory Map (continued)

HEXLOC NAME DESCRIPTION
--
AE17-AFAC
AEBS
AE88
AEAl
AF7C
AFAD- AFCO
AFCI-AFCD
AFCE-AFD3
AFD4-AFDD
AFD9
AFDE- BOOA
BOOB-BOLD
BOIE-B08B
B08C- B114
BOAE- B114
BOF3
8115- 8146

8147-B24C
BID4- B217
8218
8240-8289
8268
82BA-B2B2
B2B3-B2EA
B2EB- B2FB
B2FC-B30F
8310- 8338
833C-B344
El347-B388
838C- B391
8392- B39A
B398- B3A7
B3AB-B3BC
B3BD-B3FB
83FC-B407

FNDARR
BSERR
FCERR
CREARR

FRECMD
OUTVAR
POSCMD
IDCHK
IDERR
DEFCMD
FNCHK
FNEVAL
STRCMD

STERR

BARCOL

LSERR

CHRCMD
LFTCMD
RGTCND
f1IDCMD
LENCMD

ASCCHD
GETBYT
VALCMD

840 8-8410 FIX

841E-8428
8429-8431
8432-8440

B44E-BCED

844E-8454

PEKCMD
POKCMD
WAITeD

8455 MINUS
8467 PLUS
B48B
8400
84Ft
B4FB

Find or Create Array
Bad Subscript Error
Function Call Error
Create Array in Table
Compute array sl.lbscri pt si ze
FRE(X) routine - Calls Garbage Collector
Assigns value to Variable ???
pas routine
Check for 10 Error
Illegal Direct command error
DEF routine
Check FN syntax
Evaluate FNx and Store in Stack
STRS routi ne
Scan and set-up String ~ Find Length
String Too complex error
Allocat. room in String storage area

and build Descriptor for String
Garbage Collector routine
Check for str irlg most elIgible for collect ion
Collect a string
Perform Concatenation
String too Long error
Store String in String Area
Discard unwanted String
Clean String Descriptor Stack
CHRS rout i ne
LEFTS routine
RIGHTS routine
MIDS routine
LEN routine
Find String ~ Length
ASC routine
Evaluate Integer «256) from line into X
VAL routine
Gets 16 bit value from line-puts in

BINARG, checks for comma, then gets 8
bit argument in X and then RTS

Convert contents of ACCUHl to two byte
Fi x ed binary number and put in BINARG

PEEK
POKE
WAIT

routine
routine
routine

6 DIGIT FLOATING POINT HATH PACKAGE

Add 0.5 TO ACCUM1
Perform Subtraction
Perform Addition
Subtract ACCUM2 from ACCUMl
Arithmetic
Set ACCUM1
Add ACCUM1

to norm_lize floating point
to zero
to ACCUM2 (continued)

•

OSI C1/C2 ROM BASIC Mem ory Map 187

Memory Map (continued)

HEXLOC NAME DESCRIPTION
--
8537
8564- 8568 aVERR
8569-8598
B59C-BSBC
aSSD LOGeMD
BSFB MULT
8620
8640-8672
8673- 868F
8690-8690
869E-8684
8bB5- 8bB8
B6B9-B6C7
B6CA DIV
86CF
8711
8737 D/OERR
B74B-B76A
B76B-B79A
B79B-B7AA
B7AB-B7B9
B7BA-B7e7
B7CA-B7D7
B7DB-B1F4 SGNCHO
B7E8 FLOAT

87FS-B7F7 ABSCND
B7FB-B830
8831-8861
9862- 8886 INTeND
8887 - 8946
8947-8952
8953-8960
B95A
895E- 896D NUMPRT

8962
B96E-BA95 ASCII

BA96- BAAB
BAAC-BCED

BAAC SQRCMD
BAB6 POWER
BAEF- BAF9

Complement ACCUMl
Overflow Error
Multiply a byte
LOG Coefficients Constants
LOG routine
Perform Multiplication ("t')
Add RESACC to ACCUM1
Unpack Memory into ACCUM2
Test and Adjust ACCUM1 and ACCUM2
Handle underflow and overflow
Multiply ACCUMI by 2
Floating Point constant (2)
Divide by 2
Perform Divide by
Perform Divide into
Subtract ACCUMI from ACCUM2 result in ACCUM1
Divide by zero error
Unpack memory into ACCUMI
Pack ACCUM1 into memory
Hove ACCUM2 to ACCUMI
Move ACCUM1 to ACCUM2
See if need to Normalize ACCUM1
Get 5ign of ACCUMI
SGN routine
Conver-t con tents of $AD(Hi)-$AE(Lo) f rom Fi>~ed

Binary to fl oating p o i n t and put i n
ACCUMl_ Enter with X= #$9 0 and Carry Set

ABS routine
Compare ACCUM1 to Hem at (A,Y)
Convert Floating to Fixed
INT routine
Convert ASCII String to Floating Point
constants used with ASCII conversion
Prints ? IN • and the Line Number
Prints current line number
Print decimal integer whose value is in

A (10) and X (hi)

Print contents of $AD(Hi)-$AE(Lo> as Dec . integ e r
Convert floating number in ACCUMI to

ASCII string at $0100- 0107.
$0100 is sign (space or -) - String
terminated by NULL

Con5tants

FUNCTIONS PACKAGE

SQR routine
Perform ~ (exponentiation)
Perform negation

(continued)

188 MICRO on the OST

Memory Map (continued)

HEXLOC NAME DESCR I PTI ON
--
BAFA-BB1A
BB1B-BB6D
BBbE-BBS7
BBB8-BBBF
BBCO-BBFB
SBFe
BC03
BC4C
BC7B-BC98
BC99-BCC8
BCC9-BCED
BCEE-BD09
BDOA-BOI0
BDll
BE39-BE4D

BE4E-BE71
BE72-BE7D
BE7E-BEBC
BE8D-BEEl
BEE4

BEF3
BEFE
BF07
BFtS
BF22

ExpeND

RNDCMD
COSCMD
SINCMD
TANCMD

ATNCMD

PARSER

COLD

ConstAnts EXP Coefficients
EXP routine
S~ri.s Summations
RNO Constants
RND rout i n.
COS routine
SIN routine
TAN routine
SIN & COS Constants & Coefficients
ATN routine
ATN Coefficients
CHRGET - Transferred to SSC
Prints Author's Name
Cold Start routines
ASCII msg-'WANT SIN-COS-TAN-ATN',SOO

Left over from when Tape BASIC

ASCII msg- Author's Name
ASCII msg'MEMORV SIZE',SOO
ASCII m~g-'TERMINAL WIDTH',SOO
ASCII msg-Version & Copyright Notice
UART input routine (430 Board)

Contains error (BFOS should be FBOS)

UART output routine (430 Board)
UART initialization routine (430 Board)
C2 ACIA at SF COO input routine
C2 ACIA at $FCOO output routine
C2 ACIA at SFCOO initialization

set to 8 bits data, 2 stop bits
no parity, divide by 16

BF2D-BFF2 CRTEMU CRT emulator - prints char in 'A' to
screen, scrolls etc.

BFC2 Prints char in 'A' to screen -
but doesn't update Cursor pointer

BFF3-8FFA
COOO-C01F
CEOO-CEFF MULTIP

CFOO-CFFF PORTB

Code tran~ferred to VEB for Scroll
Disk Controler PIA and ACIA
C3 Multi User Ports

CA-IO-X Board ACIA's

C3 Hard disk buffer
Cl Video memory
C2 Vid.o memory

DOOO-DFFF
DOOO-D3FF
DOOO-D7FF
DEOO
DFOO

C2 Screen size/Color/Sound Latch
KBPORT Polled Keyboard Port

EOOO-EFFF
EOOO-E7FF

C3 Level 3 & CP/M Memory
Color Memory (Low 4 bits)

(continued)

OSI ClIC2 ROM BASIC Memory Map 189

Memory Map (continued)

HEXLDC NAME DESCRIPTION
--
EBOO-EFFF

FOOO-FOOl

FBOO-FBFF

FeOQ-FCOl
FCOO-FCFF
FCOO
FCOt>
FCBB
FC9l

FC9C
FeA6
FCBl
FCBE
FCC6
FCFF

Not presently used in CI/C2

Cl ACIA Port 4n

Cl 65V ROM .xtra pages for other machines

C2 ACIA Port *1
Cl Floppy Bootstrap Routines
Cl Auto bootstrap entry
Cl Load track zero into $2200 up
Cl Unload Floppy head
Cl Time delay routine - delay equals

1.25 MS times value of X at 1 MHZ
Load next byte from disk to A
Cl AClA at .FOOD initialization
Cl ACIA .t .FOOO output routine
Write complement of A to keyboard
Load complement of keyboard into X
Load complement of keyboard into A

FDOO-FDFF KBPOLL ,Keyboard Poll i ng Routi ne - Polls
keyboard and returns with the ASCII
value of key depressed in A

FEOO-FEFF

FEOO
FEOC
FE43
FEBO

FE93

FEAC

FEBO

FECA

FEDA

FEE9

MONITR
MONWRH
MDNADR
OTHER

LEGAL

HONOUT

HOUTI

DIGIT

ROLL

6SV PROH MONITOR

Entry-clears screen, reset ACIA and Stack
Entry-without Stack initialization
Entry to address mode
Input ASCII character, returns result

1n A, bit 7 cleared

Convert ASCII hex to binary, result
in A (AcSBO if not ASCII Hex O-F)

Output Address ~ Data
(ADDR from 'FE-FF

in Monitor format
DATA from SFC)

Output X bytes from SFC+X to screen
at SOOC6+Y. Set X and Y before entering
X decreases and Y increases.

Output LSD (HEX) from A to screen
at $DOC6+V. Set Y before calling.

Move LSD (HEX) in A to 2 byte number
at ('FC) +X. Set X before calling.

MONINP Return Character in A from Keyboard
or ACIA Port 1, depending on LDFLAG

(continued)

190 MiCRO on the OSI

Memory Map (continued)

HEXLOC NAME DESCRIPTION
--
FFOO-FFFF

FFOO
FF67

FF89
FF94
FF99
FFBB
FFEO
FFEl
FFE2
FFE3- FFEA
FFEB- FFEO

RESET
BASOUT

LOADRT
SAVERT
CTLCRT
BASINP
HOME
LEN
SIZE

INPUT

BASIC 110 SUPPORT

Reset Entry Point
BASIC's output vector. Outputs 1 byte to

screen, and if SAVEFL on, outputs to Port *1
<also ouput 10 NULLS ~ <LF) if chAr is <CR »

LOAD flag routine
SAVE flag routine
Control C check routine
BASIC~s Input character routine
Home position of cursor (Cl-$64 C2-$40)
Line Length default value
Screen Size type (Cl-O C2-1)
Mi.c work pointer default VAlues
BASIC INPUT vector

Cl=JHP($0218) C2=JMP $FFB8

FFEE-FFFO OUTPUT BASIC OUTPUT vector

FFF1-FFF3 CTRLC

FFF4-FFF6 LOAD

FFF7-FFF9 SAVE

FFFA-FFFB
FFFC-FFFD
FFFE-FFFF

NMIVEC
RESETV
IRQVEC

Cl c JMP(S021A) C2=JMP SFF67

Control C check vector
Cl-JMP($021C) C2=JMP $FF99

BASIC LOAD vector
Cl~JMP($021E)

BASIC SAVE vector
Cl=JMP(S0220)

C2=JMP $FF89

C2=JMP SFF94

NMI Vector (- $0130)
RESET Vecto~ (= $FFOO)
IRQ Vecto~ (- $OlCO)

;'r'

., ..
'~

~
 ~
~

~
 '%.

 ?~
"'I

II
~

?
r
.
(
9
~

1'.

"
'"

 ~
~~

 ~(
\

8.
...

~
 0

 ~
 ~
 ':>(9

t!:,

~
~

(9

t;.

~

....
'$

$

,,"
),

e

',
' "

-:c:

'

	micro_000_front
	micro_001
	micro_002
	micro_003
	micro_004
	micro_005
	micro_006
	micro_007
	micro_008
	micro_009
	micro_010
	micro_011
	micro_012
	micro_013
	micro_014
	micro_015
	micro_016
	micro_017
	micro_018
	micro_019
	micro_020
	micro_021
	micro_022
	micro_023
	micro_024
	micro_025
	micro_026
	micro_027
	micro_028
	micro_029
	micro_030
	micro_031
	micro_032
	micro_033
	micro_034
	micro_035
	micro_036
	micro_037
	micro_038
	micro_039
	micro_040
	micro_041
	micro_042
	micro_043
	micro_044
	micro_045
	micro_046
	micro_047
	micro_048
	micro_049
	micro_050
	micro_051
	micro_052
	micro_053
	micro_054
	micro_055
	micro_056
	micro_057
	micro_058
	micro_059
	micro_060
	micro_061
	micro_062
	micro_063
	micro_064
	micro_065
	micro_066
	micro_067
	micro_068
	micro_069
	micro_070
	micro_071
	micro_072
	micro_073
	micro_074
	micro_075
	micro_076
	micro_077
	micro_078
	micro_079
	micro_080
	micro_081
	micro_082
	micro_083
	micro_084
	micro_085
	micro_086
	micro_087
	micro_088
	micro_089
	micro_090
	micro_091
	micro_092
	micro_093
	micro_094
	micro_095
	micro_096
	micro_097
	micro_098
	micro_099
	micro_100
	micro_101
	micro_102
	micro_103
	micro_104
	micro_105
	micro_106
	micro_107
	micro_108
	micro_109
	micro_110
	micro_111
	micro_112
	micro_113
	micro_114
	micro_115
	micro_116
	micro_117
	micro_118
	micro_119
	micro_120
	micro_121
	micro_122
	micro_123
	micro_124
	micro_125
	micro_126
	micro_127
	micro_128
	micro_129
	micro_130
	micro_131
	micro_132
	micro_133
	micro_134
	micro_135
	micro_136
	micro_137
	micro_138
	micro_139
	micro_140
	micro_141
	micro_142
	micro_143
	micro_144
	micro_145
	micro_146
	micro_147
	micro_148
	micro_149
	micro_150
	micro_151
	micro_152
	micro_153
	micro_154
	micro_155
	micro_156
	micro_157
	micro_158
	micro_159
	micro_160
	micro_161
	micro_162
	micro_163
	micro_164
	micro_165
	micro_166
	micro_167
	micro_168
	micro_169
	micro_170
	micro_171
	micro_172
	micro_173
	micro_174
	micro_175
	micro_176
	micro_177
	micro_178
	micro_179
	micro_180
	micro_181
	micro_182
	micro_183
	micro_184
	micro_185
	micro_186
	micro_187
	micro_188
	micro_189
	micro_190
	micro_191
	micro_999_back

