S.Roberts Of 11 1

Expansion board for OSI-Computers • 6522 I/O-board • 2716 EPROM-burner • Soundgeneration • RAM / ROM / EPROM-board • A/D-converter • 32 K RAM expansion • Joystickconnection 6520 I/O board

F

ACKNOWLEDGEMENT

- OHIO Scientific: The C4P/C1P Users Manual OHIO Scientific, 1333 South Chillicother Road, Aurora, OH 44202
- 2. BETA Computer Devices, P.O.Box 3465, Orange, CA 92665
- ELCOMP Microcomputer Magazine, Post Box 437 D-8000 Munich 75, W.-Germany
- AY-3-8910/8912 Programmable Sound Generator Data Manual, General Instrument, Microelectronics Division, 600 West John Street, Hicksville, NY 11802
- 5. R6500 Programming Manual Rockwell International, P.O.Box 3669, Anaheim, CA 92803
- Reference is made to APPLE II throughout this book. APPLE II is a trademark of APPLE Computers in Cupertino, California
- 7. Fairchild TTL-Data Book from Fairchild, 464 Ellis Street, Mountain View, CA 94042
- 8. Fairchild DATA Sheet µA 9708

We also want to thank Ekkehard Floegel

Franz Ende John Kozero David Wilkie and Winfried Hofacker

for their help in completing this book.

This book is published as a service to all OHIO Scientific users. No liability is assumed with respect of the use of information herein. Reproduction or publication of the content in any manner, without express permission of the publisher, is prohibited.

© 1982 by Winfried Hofacker - All rights reserved.

ISBN 3-921682-77-0

Published by:

Ing. W. Hofacker GmbH Postbox 75 04 37 D-8000 Munich / West-Germany

US-Distributor

ELCOMP Publishing, Inc. Postbox 1194 Pomona, CA 91769

Printed in West-Germany - Imprime' en RFA

DHIO SCIENTIFIC

Introduction

I. Introduction

What OHIO Scientific user has never considered tailoring his machine to his own needs.

In this book we will show, how many ways there are to expand and modify the hardware of OHIO SCIENTIFIC computers, using circuits you probably never thought about.

We describe how to hook up a motherboard that expands your system with four slots using connections like the APPLE-Bus or any similar configuration and one slot like the S44-Bus. Into these slots you can plug various boards with your specific circuits on it.

We describe how to burn EPROMs with your OHIO SCIENTIFIC computer, how to build up a soundboard, how to use an analogdigital converter, how to hook up a parallel printer and much more.

Table of Content

LCOMP-1 Expansion Motherboard, Description 1
The 6522 VIA I/O card. 15 Use of the 6522 shift register 24 Interrupt Control 28 Stop Watch 32
Assembly of the 605 6522 VIA experimenter card 35
716 EPROM-Burner41Assembly instructions of the EPROM-Burner45Testing an EPROM52How to program an EPROM52Reading an EPROM53Description of the EPROM programming software53Summary of operating instructions65Using the 2716 EPROM-Burner without the motherboard66
Sound generation with the GI Sound Chip (GI AY-3-8912 69How the internal registers work
Sound Generation with the Superboard III with the C1P II \ldots 87
Superboard with Joystick 91 How to connect a joystick to the Superboard C1P 91 Installation of MOLEX-plug at Superboard III 96
PROM/RAM-board for 6502 computers 101
PROM-board 4 x 2716 107
imple 6-Channel Analog-Digital-Converter
arallel Interface Adapter (PIA) 6520 117 Internal structure 118
Memory expansion for the Superboard

ELCOMP-1 EXPANSION MOTHERBOARD DESCRIPTION

The ELCOMP-1 is a motherboard for expansion of single-board computers. It provides an efficient expansion area consisting of four APPLE-compatible (see note 1) slots, and one S44-E slot. The ELCOMP-1 interfaces easily with most single-board microcomputers, including the OSI Superboard II, ATARI, Commodore VIC, Commodore PET, and AIM/KIM Systems.

And the second second

A 40-conductor ribbon cable, with appropriate connector, couples the ELCOMP-1 with the host microcomputer. ELCOMP -1 requires the complete address and data bus, phase-2 clock, read/write-not, and master reset signals from the host system. Address, data, and clock signals are routed from the host system interface connector (J6) directly to Apple connectors (J1 – J4), and to S44-E connector (J5). U46 provides phase-2-not to the S44-E Bus as required.

Most of the circuitry on the ELCOMP -1 motherboard is devoted to address decoding for the APPLE slots, and to control of the

OSI Superboard-II data direction line (DD-NOT).U6-15 goes true (low) for memory addresses from C000 to C7FF. This signal, combined with true (HI) phase-2 clock and true (HI) memoryread signal, cause U1-13 to pull down on the OSI Superboard-II data-direction line. This reverses the direction of the Superboard's data-bus tranceivers, and permits data to flow from external memory (on ELCOMP-1) onto the Superboard's internal data bus. If the Superboard is to read memory outside the C000-C7FF range, then extra decoding gates must be added to pull down on data-direction over the appropriate address range. A prototyping area is provided on the ELCOMP-1 for this reason.

The signal at U6–15 also enables decoders U3 and U2. The eight outputs of U3 indicate which 256 byte page between C000 and C7FF is being addressed. Four of these outputs are unused, the others provide I/O select signals to APPLE connectors J1 through J4. These signals are low when true.

APPLE SLOT #	I/O SEL	ECT ADDRESSES
J1	C1XX	(C100-C1FF)
J2	C2XX	(C200-C2FF)
J3	СЗХХ	(C300-C3FF)
J4	C4XX	(C400-C4FF)

TABLE 1 I/O SELECTS

U2 decodes memory address from C000 to C1FF into eight 16-byte segments, indicated by the eight active-low outputs of U2. The signals act as APPLE-bus device selects, and are coupled to the four APPLE connectors summarized below.

APPLE SLOT #	DEVICE SELECT ADDRESS
J1	C01X
J2	C02X
J3	C03X
J4	C04X

TABLE 2 DEVICE SELECTS

An I/O strobe signal is generated for memory addresses between C800 and CFFF. This signal is available at U6–14. Note that the Superboard data bus buffers are not reversed for memory reads in this address range.

The ELCOMP-1 is compatible with a variety of APPLE-boards, including the EPROM programmer, parallel I/O, ROM card, RAM card, sound-effects card, and prototyping card offered by ELCOMP (also in bare-board form). ELCOMP-1 is ideal for use with the popular S-44 32K dynamic RAM card offered for use with 1-Mhz 6502 systems.

The ELCOMP-1 connects immediately to the Superboard-II with only a 40-pin ribbon cable. The ELCOMP-1 is designed to use separate power supplies, but may be modified to draw power from the Superboard. The only modification necessary to the Superboard consists of adding a jumper from the reset-not pin of the 6502 to the bus-output-connector, pin 31. This will supply a power-up reset signal to I/O chips, etc.

To use ELCOMP-1 with other computers, it is only necessary to add an adapter containing the equivalent pin-out of the OSI-Superboard bus-output-connector. ELCOMP will offer boards for the microcomputers mentioned above.

Note 1:

These APPLE slots will not support cards requiring dynamic RAM refresh signals from the APPLE bus, and will not support applications requiring use of the APPLE language card.

Motherboard, holding three expansion cards and 32K RAM-board

Part I

The ELCOMP-1 Expansion Board allows compatibility with many 6502-based systems which access to a growing variety of compact, low-cost APPLE expansion parts (excluding products requiring dynamic RAM-refresh, APPLE monitor or language card features).

Use of a small motherboard assembly provides small system expansion at a cost consistant with a single board 6502 microcomputer. Many computer hobbyists wish to implement a small interface or memory expansion, but would be happy to avoid the overhead of constructing their own motherboard interface and bus assembly. ELCOMP-1 meets this need.

Many expansion items are available for the APPLE, OSI, AIM, KIM, SYM and other 6502 computers, but very few of these provide the flexibility of a bus structure. Those systems which do provide a bus structure are generally available fully assembled. Such systems often cost more than the original single board microcomputer. ELCOMP-1 avoids this excessive cost because it is provided in a minimum KIT form. The computer hobbyist is free to choose the case, power supply, buffering and number of expansion connectors necessary to meet his needs. A typical hobbyist activity might include the addition of a disk interface and/or printer interface to a single board microcomputer system. To support the software requisite to the disk expansion, the hobbyist would typically desire the addition of some amounts of random access memory. Provision of both S44-E and APPLE bus connectors on the ELCOMP-1 motherboard gives the hobbyist access to a wide variety of available circuit boards. The hobbyist may take advantage of the expansion elements already available on the market, and may reserve his creative efforts for software and hardware of particular interest.

The motherboard is easily interfaced to a variety of 6502-based microcomputers. The 6502's simple control bus (consisting of interrupt signals, ϕ 2 clock, and read/write not signals) is immediately available for all 6502 based microcomputers and

may be emulated with signals available from other microprocessor systems. The ELCOMP-1 may be directly interfaced with an Ohio Scientific Superboard-II using only a 40-conductor ribbon cable. Adapter assemblies are available for most other 6502-based single board microcomputers (including ATARI, Commodore VIC, PET/CBM, AIM, KIM, SYM, etc.).

A special cable assembly connects the internal bus of the APPLE II microcomputer to the ELCOMP-1 motherboard. By extending the APPLE bus outside the APPLE enclosure, ELCOMP-1 enhances the development and service ability of APPLE II circuit boards. The following tables summarize connections to the Superboard interface, the four APPLE slots, and the S44-E connector. Lines not described in the following table are not supported by the ELCOMP-1 motherboard. APPLE compatible circuit cards which require use of APPLE monitor ROM features, APPLE language card features, or dynamic memory refresh feature circuitry of the APPLE II computer may not be used with the ELCOMP-1 motherboard.

SLOT	I/O SELECT	DEVICE SELECT	I/O STROBE	
1	C100 - C1FF	C090 - C09F	C800 - CFFF	
2	C200 - C2FF	COAO - COAF	C800 - CFFF	
3	C300 - C3FF	COBO - COBF	C800 - CFFF	
4	C400 - C4FF	COCO · COCF	C800 - CFFF	

The decoding of the Expansion Board slots

Assembly Drawing

Changing from one 6502-based microcomputer to another will not obsolete the ELCOMP-1 expansion system. Subject to the memory map requirement of the two microcomputers, most of all of your expansion circuitry can be transferred from one microcomputer to the other simply by altering the interface cable. Memory map requirements of 6502 microcomputers are sufficiently similar so you should have no trouble adapting particular circuit cards from one computer to another.

Address and data lines flow directly from interface connector J6 to the APPLE bus connectors and to the S44-E connector. Address decoding is provided by three 74LS138 decoder chips. A15-A11 and ϕ 2 are used to generate the I/O select strobe for the APPLE II bus. This is an active low output. I/O strobe is pulled low on pin 20 of all APPLE bus connectors when the processor outputs an address between C800 and CFFF. U3 provides I/O select signals to J1, J2, J3 and J4. I/O select is pulled low on a given connector when the microprocessor outputs an address in the I/O select range appropriate to that connector. A total of 256 memory addresses are alloted to each APPLE connector for I/O select purposes. A summary of I/O select addresses for each of the four APPLE connectors on the ELCOMP-1 motherboard is provided in the table below.

Slot	HEX	DEZ
1	C100 - C1FF	49408 - 49663
2	C200 - C2FF	49664 - 49919
3	C300 - C3FF	49920 - 50175
4	C400 - C4FF	50176 - 50431

	13 01 11	RI 3K +5	I/O STROBE
R/W 3	· · · · ·	1 19 6 14 21	NO SELECT
741	10 10 I	2 U3 13 Z2	
5	5 97 74L502	4 LS138 12 23	
1 Var		5	in-
	2 3 U6 15 14	11 24	J4-
	3 4 LS138	1 14 21	DEV SELECT
		2 12 12	114
4 105	LE III	UZ	124
7415		LS138	13 -
DD (-LOW)		5 11 24	J4 -
23 RES 1			RES DI
		- I I I I I I I I I I I I I I I I I I I	NMT 31 180 29
22 Admin 21 IRO 11 R2 12 R/W		111	30
11 R/W			8/W 40 8/W 18
13 07			D7 42
14 D6			06 43
15 D5 D4			D5 44
16 DA 27 D3			D3 45
26 02			02 47
25 D1			D1 48
24 D0 A15	9 1 1 11 1 1 1 1 1 1		49
A14			A14 17 A14 15
A13			A13 15 A12
4 A12			9 14
3 010			A10 13
7 A9	z 13 12 19 17 2 1 12 19 18 19 19 19 19		A9 11
40 40			A8 10
39		111 9111	46 3
38 A6 37 A5			A5 7
36 A4			A4 6
35 AJ A2			A3 5
32			A1 4
33 A0 34 A0			A0 2
		h 111111111	
	I VOL KIJIVIJA	X P BUTARDE X J J II C	
		Ing nannannagar	

Complete schematic of the motherboard

		POWER AND	SPARES	
	SIGNAL	APPLE BUS	S44 BUS	CHIPS
	+5V	25	3, 20	U1-14 U2-16 U3-16 U4-14 U5-14 U6-16
	GND	26	1, 2, A, 21, 22, Z	U1-7 U2-8 U3-8 U4-7 U5-7 U6-8
a share	-5V	34	-	-
2404	-12V	33	-	-
	+12V	50	-	-
	N/C	19, 21, 22, 23, 24, 27, 28, 32, 35, 36, 37, 38, 39	12, 14, N, P, R	una terrer de la dense anno de la norden de la dense de la la dense de
NOTES	[2]	DD is pulled low f the CPU trie &COOO and &C7 direction for O transceivers. These gates add on rev-a, and add	es to read me FF. This line SI-C1P off-be on rev-b. Cut	emory between controls data bard data bu

3 Add jumper pin 4–5, cut trace pin 5–6.

11

Device select signals for the APPLE II bus are generated by U2. The 16 memory addresses are alloted each APPLE bus connector for device select purposes. A summary of device select addresses for J1 to J4 on the ELCOMP-1 motherboard is provided in the table below.

DEVICE SELECT LINES ON THE EXPANSION BOARD

Slot	HEX	DEZ
1	C090 - C09F	49296 - 49311
2	COAO - COAF	49312 - 49327
3	COBO – COBF	49328 - 49343
4	COCO - COCF	49344 - 49359

A special circuit is provided to control the data direction line on the Superboard II. Data direction is an active low signal controlled by memory or I/O devices external to the Superboard II. The Superboard II provides a pair of 8T28 bus transceivers used only to buffer the data bus to and from external devices. Normally, these bus transceivers are transmitting, or outputting, from the Superboard. If the Superboard attempts to read a memory location within the range of an external memory or I/O device, the net device must pull down on the data direction line. This action reverses the direction of the 8T28 bus transceivers, and permits data to flow from the external device onto the Superboard. In a standard configuration the ELCOMP-1 motherboard pulls down the Superboard data direction line for memory read operations in the address range from C000 - C7FF. If memory or I/O-devices are to be used outside this address range of the Superboard II, then it is necessary to replace the 8T28 buffers with the jumper assemblies shown before.

0-0-0	0	Top view of the
g	0	sockets
J	J	(use two TC-platforms)
0	0-	
0	0	

Alternative connection to any microcomputer is facilitated by a prototyping area provided on the ELCOMP-1 motherboard. For example regarding the data direction line on the Superboard II, additional decoding circuitry is to be added to control the data direction line over a broader address range. A further use of this prototyping area might be in combining the memory read, memory write signals of a Z80 or 8080 microprocessor system into a single read/write, as generated by the 6502.

ELCOMP-1 is designed to operate from an independent power supply. This is in keeping with the intent of expanding a small single board system. Connections are provided from +12, -12, +5, -5 and ground. Active components on the ELCOMP-1 motherboard require +5 volts. Other power supply voltages may be added or deleted to suit the users application. The lack of address and data bus buffering on the ELCOMP-1 requires an expansion card we designed with careful consideration to bus loading. Operation and clock rates more than 1 MHz or the interface cabling more than 15 inches long is not recommended.

Assembly of the ELCOMP-1 motherboard is fast and simple. If the ELCOMP-1 is to be used with the S44-E connector only, then only U4 is required. If the APPLE bus is to be used, then all six integrated circuits must be installed on the ELCOMP-1 motherboard. Sockets are recommended for all integrated circuits, and for the interface connector J6.

Parts List

Quantity Description

3	1 of 8 Decoder / Demultiplexer 74LS138
1	Quad 2-Input NOR-Gate 74LS02
1	Hex-Inverter 74LS04
1	Quad 2-Input AND-Gate 74LS08
4	50-pin 2.54 mm Double Sides P.C.
1	44-pin S44-connector, female tail edge connector
1	40-pin socket
1	3K3 1/4 Watt resistor
2	0.1 µF Capacitor Ceramic
1	10 µF, 35V Tantal Capacitor

Note that the location of pin 1 on each integrated circuit is marked on the printed circuit board. Also see the assembly drawing below, for location and orientation of all components.

The ELCOMP-1 is compatible with a variety of APPLE II circuit cards and with S44-E circuit cards. The ELCOMP-1 is ideal for interfacing the data computer's 32K dynamic RAM card to Superboard II. ELCOMP operates a variety of expansion and prototyping cards for use for the ELCOMP-1 expansion motherboard.

	S-44E	- Winter	S-44E
1	GND	A	GND
2	GND	В	A14
3	VCC	C	A12
4	A3	D	A4
5	A1	E	A5
6	AO	F	A2
7	D1	Н	DO
8	D2	J	D3
9	$\overline{\phi_2}$	K	$\overline{\phi_2}$
10	RES	L	RES
11	φ2	M	φ2
12	R/W	N	NC
13	R/W	P	R/W
14	NC	R	NC
15	D6	S	D5
16	D7	Т	D4
17	A9	U	A11
18	A10	V	A7
19	A8	W	A6
20	VCC	X	A13
21	GND	Y	A15
22	GND	Z	GND

Pinout of the S-44 connector on the expansion board

The 6522 VIA I/O card

The 6522 versatile interface adapter is an extremely powerful I/O chip for 6502 based microcomputer systems. Yet, many 6502 systems have no 6522 chip available, and no provision for adding one. Model 605 experimenter card provides a 6522, 256 bytes of static RAM for user I/O routines, and a large prototyping area. Applications to the 6522 include: EPROM burners, printer controllers, A to D and D to A converters, cassette tape motor control, sound generation, and other miscellaneous control interfaces. In the following chapter we will describe the operation of the 6522 VIA in detail, complete with several application examples.

The 6522 versatile interface adapter constitutes a significant improvement over the original 6820 PIA.The 6502 adds two internal timers, a serial IN/OUT and parallel IN, serial OUT shift register, and latched data inputs on the peripheral ports. Enhanced handshaking permits high-speed data and transfer between multiple CPUs.

The primary feature of the 6522 VIA is a pair of 8-bit bidirectional data ports. Each of the 16 bidirectional lines may be programmed as either an input or output. Some of the lines may be interfaced with the internal interval timers providing the ability to generate specific time intervals, or to measure specific time intervals. The 6522 is controlled by an internal file of 168-bit registers. A table of these registers follows.

Access to the 16 internal registers is controlled by four register select lines, RS0, RS1, RS2, RS3. Interface to the 6502 microprocessor system is via the normal 8-bit data bus, 16-bit address bus (chip select 1, chip select 2), ϕ 2 clock, R/W, interrupt request not output, and master reset. Note the reset input clears all internal registers, placing all bidirectional data lines into the input state, and disabling all special timer and shift register features.

Peripheral port A consists of eight bidirectional data lines which may be individually programmed to act as inputs or outputs, under the control of data direction register A (DDRA). The logical value of output pins is controlled by an output register, and values pre-

Register		RS C	RS Coding		Register	Desc	Description
Number	RS3	RS2	RS1	RSO	Desig.	Write	Read
0	0	0	0	0	ORB/IRB	Output Register "B"	Input Register "B"
-	0	0	0	1	ORA/IRA	Output Register "A"	Input Register "A"
2	0	0	1	0	DDRB	Data Direction Register "8"	"B"
ω	0	0	1	1	DDRA	Data Direction Register "A"	'A"
4	0	1	0	0	T1C-L	T1 Low-Order Latches	T1 Low-Order Counter
5	0	-	0	1	T1C-H	T1 High-Order Counter	
6	0	1	1	0	T1L-L	T1 Low-Order Latches	
7	0	1	1	1	T1L-H	T1 High-Order Latches	
80	-	0	0	0	T2C-L	T2 Low-Order Latches	T2 Low-Order Counter
9	1	0	0	1	T2C-H	T2 High-Order Counter	
10	1	0	1	0	SR	Shift Register	「日本」の「日本」の
11	1	0	1	1	ACR	Auxiliary Control Register	er
12	1	1	0	0	PCR	Peripheral Control Register	ter
13	1	1	0	1	IFR	Interrupt Flag Register	
14	1	-	1	0	IER	Interrupt Enable Register	のないのでは、
15	1	-	1	1	ORA/IRA	Same as Reg 1 Except No "Handshake"	o "Handshake"

SY6522 Internal Register Summary

sented to input pins may be latched into an input register under control of a handshake line (CA1).

Peripheral port B also consists of eight bidirectional data lines. They are controlled by data direction register and a manner analogous to the control of peripheral port A. For port B has the addes feature that outputs are configured with high current drivers, enabling them to directly drive Darlington output transistors. Peripheral port B and its handshake lines exhibits several special features, operating under the control of the 6522's 16 internal registers.

Some programming examples: DDRA and DDRB control the data direction of the 16 bidirectional data bits in ports A and B, respectively. There is a one to one correspondence between bits and the data direction registers and the 16 bidirectional data bits. If the bit is set on the data direction register, then the corresponding bit in port A or port B will be configured as an output. If a bit in the data direction register is reset, the corresponding bit in port A or port B will be configured as an input.

Example:

To configure all lines of port A as outputs the 6502 host system should execute the following instructions:

LDA # \$FF STA DDRA

The same result could be done from BASIC by executing the following statement:

POKE DDRA,255

In the reset state all 16 bidirectional data lines are configured as inputs. Those microprocessor system configures outputs, as required, by loading DDRA and DDRB with the needed values.

The exact memory address of the 6522's internal register file depends upon the external decoding circuitry used to drive chip select 1 and chip select 2. However, if you use the ELCOMP-1 expansion board and the model 605 6522 VIA board, then the addresses of the 16 internal registers of the 6522 will be as follows:

SLOT I		SLO	DT 2	SLOT 3		SLOT 4		Register	Description		
HEX	DEC	HEX	DEC	HEX	DEC	HEX	DEC	Desig.	Write	Read	
C090	49296	COAO	49312	COBO	49328	C0C0	49344	ORB/IRB	Output Register "B"	Input Register "B"	
C091	49297	COA1	49313	COB 1	49329	COC1	49345	ORA/IRA	Output Register "A"	Input Register "A"	
C092	49298	COA2	49314	COB2	49330	COC2	49346	DDRB	Data Direction Register	"B"	
C093	49299	COA3	49315	COB3	49331	COC3	49347	DDRA	Data Direction Register "A"		
C094	49300	COA4	49316	COB4	49332	COC4	49348	T1C-L	T1 Low-Order Latches	T1 Low-Order Counter	
C095	49301	COA5	49317	C085	49333	C0C5	49349	T1C-H	T1 High-Order Counter		
C096	49302	COA6	49318	C086	49334	C0C6	49350	T1L-L	T1 Low-Order Latches		
C097	49303	COA7	49319	COB7	49335	C0C7	49351	T1L-H	T1 High-Order Latches		
C098	49304	COA8	49320	COB8	49336	COC8	49352	T2C-L	T2 Low-Order Latches	T2 Low-Order Counter	
C099	49305	C0A9	49321	COB9	49337	C0C9	49353	T2C-H	T2 High-Order Counter	A LANGE STORE	
C09A	49306	COAA	49322	COBA	49338	COCA	49354	SR	Shift Register		
C09B	49307	COAB	49323	COBB	49339	COCB	49355	ACR	Auxiliary Control Regist	ter	
C09C	49308	COAC	49324	COBC	49340	COCC	49356	PCR	Peripheral Control Regis	ter	
C09D	49309	COAD	49325	COBD	49341	COCD	49357	IFR	Interrupt Flag Register		
C09E	49310	COAE	49326	COBE	49342	COCE	49358	IER	Interrupt Enable Registe	r	
CO9F	49311	COAF	49327	COBF	49343	COCF	49359	ORA/IRA	Same as Reg 1 Except N	Same as Reg 1 Except No "Handshake"	

Exact memory addresses for the 6522 registers

The above table shows the exact memory address of each individual register of the 6522 assuming that it is plugged into slot 1

to 4 of the expansion board. It shows the exact memory address in hexadecimal, the exact memory address in decimal, the name of the register, and the description of the register for each of the 16 registers in the chip.

Then write C400 00 C401 AA C402 55 C403 FF This content should read the same.	Put FF into location COC2 and COC3 and then COC0 00 COC1 00 COC2 FF COC3 FF	Test program: Board in slot 4. Go into the monitor and look into location C0C0- RESET (BREAK) C0C0 FF C0C1 FF C0C2 00 C0C3 00	Program a bargraph display using LEDs and the 6522. Solution: Connect the anode of one LED to each of the eight bidirectional data lines of port A. Connect the cathode of the LED to ground through 22002 resistor. Repeat this for each of the eight bidirectio- nal data lines, as shown below. ND CA1 CA2 PA0 PA0 PA0 PA1 PA3 PA1 PB1 PB1 PB1 PB3 PB3 PB1 PB3 PB1 PB3 PB1 PB3 PB1 PB3 PB3 PB3 PB1 PB3 PB3 PB3 PB3 PB3 PB3 PB3 PB3
~~)-coc3	6522 eight he LE he eigl he eigl he eigl he eigl 10 11 12 13 13 13 13 14
Test of RAM	Test of Ports	<u>.</u>	bidirectional D to ground ht bidirectio-

18

19

The program shown below drives the bargraph display, assuming the 6522 board has been inserted in slot 4 of the ELCOMP-1 expansion board.

With the 6522 in slot 4 the first address of the 6522 register file will be 49344 decimal. The data direction register for port A (DDRA) has an address equal to the base address plus 3. The output register for port A has an address equal to the base address plus 1. This addressing is noted in lines 10 - 50 of the program, and the address values are assigned to variables in line 70 and 80. Line 90 begins a FOR...NEXT loop which counts its way to the eight bits of port A. The remark statements in lines 160-250 describe the values assigned to the variables bit and data, as well as the number of LEDs turned on, as the program steps through the FOR...NEXT loop.

10	REME	BARGRAPH	DRIVER		
20	REM 6	522 IN SLOT	4 OF ELCO	MP	
30	REM F	IRST SLOT	4 ADDRESS	= 49344	
40	REM	DRA = BAS	E ADDRESS	+ 3 = 49347	
50	REM P	ORT A (ORA	A) = BASE A	DDRESS + 1 = 49345	
60	REM				
70	DDRA	= 49347			
80	PA = 4	9345			
90	FOR B	8 OT 0 = TI			
100	DATA	= (2 ↑ BIT)-	1		
110	POKE	PA, DATA			
120	REM K	KILL SOME	TIME		
130	FORD	ELAY = 0 TO	0 1000 :NEX	TDELAY	
140	NEXT	BIT			
150	GOTO	90			
160	REM \	ALUE OF B	IT DATA	NUMBER OF LED's	ON
170	REM	0	0	0	
180	REM	1	1	1	
190	REM	2	3	2	
200	REM	3	7	3	
210	REM	4	15	4	
220	REM	5	31	5	
230	REM	6	63	6	
240	REM	7	127	7	
250	REM	8	255	8	

BARGRAPH DISPLAY 10 REM 20 REM BOARD IN SLOT 4 30 DDRA = 49347:TA = 49345POKE DDRA, 255 40 50 A = 1POKE TA, A 60 70 GOSUB 200 80 A = A * 290 IF A = 256 THEN A = 100 GOTO 60 200 REM TIME DELAY FOR I = 1 TO 50210 220 NEXT I: RETURN

Programming example:

Using the timers

Interval timer T1 consists of a 16-bit counter and two 8-bit latches. The latches are used to store a pre-set value for the counter. Subsequent to loading from the 8-bit latches, the counter decrements at the system clock rate (ϕ 2 clock). When the counter reaches a count of zero, an internal interrupt flag will be set, and the IRQ pin will be set low, if interrupts are enabled. Timer 1 can be programmed to do several things at this point. Two bits in the auxiliary control register (ACR) determine timer 1 operating mode. If bit 7 in the auxiliary control register is set (1), then the 6522 will reverse the polarity of the signal at bit # 7 of port B. Each time the timer 1 reaches the count of zero. If bit 7 of the auxiliary control register is reset (0), then bit 7 of port B will be disabled. If bit 6 of the auxiliary control register is set, then upon reaching a count of zero, timer 1 will automatically reload with its preset value and continue counting. This is referred to as the "FREE-RUN" mode. If bit 6 of the auxiliary control register is reset, then timer 1 will halt upon reaching a count of zero. As always, an interrupt will be output, if enabled. In this "one-shot" mode, timer 1 will not run again until reloaded by the host microprocessor.

Four of the 6522's 16 internal registers directly affect the operation of timer 1. These registers are summarized in the table below:

Register Select Bits

RS3	RS2	RS 1	RSO	Operation
L	Н	L	L	Write into low-order latch.
L	H	L	Н	Write into high-order latch Write into high-order counter. Transfer low-order latch into low order counter. Reset Tl interrupt flag.(IFR6)
L	Н	H	L	Write low-order latch.
L	Н	Н	Н	Write high-order latch. Reset Tl interrupt flag. (IFR6)

Note that the processor does not write directly into the low-order counter (TIC-L). Instead, this half of the counter is loaded automatically from the low-order latch when the processor writes into the high-order counter.

Note: The last two entries of the above table load the pre-set latch with new values without affecting the current contents of the counter, or the count in progress. Note that execution of the second and fourth entries in the above table cause the internal interrupt flag to be reset. If timer 1 is operating in "one shot" mode, than a new count would not be initiated unless the second entry in the above table were executed. Note that the port B, bit 7 output enable from timer 1 will overwrite bit 7 in the port B data direction register.

Problem:

Program a square wave with 100 ms period.

Solution:

- LDA # \$C0; select operation mode
- STA ACR
- LDA # \$50; load least significant byte of counter
- STA T1C-1; counter
- LDA #\$C3; load high byte
- STA T1C-H; counter

Execution of the last command of the above program transfers the pre-set value from the two 8-bit latches into the low byte and the high byte of the 16-bit counter, clears the interrupt flag, and allows timer 1 to begin decrementing. When timer 1 reaches the count of zero it would invert the state of port B bit 7, reload itself from the 8-bit latches, and begin counting down once again. Port B, pin 7 will therefore demonstrate a square wave signal, whose period will be 100 ms.

A BASIC program to achieve the same result follows:

10 REM PULSE GENERATOR 20 REM PUT YOUR 6522 INTO SLOT 4 30 REM ELCOMP-1 EXPANSION BOARD 40 ACR = 49355 50 T1CL = 49348: T1CH=49349 60 POKE ACR,192: REM C0 IS OPERATION MODE 70 POKE T1CL,80: REM 50 HEX 80 POKE T1CH,195: REM C3 HEX

10 REM SQUAREWAVE GENERATOR 20 BOARD IN SLOT 4 REM 30 ACR = 49355T1CL = 49348:T1CH = 4934940 50 POKE ACR. 192 60 POKE T1CL,78 90 POKE T1CH. 199 100 END

A single shot pulse could be generated, instead of a square wave, by selecting operation mode 80 hex instead of C0 hex. A different square wave frequency could be programmed by substituting different values for the 8-bit latches (program lines 70 and 80).

Operation of timer 2 is similar to operation of timer 1, except that timer 2 must be operated in one shot mode.

Timer 2 may also be used to count external events, rather than operate as a timer clock triggered by ϕ 2 clock. In this mode the 6522 counts the negative going pulses on port line PB6. Operation mode of timer 2 is controlled by bit 5 of the auxilliary control register. If bit 5 of the auxiliary control register is reset (0), then

timer 2 operates in one-shot mode. If bit 5 of the auxiliary control register is set (1), then timer 2 counts negative going pulses at port B bit 6.

A very large interval counter may be configured by connecting PB7 to PB6. Timer 1 is operated in its free running mode, with PB7 inverted each time timer 1 reaches a count of 0. Timer 2 is operated in the event counter mode. Each time that a zero count of timer 1 causes PB7 to switch from logic high to logic low, timer 2 will be clocked. The contents of timer 2 will therefore indicate elapsed time. A timer will be disabled by using the auxiliary control register to disable the timer 1 output to PB7.

Use of the 6522 shift register

Register 10 of the 6522 chip is a shift register. This register may be used to convert parallel data to a serial data stream or vice versa. 3 bits of the auxiliary control register select the various shift register operating modes. The 6522 provides for three serial input modes and four serial output modes. These modes differ as to the source of the shift register clock.

With auxiliary control register bit 6 set equal to zero, the shift register is either disabled or placed in one of its three serial input modes. If auxiliary control register bits 3 and 2 are also zero, then the shift register is disabled. If ACR3 = 0, and ACR2 = 1, then serial data will be clocked into the shift register under control of timer number 2. IF ACR3 = 1, and ACR2 = 0, then serial data will shift in at the system clock rate.

CR4	ACR3	ACR2	
0	0	0	Shift Register Disabled
0	0	1	Shift in under Control of Timer 2
0	1	0	Shift in at system clock rate
0	1	1	Shift in under Control of External Input Pulses

In mode 001, the shift register clock is controlled by the lower byte of timer 2. The shift register clock is made available at CP1. The frequency of the shift register clock is therefore dependent upon the system clock rate, and the contents of a lower byte of timer 2. The shift in operation is enabled each time the microprocessor system reads or writes the shift register. The internal shift register interrupt flag is set following the 8-shift register clock.

In shift register mode 010, ϕ 2 is used as the shift register clock. As above, the shift in operation is initiated when the microprocessor reads or writes the shift register. The shift register interrupt flag is set after the ninth circle of ϕ 2. At this time, clock output pulses at CP1 stop.

In shift register mode 011, an external device X is the shift register clock. CP1 is configured as an input, and provides this external clock to the 6522 shift register. The shift register interrupt flag will be set each time 8 bits have been loaded into the shift register. However, unlike modes 001 and 010, the shift register will not stop inputting data. The shift register interrupt flag will be reset if the microprocessor reads or writes the shift register.

Note that in all shift register modes serial data is clocked first into the least significant bit of the shift register. On each successive clock pulse, data is shifted towards the most significant bit of the shift register. Note also that serial data is loaded into the shift register, while $\phi 2$ is low, immediately following the rising edge of the shift clock. Serial input data must be stable during this time period.

In each of the four shift register output modes CB2 is configured as an output. Shift register bit 7 is the first bit output to CB2. At the same time that bit 7 is output to CB2, it is also shifted back into bit 0 of the shift register. Therefore, shift register data does not disappear out of CB2, rather, it circulates to the shift register. As with the shift-in modes shifting occurs, while ϕ 2 is low, immediately subsequent to the rising edge of the shift clock.

Shift out mode 100 is a free-running mode. The frequency of the shift clock is controlled by the contents of timer 2. The shifting process never stops, and the eight shift register bits are clocked out of CB2 repetitively.

The shift rate of serial output mode 101 is also controlled by timer 2. Unlike mode 100, each read or write of the shift register

causes eight bis to be shifted onto CB2. The shift clock is output under CB1. Following eight shift clocks, shifting halts, and the shift register interrupt flag is set.

Shift register output mode 110 is very similar to mode 101. However, the shift clock is now directly controlled by ϕ^2 , and is independent of timer 2.

Shift register output mode 111 provides for data output under control of an external clock. The external clock is applied to the 6522 via CB1, which is configured as an input. The shift register interrupt flag is set each time that eight bits have been output onto CB2, however, although the shifting process is not halted. The shift register interrupt flag is reset each time the microprocessor reads or writes the shift register.

Note that in both the serial input and serial output modes, data flows from shift register bit 0 towards shift register bit 7. Therefore, shift register bit 7 is the first bit out during a serial output operation, and shift register bit 0 is the first bit loaded during a serial input operation.

Programming example:

Problem:

Simulate a pulse generator with variable frequency and duty circle.

LDA	#\$FF	; SET TIMER FOR
STA	T2L-L	; LOWEST FREQUENCY
LDA	#\$10	; OPERATION MODE
STA	ACR	; FREE RUNNING
LDA	#\$0F	; OUTPUT 4 x 0 and 4 x 1
STA	SR	the second se
JMP	Monitor	; JUMP BACK TO MONITOR

In this example the 6522 shift register is configured in serial output mode 100. The pulse output is taken from CB2. Frequency of the wave form is determined by timer 2. The smaller the value in timer 2, the greater the frequency with which timer 2 reaches 0, providing an increased shift clock frequency. The duty cycle of the pulse is determined by the contents of the circulating shift register. Loading four adjacent shift register bits with logical 1's, and loading the remaining shift register bits with logical 0's, we produce a pulse with 50 per cent duty cycle. Setting additional shift register bits, we increase the duty cycle of the wave form.

The 6522 VIA card with 1K of RAM and a large prototyping area

A BASIC program could also be used to solve the above problem.

10 REM FREERUNNING SWG 20 REM WITH VARIABLE DUTYCYCLE 30 REM PUT YOUR 6522 VIA BOARD IN SLOT 4 50 ACR = 49355 : T2L = 49352 60 SR = 49354 70 POKE T2L,255 80 POKE ACR,16 90 POKE SR,15 100END

A one-shot pulse of variable width could be produced from the above example if serial output mode 101 were selected. In this case the contents of the shift register would output ones, the shifting process would halt, and the host microprocessor system would be interrupted.

Interrupt control

There are several sources of interrupts within the 6522. Depending upon the mode selected, interrupts may be generated by the time out of timer 1 or timer 2, by external signals applied to CA1, CA2, CB1, CB2, or by activities of the shift register. An interrupt flag bit is set equal to 1, if any of the previous seven bits is set equal to 1.

Together, these eight bits constitute the interrupt flag register (IFR). A second register, the interrupt enable register (IER), contains eight bits with a 1-to-1 relationship to the eight bits of the IFR. The host microprocessor system controls the eight bits of the IER. If a particular bit in the IER is set equal to 1, then a logical 1 in a corresponding interrupt flag register bit will be passed to the host microprocessor as an interrupt request signal (IRQ). If a particular bit in the interrupt enable register is zero, then the corresponding bit in the interrupt flag register is "masked-off", and will not interrupt the host microprocessor system.

Bit 7 of the IER controls the setting and resetting of the remaining seven bits in the IER.

Case 1: Suppose the microprocessor writes a byte of data to the IER, such that bit 7 of this byte is set equal to 1. In this case, each logical 1 written to bits 0 - 6 of the IER will cause the corresponding bit of the IER to be set equal to 1.

Case 2: Suppose the microprocessor sends a byte of data to the IER such that bit 7 of the data byte is set equal to zero. In this case, each one written to bits 0 - 6 of the IER will cause the corresponding bit in the IER to be cleared.

In either case, writing a 0 to bit 0–6 of the IER leaves the selected bits unaffected. The microprocessor system is also free to read the contents of the IER. In this case bit 7 will always be read as a logic 0.

Programming example:

Problem:

Write a program subroutine to generate a one- shot pulse at PB7. The processor should not return from the subroutine until the pulse is terminated.

MONOFL:	LDA	#\$80	; SELECT MONOFLOPS
	STA	ACR	OPERATION
	LDA	#\$50	
	STA	TICL	; SET TIME
	LDA	#\$C7	
	STA	TICH	; SETS BIT 6 IFR=0
MO	LDA	IFR	
	AND	#\$40	; MASK BIT 6 of IFR
	BEQ	MO	
	RTS		

Line 1

Selected timer 1 one-shot mode, enable output to PB7.

Line 3 Set timer 1 low order latch

Line 6

Write to higher order latch of timer one, write to higher order byte of timer 1 counter, transfer low order latch into low order counter, also clears timer 1 interrupt flag (IFR-bit 6) in interrupt flag register.

Line 7

Poll IFR to see if timer 1 ended.

Bits 0, 1, 3, and 4 of the IFR areusedfor data transfer between the processor and external devices. Each of these bits may be set and reset by using the peripheral control register (PCR).

Bit 0 or the peripheral control register determines which edge of the power supply to CA1 will set bit 1 in the interrupt flag register. If this bit is a 0 the negative edges applied to CA1 will cause the CA1 interrupt flag to be set. If this bit is a 1 then positive edges at CA1 will set the CA1 interrupt flag. Reading or writing peripheral port A will reset CA1 interrupt flag.

If the shift register function is enabled, CB1 will act as an input or output for the shift clock. If the shift register function is disabled, then CB1 may be used in identical fashion to CA1. If PCR4 is a logic 1, the negative edges applied to CB1 will set the CB1 interrupt flag(Bit 4, IFR).

If PCR4 equals zero, then the CB1 interrupt flag will be set by positive edges applied to CB1. The CB1 interrupt flag may be cleared by reading or writing peripheral port B.

CA2 may act as an interrupt input, or as a control output. A table summarizing available CA2 modes follows.

PCR3	PCR2	PCR1	Mode
0	0	0	CA2 Negative Edge Interrupt (IFR0/ORA Clear) Mode Set CA2 interrupt flag (IFR0) on a negative transition of the input signal. Clear IFR0 on a read or write of the Peripheral A Output Register (ORA) or by writing logic 1 into IFR0.
0	0	1	CA2 Negative Edge Interrupt (IFRO Clear) Mode Set IFRO on a negative transition of the CA2 input signal. Reading or writing ORA does not clear the CA2 interrupt flag. Clear IFRO by writing logic 1 into IFRO.
0	1	0	CA2 Positive Edge Interrupt (IFRO/ORA Clear) Mode Set CA2 interrupt flag on a positive transition of the CA2 input signal. Clear IFRO with a read or write of the Peripheral A Output Register.
0	1	1	CA2 Positive Edge Interrupt (IFRO Clear) Mode Set IFRO on a positive transition of the CA2 input signal. Reading or writing ORA does not clear the CA2 interrupt flag. Clear IFRO by writing logic l into TFRO.
1	0	0	CA2 Handshake Output Mode Set CA2 output low on a read or write of the Peripheral A Output Register. Reset CA2 high with an active transition on CA1.
1	0	1	CA2 Pulse Output Mode CA2 goes low for one cycle following a read or write of the Peripheral A Output Register.
1	1	0	CA2 Output Low Mode The CA2 output is held low in this mode.
1	1	1	CA2 Output High Mode The CA2 output is held high in this mode.

With the shift register function enabled, CB2 is dedicated as to serial input/output from the 6522. If the shift register function is disabled, then CB2 functions in a manner analgous to CA2.

PCR7	PCR6	PCR5	Mode
0	0	0	CB2 Negative Edge Interrupt (IFR3/ORB Clear) Mode Set CB2 interrupt flag (IFR3) on a negative transition of the CB2 input signal. Clear IFR3 on a read or write of the Periph- eral B Output Register (ORB) or by writing logic 1 into IFR3
0	0	1	CB2 Negative Edge Interrupt (IFR3 Clear) Mode Set IFR3 on a negative transition of the CB2 input signal. Reading or writing ORB does not clear the interrupt flag. Clear IFR3 by writing logic 1 into IFR3.
0	1	0	CB2 Positive Edge Interrupt (IFR3/ORB Clear) Mode Set CB2 input signal. Clear the CB2 interrupt flag on a read or write of ORB or by writing logic 1 into IFR3.
0	1	1	CB2 Positive Edge Interrupt (IFR3 Clear) Mode Set IFR3 on a positive transition of the CB2 input signal. Reading or writing ORB does not clear the CB2 interrupt flag. Clean IFR3 by writing logic 1 into IFR3.
1	0	0	CB2 Handshake Output Mode Set CB2 low on a write ORB operation. Reset CB2 high with an active transition of the CB1 input signal.
1	0	1	CB2 Pulse Output Mode Set CB2 low for one cycle follow- ing a write ORB operation.
1	1	0	CB2 Manual Output Low Mode The CB2 output is held low on this mode.
1	1	1	CB2 Manual Output High Mode The CB2 output is held high in this mode.

The auxiliary control register has been discussed in some detail at this point, however, two functions of the register remain unexplained. Bit 0 and 1 of the auxiliary control register (ACR), control the input data watching function through peripheral ports A and B. ACR0 is the port A input latch enable. Input latching is enabled by setting this bit equal to 0. Input data will be latched when the CA1 interrupt flag is set. Reading port A resets the CA1 interrupt flag. This arrangement permits simple handshaking with external devices. If several port A pins are configured as outputs, and if input latching is enabled, then reading port A will transfer eight bits from the data input latches to the processor, although input latch bits corresponding to pins configured as outputs do not necessarily represent the state of those output pins. Careful planing is required to combine input data latching with intermixed output pins.

ACR1 controls the input data latching function through peripheral port B. Exactly as ACR0 controls latching for peripheral port A.

Note, however, that port B data latches will indicate the level apply either to an input pin or the contents of the port B output register depending upon whether a pin is configured as an input or an output.

Stop watch

You also can use the Timer as a counter. In this mode the negative going edges of PB6 are counted. Bit 5 of the ACR-register sets the operation mode.

ACR5	Operation mode
0	Monoflops
1	Count negative pulses on PB 6

If you connect PB6 and PB7 and operate timer 2 as a counter and timer 1 as a freerunning pulse generator you can simulate a stop watch for measuring the execution time of your programs.

The program consists of two parts. A BASIC program and a machine language subroutine in the 1K RAM area on the 6522 VIA board.

You can select the C400 hex area via the DIP switches on the 6522 board.

The elapsed time is determined in location C426 hex . It will be put in units of 1/100 seconds into memory locations C4FE and C4FF hex . At this location the BASIC program picks up the time value to print it out on the screen.

1 REM TEST FOR TIME DELAY 2 REM BOARD IN SLOT 4 3 REM E.FLOEGEL NOV 80 10 START = 50188:FIN = 50214 15 HI = 50430:LO = 50431 100 CALL START:

```
GOSUB 1000
110
     CALL FIN: GOSUB 990: END
200
     PRINT "EXECUTION TIME=":
990
        PEEK (HI):L\% = PEEK (LO)
992 H% =
     PRINT (H% * 256 + L%) / 100;" SECONDS"
994
     RETURN
999
1000 Q = 2.5:B = 1.2:C = 3.4
1002 E
      =
             0
    FOR I = 1 TO 100
1005
1010 A = (B + C) * Q
1020
     NEXT I
1030
    RETURN
```

C400-	20	00	C4	JSR	\$C40C
C403-	4C	00	FE	JMP	\$FE00
C406-	20	26	C4	JSR	\$C426
C409-	4C	00	FE	JMP	\$FE00
C40C-	A9	EO		LDA	#\$E0
C40E-	8D	CB	CO	STA	\$COCB
C411-	A9	01		LDA	#\$01
C413-	8D	C8	CO	STA	\$COC8
C416-	A9	00		LDA	#\$00
C418-	8D	C9	CO	STA	\$COC9
C41B-	A9	EC		LDA	#\$EC
C41D-	8D	C4	CO	STA	\$C0C4
C420-	A9	13		LDA	#\$13
C422-	8D	C5	CO	STA	\$C0C5
C425-	60			RTS	
C426-	AD	C8	CO	LDA	\$COC8
C429-	8D	FE	C4	STA	\$C4FE
C42C-	AD	C9	CO	LDA	\$COC9
C42F-	8D	FF	C4	STA	\$C4FF
C432-	38			SEC	
C433-	A9	00		LDA	#\$00
C435-	ED	FE	C4	SBC	\$C4FE
C438-	8D	FE	C4	STA	\$C4FE
C43B-	A9	00		LDA	#\$00
C43D-	ED	FF	C4	SBC	\$C4FF
C440-	8D	FF	C4	STA	\$C4FF
C443-	60			RTS	

¥

C400- 20 OC C4 4C 00 FE 20 26 C408- C4 4C 00 FE A9 E0 8D CB C410- CO A9 O1 8D C8 CO A9 00 C418- 8D C9 C0 A9 EC 8D C4 C0 C420- A9 13 8D C5 C0 60 AD C8 C428- CO 8D FE C4 AD C9 CO 8D C430- FF C4 38 A9 00 ED FE C4 C438- 8D FE C4 A9 00 ED FF C4 C440- 8D FF C4 60

×

Assembly of the 6522 VIA-board

Assembly of the 605 6522 VIA experimenter card

The model 605 VIA card contains the 6522 chip together with support circuitry. Available as an extensively documented bare board, the APPLE compatible card is ideal for use with the EL-COMP-1 expansion mother board. Parts required for assembly of the board are listed below.

Part List

1

2

1

2

1

Qty Description

- Capacitor tantal 10 uF / 35 V
- DIP-switch, 2 poles / 3 poles
- 2 Connectors with 20 pin each for port A and port B connectors.
 - 40 pin socket DIL
 - 18 pin sockets DIL
 - 16 pin socket DIL
 - 6522 VIA (Rockwell)
 - 4050 (Motorola)
 - 2114L RAM (Synelec or Rockwell)
 - 6522 I/O Board

TOP VIEW (COMPONENT SIDE)

Two jumpers must be added to the circuit board. Jumper 1 is added to the solder side of the circuit board from pin 20 - pin 24 of the 6522. This carries + 5 V from pin 20 - pin 24.

The second jumper must be added from pin 1 of the APPLE II connector to pin 8 on the 2114 RAM chip sockets. This carries the I/O select signal from the APPLE bus to the chip select of the RAM chips. Use of the I/O select signal implies that 256 bytes of memory will be available for a custom I/O routine, etc. Since I/O select is decoded differently for each APPLE connector, the precise address of the 256 byte memory segment will depend upon the APPLE slot in which the 605 board is placed.

After installation of the jumpers install IC sockets with the 6522, C4050, and 2114 devices as desired. Insert the 605 card in the ELCOMP-1 expansion chasis and apply power. Boot up the host microcomputer and verify that this is functioning normally. Finally, verify operation of the VIA by executing one or more of the samples of programs given earlier in the chapter.

The OHIO Scientific Superboard hooked up to the Universal Expansion Board.

Three I/O-cards are plugged into slots 2–4. A 32 K dynamic RAM card in the S-44 slot gives you 40K of usable RAM.

38

TOP VIEW 4050 C MOS BUFFER

R2114 1024 x 4 STATIC RANDOM ACCESS MEMORY

2716 EPROM Burner

Typical OHIO Scientific

2716 EPROM-Burner

The model 607 EPROM programmer may be used to program 2716 type EPROMs which use a single +5V supply. The model 607 is a ideal for use with the ELCOMP-1 expansion board.

The 2716 has five states. These are:

- READ
- STAND-BY
- PROGRAM
- PROGRAM VERIFY and
- PROGRAM INHIBIT

A given state is selected according to the signals present on three inputs. These are:

- CHIP ENABLE (pin 18),
- OUTPUT, ENABLE (pin 20, and
- PROGRAMMING VOLTAGE (pin 21).

The names of these three inputs are abbreviated as: \overline{CE} , \overline{OE} , and VPP. See the table below.

2716 STATES

STATE	CE(18)	OE(20)	Vpp	Vcc
READ	LOW	LOW	+5	+5
STANDBY	HIGH	Don't Care	+5	+5
PROGRAM	Pulsed Low to HIGH	HIGH	+25	+5
PROGRAM VERIFY PROGRAM	LOW	LOW	+25	+5
INHIBIT	LOW	HIGH	+25	+5

To program a location in the 2716 it is necessary to set chip enable to logic low, output enable to logic high, and to apply programming voltage of +25 volts to the VPP input. In this state the data lines of the 2716 are automatically configured as inputs. An external device must latch the address of the location to be programmed, as well as the data intended for that location, and drive the address and data inputs of the 2716.

Programming may then be accomplished by pulsing the chip enable input from logic low to logic high for precisely 50 milliseconds.

Several things are therefore required to make a 2716 EPROM programmer. First we need 11 latched data outputs to hold the 2716 address lines stable eight bidirectional lines are required to control the 2716 data lines. It is necessary that we write data to the 2716 for programming purposes, and read back data to confirm that individual locations have been corrrectly programmed. Two additional bits are required for controlling the chip enable and output enable inputs of the 2716. Finally it is necessary to provide some means of applying and removing the 25V programming voltage. The 6522 provides much of the needed capability of the single chip. Most of the necessary inputs and outputs are available directly from the 6522. In addition to this, the 6522 contains an interval timer which greatly simplifies the task of generating the required 50 millisecond pulse. As shown in the attached schematic, 6522 port A drives the 2716 data bits. Seven bits from 6522 port B drive the seven least significant address bits of the 2716. The seventh bit from 6522 port B drives the 2716 chip enable via a 74LS04 inverter. The output of the 6522's interval timer is available at pin 39 (CA2), and this output is coupled to the 2716 output enable. Having exhausted that 6522's supply inputs and outputs, the four most significant address bits for the 2716 are provided via the 74LS175 4-bit-latch. Programming voltage is controlled with a toggle switch.

It is important that the programming voltage stays between 24,5 and 25.5 volts. This may be accomplished by the use of an external position supply, or by using several batteries as described below.

Connection of three 9-volt-batteries in series yield the voltage of 27 to 28 volts. This is in excess of the 25.5 volt maximum required by the EPROM programming board. The necessary 2 to 3 volt drop may be attained using several 1-end 914 diodes in series. Each diode will exhibit a voltage drop of approximately 0.6 volts. Connection of four diodes connected in series should adjust the programming voltage to the desired 25 volt level.

Operation of the EPROM programmer

Insert the EPROM programming board into slot 1 of the ELCOMP -1 expansion card. Make sure that the + 5 volt switch and the programming voltage switch are both in the "off"-position (down). Apply power to the ELCOMP-1 expansion board and to the Superboard. Load the EPROM programming software. Next, load the desired object code into computer memory beginning at location 1000 hex to location 17FF hex. (4000 to 47FF if you use the board with the APPLE II).Insert the blank EPROM into the socket on the EPROM programming card. Before proceeding it is necessary to tell the EPROM programming software the amount of EPROMs to be programmed, and the area of RAM where the desired information is currently stored. The computer systems machine language monitor should be used to place this information in memory as shown in the table below.

0010	Starting Address EPROM	LSB
0011	Starting Address EPROM	MSB
0012	Ending Address EPROM	LSB
0013	Ending Address EPROM	MSB
0014	Starting Address in RAM	LSB
0015	Starting Address in RAM	MSB
0016	Ending Address in RAM	LSB
0017	Ending Address in RAM	MSB

Note that the EPROM address is not specified as an absolute machine address, but rather as the offset into the EPROM. Thus the EPROM address will be a number between 0 and 7FF hex. The address in RAM where the object code is stored must be entered as an absolute address and may be anywhere in available RAM memory.

The user need be concerned with the above address assignments only if he intends to program a portion of the EPROM, rather than the entire EPROM. If EPROM programming software is executed beginning with location 0800 hex, then the software assumes that the entire EPROM is to be programmed (or read or tested) and that the RAM image of the EPROM will be present at locations 1000 to 17FF hex for the Superboard (4000 to 47FF for the APPLE II).

If only one section of an EPROM is to be programmed, read, or tested, then the EPROM programming software should be executed beginning with location 803 hex. In this case the EPROM programming software will give its attention to that portion of the EPROM indicated by the contents of the locations mentioned in the table above. Specific details of programming EPROMs, reading EPROMs, and testing EPROMs are described below.

Assembly instructions of the EPROM-Burner

It is recommended to install all integrated circuits in DIL-sockets. To put the jumpers at the right place is a little bit tricky. There is a total of 7 jumperwires on the board.

First install the two on the componentside on the board (J1 + J2). Then install the five jumpers on the soldering side of the board. J3 connects pin 20 and pin 24 of the 6522 VIA chip. Place J4, J5, and J6 on the soldering side of the board. The matching wholes are provided on the right hand side of the connector.

Another connection has to be made to connect the clock to the 6522 chip. See jumper J7 in the assembly schematic and J1 on the soldering side of the board.

The power supply for the burner voltage is supplied via two soldering points near switch S1 (--+).

Installation of the diodes

If you want to use three 9V-batteries instead of a 25V powersupply, you have to install 3 diodes according to the following schematic.

To reduce the programming voltage from $3 \times 9V = 27 V$ to 25V, use three diodes installed as follows:

If you use a 25V power supply, wire a jumper from the upmost left soldering point to downmost right point.

The switches S1 and S2 must be mounted using a solid copperwire to give a fasten position. For details see the figure below.

Parts-List for the EPROM-BURNER

Qty	Description
1	Capacitor tantal 10 µF/35V
1	Capacitor 100 nF
1	DPDT-Switch
Ι	SPD T-Switch
I	Diode 2N 4148
1	14 pin socket DIL
I	16 pin socket DIL
1	18 pin socket DIL
1	40 pin socket DIL
L	24 pin socket TEXTOOL
1	6522 (Rockwell)
1	4050 (Motorola)
I	74LS154
1	74LS04
1	PC-Board EPROM-BURNER
3	Diodes 2N 4148 see text

24 PIN MEMORY EPROMS & RAMS

DEVICE	TYPE	MANUF	SIZE	PIN 18	PIN 19	PIN 20	PIN 21
2708	EPROM	ті	1Kx8	PROG	+12V	CS*(PE)	-5V
2508	EPROM	ті	1Kx8	PC/ PROG	NC	CS*	Vpp
2758	EPROM	ті	1Kx8	PD/ PROG	AR	CS*	Vpp
3628	PROM	INTEL	1Kx8	CS4	CS3	CS2*	CS1*/
4801	RAM	MOSTEK	1Kx8	CS*	NC	OE*	PROG WE*
4118	RAM	MOSTEK	1Kx8	CS*	L*	OE*	WE*
4008	RAM	ті	1Kx8	CS*	AR	OE*	WE*
2716	EPROM	INTEL	2Kx8	CS*/	+12V	A10	-5V
2516	EPROM	ті	2Kx8	PROG CS*/	A10	OE*	Vpp
3636	PROM	INTEL	2Kx8	PROG CS3	CS2	CS1*/ PROG	A10
4802/ 4016	RAM	MOS/TI	2Kx8	CS*	A10	OE*	WE*
2732	EPROM	INTEL	4Kx8	CS*	A10	OE*/ PROG	A11
2532	EPROM	ті	4Kx8	A11	A10	PD/ PROG	Vpp
4732	PROM	ті	4Kx8	A11	A10	CS	CS*/
4764	PROM	ті	8Kx8	A11	A10	S*/	PROG A12
58725	RAM	MITSU- BISHI	2Kx8	CS	10	PROG OE	WE
	CS*/S OE*		Contra to the second	lect (Lo Enable			
	WE*			nable (l			
	PD		Power [
	PRO	G/(PE)= F	rogran	n Enable	е		
	Vpp	= 2	25V (Pr	ogram '	Voltage)		
	L*			(LOW)			
	AR	= /	Array:		e Outpu se Outpu		

50

51

GND

Testing an EPROM

After starting the EPROM programming software a menu will be displayed offering the user the opportunity to program, read, or test the EPROM present on the EPROM programming card. Selection of the test function is accomplished by pressing the T-key on the keyboard. This function verifies that the EPROM has been completely erased (i.e. that each location in the EPROM contains FF hex.). If the program finds a value other than FF in any location within the EPROM, an error message will be printed on the screen of the computer. This message indicates that the EPROM has not been thoroughly erased, or that the EPROM has been damaged. Insufficient intensity of the ultra violet light or insufficient erasure time will result in incomplete erasure of the EPROM.

However, excessive intensity of the ultra violet light or excessive erasure time will result in damage of the EPROM. Consult the specifications of the EPROM manufacturer and use a quality EPROM eraser.

If the EPROM is tested and found to contain only FF, then no error message will be printed and the menu will be re-displayed. Note that if the EPROM programming software was executed with location 800 hex, then the entire EPROM will be tested. If the EPROM programming software was executed beginning with location 803 hex, then only that portion of the EPROM indicated in locations 10 through 13 of computer memory will be tested. (See above paragraphs).

How to program an EPROM

The first steps for programming an EPROM are:

- 1. Verify the EPROM to be programmed is completely erased.
- Load the object code to be entered into the EPROM into RAM.
- 3. Load the EPROM programming software into RAM.

If only a portion of the EPROM is to be programmed, then begin by placing the appropriate addresses into computer memory as indicated above. Following this begin execution of EPROM programming software beginning with location 803. If the entire EPROM is to be programmed, then skip the above step and begin program execution with location 800 hex. Once again a menu will be displayed offering the user the opportunity to program, read, or test the EPROM. If you intend to program the EPROM then you must now apply the EPROM programming voltage. Switch S1 should already be on (up) providing the EPROM with 5-volt power. Switch S2 should now be switched to the "up"position (on), applying the 25-volt programming voltage to the EPROM.

Pressing the letter B (for "burn") on the computer keyboard will initiate the EPROM programming process. The EPROM programming software will program and verify the desired EPROM locations. Since approximately 50 milliseconds are required to program a single location, it is clear that it will require approximately 100 seconds to program a 2K X8 2716 EPROM. If the computer is unable to program a given location in the EPROM, then the program will stop and an error-message will be printed. If the EPROM is programmed properly, you get the message: "EPROM programmed".

Reading an EPROM

Once again begin program execution with location 803 hex if only a portion of the EPROM is to be read. Otherwise begin program execution with location 800 hex. The contents of the EPROM will be read into RAM indicated by the contents of memory locations 14 hex. through 17 hex. The READ operation is executed by pressing S (for "store") on the keyboard.

Description of the EPROM programming software

The machine language program to run the EPROM programmer resides in memory location 800 hex through 9FF hex. It requires use of zero page memory locations 10 through 1B hex. The program is written entirely in 6502 machine language. The program requires the use of several routines which are machine dependent. If computers other than the OHIO Scientific C1P or APPLE II are used, then several locations in the program must be changed to point at the location of these routines within your computer.

Machine dependant routine No. 1

Output an ASCII character from the accumulator. This routine is called by the EPROM programming software at location 083E hex. The location of this routine in several computers is noted below.

1. Output of an ASCII character from the accumulator onto the screen

APPLE	=	FDED
OHIO C1P	=	BF2D
ATARI	=	F6A4 (May be changed by ATARI later)
AIM	=	E97A
PET	0= 10	FFD2

This routine is called at memory location 083E hex.

Machine dependent routine No. 2

Input an ASCII character from the keyboard into the accumulator. This routine is called by the EPROM programming software at location 080B hex. The location of this routine in several popular computers is noted below.

2. INPUT an ASCII character from keyboard into the accumulator

APPLE	=	FD35
OHIO CI	>	
(Superboa	rd)=	FD00
ATARI	=	F6DD (may be changed by ATARI)
AIM	=	E93C
PET	=	FF4E

This routine is called at memory location 080B hex.

Machine dependent routine No. 3

Jump back to the monitor. This routine is called by the EPROM programming software at several points. These points are locations 081E, 0828, and 0938 hex. The location of this routine in several popular computers is noted below.

3. Jump back to the monitor

APPLE II	=	FF59 hex
OHIO Supe	r-	
board C1P	=	0000 hex (Restart monitor FE00)
ATARI	=	difficult
AIM	=	E07B
PET	=	0400 TIM-Monitor

A call to this routine is made in locations 081E, 0828 and 0938

Source-Listing for EPROM-Burner

	-			
0800 C0C0	1 2		DCM ORG	"PR#1" \$C0C0
COCO	3	MODD		*
C0C0	54	TORB	EQU EQU	*+!1
C0C0	5	DDRB	EQU	*+12
C0C0		DDRA		*+13
C0C0	6 7	TICL	EQU	*+!4
C0C0	8	TICH	EQU	*+15
			EQU	
C0C0	9	ACR	EQU	*+!11
C0C0	10	PCR	EQU	*+!12
C0C0	11	IFR	EQU	*+!13
C0C0	12	;		
C0C0	13	i	DOIT	\$0000
C0C0	14	STR	EQU	\$C800
C0C0	15	COUT	EQU	
C0C0	16	RDCHAR	EQU	\$FD00
COCO	17	MONITO	EQU	\$FE00
C0C0	18	7		47.0
C0C0	19	SAEPL	EPZ	\$10
C0C0	20	SAEPH	EPZ	SAEPL+!1
C0C0	21	EAEPL	EPZ	SAEPL+!2
C0C0	22	EAEPH	EPZ	SAEPL+!3
C0C0	23	SAPL	EPZ	SAEPL+!4
C0C0	24	SAPH	EPZ	SAEPL+!5
C0C0	25	EAPL	EPZ	SAEPL+!6
C0C0	26	EAPH	EPZ	SAEPL+!7

C0C0 C0C0 C0C0 C0C0 C0C0 C0C0 C0C0	27 LAL 28 LAH 29 LACL 30 LACH 31 HFZ 32 ;	EPZ SAEPL+18 EPZ SAEPL+19 EPZ SAEPL+110 EPZ SAEPL+111 EPZ SAEPL+112	084E 084E 8D8D 0850 C5D0D2 0853 CFCDA0 0856 CECFD4 0859 A0C5D2 085C C5C1D3	70 ; 71 ; 72 TEXT 73	HEX 8D8D ASC "EPROM NOT EREASED "
C0C0 0800 0800 20C208 0803 201509 0806 A246 0808 203B08	33 ; 34 35 CSTAR 36 WSTAR 37 38	I JSR INIT LDX #70 JSR TXTOUT	085F C5C4A0 0862 A0A0A0 0865 008D 0867 C5D0D2 086A CFCDA0 086D CECFD4 0870 A0D0D2 0873 CFC7D2 0876 C1CDCD	74 75	HEX 008D ASC "EPROM NOT PROGRAMMED "
080B 2000FD 080E 8D4D08 0811 202DBF	39 40 41	JSR RDCHAR STA SAVEC JSR COUT	0879 C5C4A0 087C A0A0A0 087F 008D 0881 C5D0D2 0884 CFCDA0	76 77	HEX 008D ASC "EPROM PROGRAMMED "
0814 AD4D08 0817 C9D2 0819 D006 081B 205809	42 43 44 45	LDA SAVEC CMP #"R" BNE L1	0887 D0D2CF 088A C7D2C1 088D CDCDC5 0890 C4A0A0		
081E 203809 081E 4C00FE 0821 C9C2 0823 D006 0825 20C809 0828 4C00FE	45 46 47 L1 48 49 50	JSR LESEN JMP MONITO CMP #"B" BNE L2 JSR PROGRA JMP MONITO	0893 008D 0895 C2A9D5 0898 D2CEC9 089B CEC7A0 089E D4A9C5 08A1 D3D4C9 08A4 CEC7A0	78 79	HEX 008D ASC "B)URNING T)ESTING R)EADING "
0828 4C00FE 082B C9D4 082D D0D4 082F 207409	50 51 L2 52 53	CMP #"T" BNE WSTART JSR PRUEFE	08A7 D2A9C5 08AA C1C4C9 08AD CEC7A0 08B0 A0A0		
0832 A265 0834 203B08 0837 4C00FE 083A 00	54 55 56 57	LDX #101 JSR TXTOUT JMP MONITO BRK	08B2 00 08B3 8D 08B4 C5D0D2 08B7 CFCDA0 08BA C5D2C5 08BD C1D3C5 08C0 C4	80 81 82	HEX 00 HEX 8D ASC "EPROM EREASED"
083B 083B 083B 8D4B08	58 ; 59 ; 60 TXTOU	I STA SAVEA	08C0 C4 08C1 00 08C2 08C2	83 84 ; 85 ;	HEX 00
083E BD4E08 0841 F007 0843 202DBF 0846 E8 0847 18	61 TXT1 62 63 64 65	LDA TEXT,X BEQ FIN JSR COUT INX CLC	08C2 08C2 A900 08C4 8510 08C6 8511 08C8 8514 08CA A9FF 08CC 8516	86 ; 87 DEFAU 88 89 90 91 92	LDA #\$00 STA SAEPL STA SAEPH STA SAPL LDA #\$FF STA EAPL
0848 90F4 084A 60 084B 0000 084D 00	66 67 FIN 68 SAVEA 69 SAVEC	BCC TXT1 RTS HEX 0000 HEX 00	08CE 8512 08D0 A907 08D2 8513 08D4 A940 08D6 8515	93 94 95 96 97	STA EAEPL LDA #\$07 STA EAEPH LDA #\$40 STA SAPH

08D8 A94 08DA 851 08DC 60 08DD 08DD	7 99 100 101 102	;		#\$47 EAPH			A980 8DCBC0 60	141 142 143 144 145			#\$80 ACR	;PB7	MONOFLOP
08DD A51		EOUT	LDA		1000	0927	A510	146	START	LDA	SAEPL		centr
08DF 8DC 08E2 851				TORB LACL		0929		147			LAL		42.70
08E4 A51			LDA			092B	851A 8DC0C0	148 149			LACL TORB		39 C.S. Sarah
08E6 851				LACH		0920		149			SAEPH		1.0011.002
08E8 261				LACL		0932		151		STA			7966
08EA 261				LACH		0934		152			LACH		9990
08EC A51 08EE 8D0				LACH STR	A COMPANY	0936		153			LACL		
08F1 18	112		CLC	DIR		0938 093A		154 155			LACH LACH		
08F2 60	113		RTS				8D00C8	156			STR		anna an
08F3	114	;			STATISTICS.	093F		157		RTS	1		8046
08F3 08F3 E61	115 .8 116	; NEXT	INC	ТАТ		0940			;				62.60
08F5 D00		NEAT	BNE			0940	0001	159	; EDDOD	CMD	#001		
08F7 E61			INC		111111	0940 0942		160 161	ERROR	BNE	#\$01 F1		A DAY
08F9 E61		Nl		SAEPL		0944		162			#\$00		TAPE LAND.
08FB D00			BNE			0946	203B08	163			TXTOUT		Cheo .
08FD E61 08FF A51		N2		SAEPH SAEPH			4COOFE	164			MONITO		2490
0901 C51		INZ		EAEPH		094C 094E	C902	165 166	El	CMP BNE	#\$02		2060
0903 900			BCC			0950		167			#24		Former Milling
0905 F00			BEQ		12450		203B08	168			TXTOUT		
0907 B00			BCS				4COOFE	169	E2	JMP	MONITO		SACON SAC
0909 A51 090B C51		N4		SAEPL EAEPL		0958		170	;				The state
090D F00			BEQ				201509 A90C	171 172	LESEN		INIT #\$0C		STATULA DE LA
090F B00	3 130		BCS		1.00		8DCCC0	172				·OE=L	READ
0911 200		N3		EOUT			202709	174			START	100-0	THEAD
0914 60 0915	132 133	N5	RTS		1.1920	0963	ADC1C0		LES1		TORA		3520
0915	133	;				0966	9114	176		STA	(SAPL)	, Y	
0915 A90		INIT	LDA	#\$00		0968 096A	E614 D002	177 178			SAPL LES2		
0917 8DC				DDRA		096C	E615	179			SAPH		Charles and
091A AA	137		TAX		10.000	096E	20F308	180	LES2	JSR	NEXT		0906
091B A8 091C A97	138 F 139		TAY	#\$7F		0971	90F0	181			LESI		TOUO .
091E 8DC				DDRB	1.12	0973 0974	60	182 183		RTS			8. 4 8. 4 8. 4 8. 4 8. 4 8. 4 8. 1 8.
			1 all and	The second second second		14		102	;				0.260 15 15

0977 A90C 0979 8DCCC0 097C 202709 097F ADC1C0 0982 C9FF 0984 F005 0986 A901	186 ST. 187 JS. 188 P1 LD. 189 CM. 190 BE 191 LD.	R INIT A #\$0C A PCR ;OE=L F R START A TORA P #\$FF Q P2 A #\$01 P ERROR	09CB 09CE 09D0 09D3 09D5 09D8	20AD09 2 A9FF 2 BDC3C0 2 Bl10 2 BDC1C0 2 AA 2 209109 2	27 PROGRA 28 29 PR1 30 31 32 33 34 35	JSR START JSR CHANGE LDA #\$FF STA DDRA LDA (SAEPL),Y STA TORA TAX JSR MONOFL LDA #\$00
098B 20F308 098E 90EF 0990 60 0991 0991 A90E	193 P2 JS 194 BC 195 RT 196 ; 197 MONOFL LD	R NEXT C Pl S A #\$0E	09E1 09E2 09E5 09E7	8A 2: CDC1C0 2: F00B 2: A902 2:	36 37 38 39 40 41	STA DDRA TXA CMP TORA BEQ PR3 LDA #\$02 JMP ERROR
0996 A950 0998 8DC4C0 099B A9C3 099D 8DC5C0	199 LD. 200 ST. 201 LD. 202 ST.	A PCR ;OE=H P A #\$50 A T1CL A #\$C3 A T1CH	09EC 09EE 09F0 09F2	E610 2 D002 2 E611 2 20F308 2	41 42 PR2 43 44 45 PR3 46	INC SAEPL BNE PR3 INC SAEPH JSR NEXT
09A3 2940 09A5 F0F9 09A7 A90C 09A9 8DCCC0	204 AN 205 BE 206 LD 207 ST	A IFR D #\$40 Q MO1 A #\$0C A PCR ;OE=L	09F7	A232 24 4C3B08 24 60 24	47 48 49 50 ;	BCC PR1 LDX #50 JMP TXTOUT RTS
09AD 09AD 09AD A200 09AF A004		X #\$00 Y #\$04	****	END OF A		
09B3 851C 09B5 B91000 09B8 9510 09BA A51C	214 ST 215 LD 216 ST 217 LD	A \$0010,X A HFZ A \$0010,Y A \$0010,X A HFZ A \$0010,Y				
09BF C8 09C0 E8 09C1 E004 09C3 D0EC 09C5 A000 09C7 60 09C8	219 IN 220 IN 221 CP 222 BN	Y X X #\$04 E CA1 Y #\$00	a sub-			

LABEL. LOC. LABEL. LOC. LABEL. LOC.

** ZERO PAGE VARIABLES:

0010 0012 0014 0015 0011 EAEPH 0013 SAPL SAPH SAEPL SAEPH EAEPL 0016 001B 0018 0019 001A LACH EAPL EAPH 0017 LAL LAH LACL HFZ 001C

** ABSOLUTE VARABLES/LABELS

TORB	COCO	TORA	COC1	DDRB	COC2	DDRA	COC3	TICL	COC4		
TICH	C0C5	ACR	COCB	PCR	COCC	IFR	COCD	STR	C800	COUT	BF2D
RDCHAR	FD00	MONITO	FE00	CSTART	0800	WSTART	0803	Ll	0821	L2	082B
TXTOUT	083B	TXT1	083E	FIN	084A	SAVEA	084B	SAVEC	084D	TEXT	084E
DEFAU	08C2	EOUT	08DD	NEXT	08F3	Nl	08F9	N2	08FF	N4	0909
N3	0911	N5	0914	INIT	0915	START	0927	ERROR	0940	El	094C
E2	0955	LESEN	0958	LES1	0963	LES2	096E	PRUEFE	0974	Pl	097F
P2	098B	MONOFL	0991	MOl	09A0	CHANGE	09AD	CAl	09B1	PROGRA	09C8
PR1	09CE	PR2	09EC	PR3	09F2						

SYMBOL TABLE STARTING ADDRESS:6000 SYMBOL TABLE LENGTH:020A

HEX-DUMP of the EPROM-Burner

0938-	26	1B	A5	1B	8D	00	C8	60	
0940-	C9	01	D0	80	A2	00	20	3B	
0948-	80	4C	00	FE	C9	02	DO	05	
0950-	A2	18	20	3B	80	4C	00	FE	
0958-	20	15	09	A9	0C	8D	CC	CO	
0960-	20	27	09	AD	Cl	C0	91	14	
0968-	E6	14	DO	02	E6	15	20	F3	
0970-	80	90	FO	60	20	15	09	A9	
0978-	00	8D	CC	C0	20	27	09	AD	
0980-	Cl	CO	C9	FF	FO	05	A9	01	
0988-	4C	40	09	20	F3	08	90	EF	
0990-	60	A9	0 E	8D	CC	C0	A9	50	
0998-	8D	C4	C0	A9	C3	8D	C5	CO	
09A0-	AD	CD	C0	29	40	FO	F9	A9	
09A8-	00	8D	CC	C0	60	A2	00	A0	
09B0-	04	B5	10	85	10	B9	10	00	
09B8-	95	10	A5	1C	99	10	00	C8	
09C0-	E8	EO	04	DO	EC	A0	00	60	
09C8-	20	27	09	20	AD	09	A9	FF	
09D0-	8D	C3	C0	Bl	10	8D	C1	CO	
09D8-	AA	20	91	09	A9	00	8D	C3	
09E0-	C0	8A	CD	C1	CO	FO	0B	A9	
09E8-	02	4C	40	09	E6	10	DO	02	
09F0-	E6	11	20	F3	08	90	D7	A2	
09F8-	32	4C	3B	08	60				
*									

Summary of operating instruction

- 1. Insert the EPROM programming card to slot 1 of the ELCOMP-1 mother board with power "off".
- 2. Apply power to your computer.
- Connect programming voltage to the EPROM programming card.
- 4. Make sure that both switches on the EPROM programming card are down ("off").
- 5. Insert the blank EPROM into the socket.
- 6. Read the object program into RAM (the program you wish to place in the EPROM).
- 7. Load the EPROM programming software from cassette tape.
- 8. Switch S1 up ("on").
- 9. If partial programming of the EPROM is desired then you must insert the starting address within the EPROM, the ending address within the EPROM, the start address within RAM, and the end address within RAM, into memory locations 10 hex through 17 hex.
- For partial EPROM programming, begin execution of the EPROM programming software beginning with location 0803 hex., otherwise begin program execution with locations 0800 hex.
- For saving or testing the EPROM, leave switch S2 in downposition and select the save or test function by pressing key S or key T respectively.
- 12. To program the EPROM move switch S2 to the up-position ("on"). Then press B to burn the EPROM.
- 13. After programming is complete return switch S2 to the down ("off") position.
- 14. Return switch S1 to the down ("off") position and remove EPROM from the socket.

Using the 2716 EPROM Burner without the motherboard If you want to use the burner with your C1P or Superboard without the motherboard you have to do your own decoding for the burner board. Therefore you can connect a decoding circuit (built on a small prototyping board) to the 40pin expansion connector of your Superboard. The other end of the decoding circuit you can connect with a 50pin APPLE II[®] bus connector.

Of course you need a +5V powersupply for the board and $9 \times 3 \text{ V}$ to burn the EPROMs.

You also have to remove the 8T28 chips (U6 + U7) and span the corresponding data lines.

9	0
ł	j
1	000
0	9
0	0

The RES signal has to be brought to pin 11 of the 40 pin Superboard expansion connector. For details see the following schematic.

Sound generation with AY - 3 - 8912

Sound generation with the GI Sound Chip (GI AY3-8912)

The programmable sound generator (PSG) from General Instruments may be used to generate fascinating sound effects, tones and a variety of noises. Three programmable square wave outputs can be mixed, and one output is a noise generator. The generated wave forms are carried through a D to A converter to three output channels. These output channels may be summed at the input of an operational amplifyer, or used separately as single sound sources. These outputs may be modulated with an external generator. All functions of the sound chip are controlled by 16 internal registers.

REGIST	BIT	87	86	85	84	83	B2	81	80				
RO				1	B-BIT Fir	e Tune	A						
R1	Channel A Tone Period	7///	7////	77777	/////	4-	BIT Coa	rse Tune	A				
R2				1	B-BIT Fir	ne Tune	в	1.5.1.					
R3	Channel B Tone Period	7/11	4-BIT Coarse Tune B										
R4	and the second of participation	8-BIT Fine Tune C				1							
R5	Channel C Tone Period	7/1/	77777	7////	77777	4-	BIT Coa	rse Tune	a C				
R6	Noise Period	1///	77777	77777		5	BIT Per	od Cont	rol				
	R7 Enable	IN/OUT Noise			Tone								
R7		IOB	IOA	С	B	A	С	В	A				
R10	Channel A Amplitude	111	77777	/////	M	L3	L2	LT	LO				
811	Channel B Amplitude	111	77777	7777	M	L3	L2	L1	LO				
R12	Channel C Amplitude	111	77777	7777	м	L3	L2	L1	LO				
R13	and the second second				8-BIT Fi	ne Tune	E						
R14	Envelope Period	0.00	T.L.	8	BIT Co	arse Tun	e E		100				
R15	Envelope Shape/Cycle	111	77777	/////	77777	CONT	ATT.	ALT.	HOLD				
R16	I/O Port A Data Store			8-BIT	PARALL	EL 1/0 o	n Port A		CONT !!				
B17	I/O Port B Data Store	1	1.015.1	8-BI	PARAL	LEL I/O	Port B	N 144	24.1				

The 16 internal registers

AY-3-8912 PIN ASSIGNMENTS

Top View	
28	DA0
27	DA1
26	DA2
25	DA3
24	DA4
23	DA5
22	DA6
21	DA7
20	BC1
19	BC2
18	BDIR
17	A8
16] RESET
15	CLOCK
	28 27 26 25 24 23 22 21 20 19 18 17 16

The generation of a single tone is accomplished by frequency division. The fundamental clock frequency furnished to the GI sound chip is divided once by 16, and then once again in a divide by 12 counter.

This 12 bit word now will be put into register 0 (8 lower bits) and the remaining four bits for channel A will be put into register 1. For a given clock frequency you can calculate the tone period as follows:

fclock tp =____ t*16

F = the desired frequency fclock = applied clock frequency for the chip Both values are used in Hz.

```
Example: f = 440 Hz
fclock = 1 MHz
```

 10^{6} tp = ----- = 142.04 440*16

If you connect 142 decimal in a 12-bit binary number you will get 08E (hex). So with a content of 8E in register R0 and a zero in register R1 you will get a signal with a frequency of 440 Hz on one channel.

Of course, the rounding of 142.02 gives you an error, so that the resulting frequency will be 440,14 MHz.

A comparison of the calculated frequency and real frequency (at different clocks) you will get is shown in the following table:

Frequency	1 MHz	1.78977
1046.496 (C6)	1041.666	1045.428
7040.000 (C8)	694.444	6991.299

To calculate the hex numbers for the different clock frequency you can use the following table:

This program calculates the contents of the registers for the PSG AY-3-8912. Clock frequency (FC) = 1 MHz.

12 bit value output in hex.

Output of actual and the must-be frequency.

The next figure shows you, how to generate a clock frequency with a 3.579545 MHz crystal.

Then the signal is divided using the CMOS chip 4013. In many applications it will be more than sufficient to use the 1 MHz clock of your computer system.

How the internal registers work

The registers R0–R5 are used to program the tone periods for the three channels A, B, and C.

The register R6 is used to program the noise generator. Therefore you only have to use the five lower bits of this registers. The lowest noise frequency can be achieved by placing 1F hex into the lower five bits (all five bits are 1). The highest possible noise frequency needs a 1 in that part of the register.

The clock frequency is now divided first by 16 and then by the 5-bit word. The noise period can be calculated with the following equation:

With a clock frequency of 1 MHz you can generate a noise within a range from 2KHz - 75 KHz. Register R7 controls the sound and noise output of each separate channel. How the channels work together with the sound or noise output is shown in the following chart:

Bit	7	6	5	4	3	2	1	0	
	1/0		N	NOISE			SOUND		
			С	/ B	/ A	С	: / B	/ A	

When one bit of register R7 is set to zero (0), the matching channel is open.

Example: Sound on channel A = 0 0 1 1 1 1 1 0 = 3E hex Noise on channel B

Sound on channel A and C = 00101010 = 2A hex

The two most significant bits are used for the data transfer via the I/O port of the PSG. You don't need them for sound generation. Registers R8, R9 und R10 are responsable for the volume of the sound outputs of each channel. In the same order they are dedicated to the channels A, B, and C.

The first four bits set the volume in 16 different levels for each channel. This setting is not linear, it is logarithmic.

Voltage 1V 15 .707V 13 .5V **Decimal Value of** E3 E2 E1 E0 12 .303V .25V 1515V 125V 0 EP $(1/f_{E})$ **EP** = Envelope Period If in one of these registers bit no. 5 is set to a logical 1, the amplitude of that channel is controlled by the envelope generator, which can be programed via the registers R11, R12 and R13. R11 and R10 form a 16-bit counter to generate the length of the period of the envelope.

The clockfrequency is divided by 256 and then by the content of the registers R11,and R12.R12 therefore is the least significant bit.

A 1 MHz clockfrequency allows you envelope periods of 0.06 Hz to 4000 Hz. To calculate the period you can use:

The 16 bit binary value for EP is written into register R11 and R12. For that calculation you can use the program above, if you change line 111 into FF = 256.

The least significant bit of the register R13 determine the shape of the envelope (configuration).

The second waveform, with R13 = 04 generates an increasing tone with the period of EP. The volume then suddenly decreases.

How to program the GI-Soundchip

The control lines BDIR and BC2 are used to select a register. The third control line is not used; it is connected to +5V. The databus and the control lines can be controlled via a 6522 VIA (Versatile Interface Adapter). Additionally the reset and a clock is needed.

In our application we used the ϕ^2 clock of the 6502 microprocessor for our sound chip clock.

To do this you can use the following program:

1.2.2.2.5					
COCO		3		ORG	\$COCO
COCO		4	TORB	EQU	*
0000		5	TORA	EQU	*+!1
0000		6	DDRB	EQU	*+!2
COCO		7	DDRA	EQU	*+!3
COCO		8	;		
0800		8	Sucres.	ORG	\$800
0800	A8	10	OUT	TAY	
0801	A9FF	11		LDA	#\$FF
0803		12		STA	DDRA
0806		13		STA	DDRB
0809		14		STX	TORA
0800	A903	15		LDA	#\$03
080E		16		STA	TORB
0811		17		LDA	#\$00
	A900				
0813		18		STA	TORB
0816		19		TYA	
0817		20		STA	TORA
081A		21		LDA	#\$02
081C		22		STA	TORB
081F		23		LDA	#\$00
0821		24		STA	TORB
0824	60	25		RTS	

The data lines DA0–DA7 are connected to port A of the 6522. The control lines BCI and BDIR are hooked to PB0 and PB1. To find the data into the matching registers you first have to issue the address and then the data over the data lines.

It is controlled via the data lines BDIR and BC1.

BDIR	BCI	PS to
0	0	chip disabled
0	1	Read one register
1	0	Write into one register
1	1	Select an address

The number of the matching register is stored in the X-register and the Jata in the accumulator of the 6502 CPU and then passed to the subroutine called OUT. The PSC at this time is not enabled. When the address is passed over BDIR and BCI go high for a very snort period of time.

When the data pass BDIR goes high shortly.

Example:		enerating hannel A	sound	A with	highest	volume	on
0843 0846 0848 084A 084D 084F	A98E A200 200008 A93E A207 200008 A90F A208 200008 00	51 52 53 54 55		LDA LDX JSR LDA LDX JSR LDA LDX JSR BRK	#\$8E #\$00 OUT #\$3E #7 OUT #\$0F #8 OUT		

Another way to program the PSG is to put the contents of the registers into a table. Then you can write the values via your program into the PSG.

These programs we have seen so far only affect the register of the soundchip. To generate sound and noise you need a few more program parts. They will be comprised substantially of delay routines and checking procedures.

Program: SIREN

Via channel A for approximately 1 s a 440 Hz tone is outputted, after that a tone with 187 Hz is generated for 1s. (Clockfrequency 1 MHz).

	58 59	;			
A93E A207 200008 A90F	61 62 63 64	SIRENE	LDA LDX JSR LDA	#\$3E #7 OUT #\$0F	
A208 200008 A98E	65 66 67	S	LDX JSR LDA	#8 OUT #\$8E	
200008 A900	69 70		JSR LDA	OUT #\$00	
200008 A9FF	72 73		JSR LDA	OUT #\$FF	
A901 A201	75 76		LDA LDX	#\$01 #\$01	
A94E A200	78 79		LDA LDX	#\$4E #\$00	
A9FF 203308 18	81 82 83		LDA JSR CLC	#\$FF WAIT	
90D7 38	36 37	; WAIT	BCC	S	
E901 DOFC	39 40	W2 W3	SBC BNE	∦\$01 W3	
E901 D0F6	42 43		SBC BNE	#\$01 W2	
00	44 45 46 47		CIN		
	A207 200008 A90F A208 200008 A98E A200 200008 A900 A201 200008 A9FF 203308 A901 A201 200008 A9FF 203308 A94E A200 200008 A94E A200 200008 A94E A200 200008 A94E A200 200008 A94E A200 200008 A94E A200 200008 A94E A200 200008 A957 203308 A901 A201 200008 A901 A201 200008 A975 203308 A901 A201 200008 A975 203308 A901 A201 200008 A975 203308 A901 A201 200008 A975 203308 A901 A201 200008 A975 200008 A975 200008 A975 200008 A975 200008 A975 200008 A975 200008 A975 200008 A975 200008 A975 200008 A975 200008 A975 200008 A975 200008 A900 A201 200008 A900 A201 200008 A975 200008 A900 A201 200008 A900 A201 200008 A975 2000008 A975 200008 A975 200008 A975 200008 A975 200008 A975 200008 A975 200008 A975 200008 A975 200008 A975 200008 A975 2000008 A975 20008 20008 20008 20008 20008 20008 20008 2008 2008 2008 2009 2008 2008	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	59 ; A93E 61 SIRENE A207 62 200008 63 A90F 64 A208 65 200008 66 A98E 67 S A200 68 200008 69 A900 70 A201 71 200008 72 A9FF 73 203308 74 A901 75 A201 76 200008 77 A94E 78 A200 79 200008 80 A9FF 81 203308 82 18 83 90D7 84 36 ; 38 37 WAIT 48 38 37 WAIT 48 38 W2 E901 39 W3 D0FC 40 68 41 E901 42 D0F6 43 60 44 45 ; 46 ; 46 ; 46 ; 46 ;	59 ; A93E 61 SIRENE LDA A207 62 LDX 200008 63 JSR A90F 64 LDA A208 65 LDX 200008 66 JSR A98E 67 S LDA A200 68 LDX 200008 69 JSR A900 70 LDA A201 71 LDX 200008 72 JSR A99FF 73 LDA 203308 74 JSR A901 75 LDA A201 76 LDX 200008 77 JSR A901 75 LDA A200 79 LDX 200008 80 JSR A94E 78 LDA A200 79 LDX 200008 80 JSR A9FF 81 LDA 203308 82 JSR 18<	59

Programing example gunshot

To simulate a gunshot you only need the noise generator and the generator for the envelopes. We set up a table in memory and if a button is pushed, the content of the table is brought into the PSG.

If you change the content of location 1006 (noisefrequency) to 00 (highest noise-period) and location 100C to 40 hex (envelope apr. 2 seconds) you can simulate an explosion.

088C 088C		87 88	ŤASTE ;	EQU	\$FD00
088F	202508 2000FD	89 90	ŚCHUSS		LADE TASTE
0892	18	91		CLC	
0893 0895 0895	90F7	92 93 94	;	BCC	SCHUSS
1000 1000 1003	000000	95 96		ORG HEX	\$1000 0000000000000000
1006	0F 07	97 98		HEX HEX	0F 07
1008 100B 100D	101010 0010 00	99 100 101		HEX HEX HEX	101010 0010 00

0800-	A8	A9	FF	8D	C3	CO	8D	C2	
0808-	CO	8E	C1	CO	A9	03	8D	CO	
0810-	CO	A9	00	8D	CO	CO	98	8D	
0818-	C1	CO	A9	02	8D	CO	CO	A9	
0820-	00	8D	CO	CO	60	A2	00	BD	
0828-	00	10	20	00	08	E8	EO	10	
0830-	DO	F5	60	38	48	E9	01	DO	
0838-	FC	68	E9	01	DO	F6	60	A9	
0840-	8E	A2	00	20	00	08	A9	3E	
0848-	A2	07	20	00	08	A9	OF	A2	
0850-	08	20	00	08	00	A9	3E	A2	
0858-	07	20	00	08	A9	OF	A2	08	
0860-	20	00	08	A9	8 E	A2	00	20	
0868-	00	08	A9	00	A2	01	20	00	
0870-	08	A9	FF	20	33	08	A9	01	
0878-	A2	01	20	00	08	A9	4E	A2	
0880-	00	20	00	08	A9	FF	20	33	
0888-	08	18	90	D7	20	25	08	20	
0890-	00	FD	18	90	F7	90			
×									

The program above gives you a hexdump of all the DEMOprograms with the following addresses:

083F - SOUND 0855 - SIREN 088C - GUNSHOT

The programs are set up for the OHIO Scientific Superboard II or III. For other 6502 computers you have to change the addresses for the 6522 VIA and the keyboard routine.

Program "PIANO"

This program simulates the sound of a piano. The keys 1 - 8 refer to the musical notes of the C-scale. The table for that program is placed in the memory area 1010 hex to 1017 hex. Each tone is mixed with a tone of half the frequency and one tone which differs slightly from the basic tone. Then a descending envelope with about a 0.85 period is superimposed.

The program starts at 0900 hex and uses the routines OUT, LOAD and KEYB

0900		104	di parte de la	ORG	\$900
0900		105 106	FTAB	EQU	\$1010
0900		107	FIAD .	LQU	\$1010
0900	2000FD	108	PIANO	JSR	TASTE
0903	290F	109		AND	#\$0F
0905	CONTRACTOR INCOME INCOME INCOME	110		TAX	
0906	CA	111		DEX	
0907	BD1010	112		LDA	FTAB,X
A060	8D0010	113		STA	TAB
090D	AA	114		TAX	
090E	CA	115		DEX	
090F		116		STX	TAB+2
0912		117		LSR	
0913		118		STA	TAB+4
0916		119		JSR	LADE
0919	40009	120	a source is	JMP	PIANO
0910		121	,		
091C 1000		122 123	;	ORG	\$1000
1000	000000	123		HEX	000000000000
1003		124		ПСА	00000000000
1005		125		HEX	0038
1008	101010	126		HEX	101010
100B		127		HEX	000A00
100E		128		HEX	0000
1010	EFD5BE	129		HEX	
1013					
1016	7F75				

This program shows you how to program the registers in the GI-Soundchip in BASIC. The contents of the registers R0....R13 are placed in DATA-statements.

The special feature of that program is that it contains a machine language routine which supplies the pulse for bringing over the information to the sound chip. During program development we found that a pulse, which was generated with a POKE-command in BASIC, was too slow and caused unpredictable functions of the AY-3-8912 chip.

Line 1–5	POKE	USR(X)	routine	into	memory	
----------	------	--------	---------	------	--------	--

. 1	Starting address of USR(X)
	Lower byte \rightarrow dec (0230 hex)
	Higher byte → 12 dec

Line 10 Switch all lines of port A and B of 6522 to outputs.

- Line 210 Stop the present sound while disabling all channels of the sound chip
- Line 230 See line 210
- Line 1000- Writing a value DCA into a register with the address... 1040

Program: Sound-Demo for the Challenger Superboard

```
POKE656, 169: POKE657, 3
 POKE658,141:POKE659,192:POKE660,192
  POKE661,169:POKE662.0
 POKE663,141:POKE664,192:POKE665,192
5 POKE666.96
7 POKE11, 144: POKE12, 2
10 POKE49346,255:POKE49347,255
20 DIMD(14)
100 FORX=1T030:PRINT:NEXT
110 PRINTTAB(6): "GERAEUSCHDEMO"
120 FORX=1TO10:PRINT:NEXT
130 FORX=1T03000:NEXT
140 FORX=1TO20:PRINT:NEXT
150 READG$
160 PRINTTAB(8):G$
170 FORX=1TO10:PRINT:NEXT
180 GOSUB500
190 FORX=1T05000:NEXT
195 IFG$="MEER"THENFORX=1T010000:NEXT
200 Y=Y+1: IFY<5THEN230
210 A=7:D(A)=255:GOSUB1000
220 Y=0:RESTORE:GOTO100
230 A=7:D(A)=255:GOSUB1000
240 GOT0140
500 FORA=0T013
510 READD(A)
520 GOSUB1000
530 NEXTA
540 RETURN
```

```
1000 POKE49344,0:POKE49359,A
1010 POKE657,3:X=USR(X)
1020 POKE49344,0:POKE49359,D(A)
1030 POKE657,2:X=USR(X)
1040 RETURN
```

5000 DATA"PIANO",200,0,201,0,100,0,0,248,16,16,16,0,20,8 5010 DATA"EXPLOSION",0,0,0,0,0,0,31,7,16,16,16,0,20,0 5020 DATA"SCHUSS",0,0,0,0,0,0,0,15,7,16,16,16,0,16,0 5030 DATA"LOKOMOTIVE",0,0,0,0,0,0,15,199,16,16,16,180,2,12 5040 DATA"MEER",0,0,0,0,0,0,31,199,16,16,16,255,60,14 0K

Soundgenerator with AY-3-8912

To construct your sound generator board you first have to assemble the 6522 VIA board, as described earlier. Then you use the prototyping area on the left hand side of the board to assemble the sound circuitry. Place the AY-3-8912 soundchip so that the input lines DA0–DA7 match with the outputs PA0–PA7 of the 6522 VIA (see schematic). Now you have to cut the lines which connect the soundchip to the pins PB0 – PB3 (four lines). Pin 20 of the soundchip has to be connected to pin 10 of the 6522, pin 19 to + 5V, pin 18 to pin 11 and the 6522, pin 17 to +5V, pin 16 to pin 34 of the 6522, pin 15 to pin 25 of the 6522 pin 6 to ground and pin 3 to +5V.

Pins 1, 4, 5 are the common output of the AY-3-8912

You can hook them to the next convenient trace on the printed circuit (P.C.) board. From this foil connect a 1K register to ground.

Then connect a 10 K Ω resistor with a 100 μ F capacitor to the output which goes to your audio amplifier. At the 6522 VIA chip connect pin 24 with pin 20. On the component side of the pc-board you need a small jumper (see schematic) and you must also bring to the component side the +5V supply voltage over from the soldering side.

The AY-3-8912 Soundboard

Parts Layout and construction of the Sound Board

Sound generation with the Superboard III

Sound Generation with the Superboard III with the C1P II

A revised version of the Superboard II has been shipped by OHIO Scientific since early 1981. These boards have an on-board D to A converter. It is located on the left-hand-side adjacent to the keyboard. A squarewave output is available there, under software control. The C1P manual goes into very little detail on use of the Soundboard. It is hoped that these instructions will provide some assistance to the beginning user.

The D to A converter is addressed at memory location DF00 hex. The voltage output of the D to A converter is proportional to the value loaded in the memory location DF00. Wave forms may be generated by rapidly changing the value present at this location. A square wave might be generated by loading DF00 with FF hex. (maximum output), delaying a moment, and then loading DF00 with 0 hex. (minimum output). This would result in a maximum amplitude square wave output. The frequency of the square wave may be adjusted by varying the delay time between transitions. A sample program might appear as follows.

START LDA # \$FF STA \$DF00 JSR DELAY	FF = maximum volume Output to port	The machine language program called by this routine may be entered using the machine language monitor, or may be entered using POKE and data statements from a BASIC program. A sample machine language routine follows.
LDA # \$00 STA \$DF00 JSR DELAY JMP START	00 = minimum volume output to port	LDA# \$10 STA \$D800
The delay subroutine mig	nt appear as follows:	0230 A9FF LDA #\$FF 0232 8D8002 STA \$0280
LDX \$	Load index register with contents of a zero page location count down	0235 851A STA \$1A 0237 A910 LDA #\$10 0239 8D00D8 STA \$D800 023C 206602 JSR \$0266
LBNE M to zero RTS	jump back	023F A51A LDA \$1A 0241 8D00DF STA \$DF00 0244 205F02 JSR \$025F
square wave. If you inter is necessary that you var a sample program to ger accomplished with a shor subroutine in a protected at location 0230 hex. S	elay value you will obtain a fix frequency nd to vary the frequency of the output it y the amount of delay time. Following is nerate the sound of an explosion. This is t BASIC program and a machine language d RAM area of the Superboard beginning uch an approach provides an interesting s at minimum hardware costs.	0247 A900 LDA #\$00 0249 8D00DF STA \$DF00 024C 205F02 JSR \$025F 024F CE8002 DEC \$0280 0252 D006 BNE \$025A 0254 A900 LDA #\$00 0256 8D00D8 STA \$D800 0259 60 RTS 025A C61A DEC \$1A 025C 4C3C02 JMP \$023C
The BASIC routine to c appear as follows:	all the machine language program might	025F AE7F02 LDX \$027F 0262 CA DEX
10 POKE11,48:PO 20 X=USR(X)		0263 DOFD BNE \$0262 0265 60 RTS 0266 D8 CLD 0267 38 SEC 0268 A513 LDA \$13 026A 6516 ADC \$16 026C 6517 ADC \$17
Generating a ran	DEX BPL LDA \$12	026E 8512 STA \$12 0270 A204 LDX #\$04 0272 B512 LDA \$12,X 0274 9513 STA \$13,X 0276 CA DEX 0277 10F9 BPL \$0272

(0279 0278 0278	8	D7F	02	SI	A.	\$02									
	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
0230	A9	FF	8D	80	02	85	1 A	A9	10	8D	00	D8	20	66	02	A5
0240	1A	8D	00	DF	20	5F	02	A9	00	8D	00	DF	20	5F	02	CE
0250							8D									
0260							D8									
0270							CA									

Hexdump of the previous program

Superboard with Joystick

Superboard with Joystick

How to connect a joystick to the Superboard C1P

The Superboard from Ohio Scientific is very well suited for the experimenters interested in modifying and extending the hardware, thereby widening their professional and leisure experience.

In this chapter we will show how to attach a joystick to the Superboard and how to program exciting games.

The old Superboard has a plug to the left of the keyboard. The newer Superboard III instead has a plug for sound output. If you own a Superboard III and want to attach joysticks to it, you must search the connection spots under the keyboard and wire them. We have attached a Molex-plug to the back of the board and wired it to the keyboard connections.

In our example for two joysticks we used the following signals: R6, R7, C3, C4, C5, C6, C7

The connection of the joysticks happens at plug J4 or at the self installed plug on the back of the board. The pin-out appears as follows:

1	- R1
2	- R7
3	- C1
4	- C2
5	- C3
6	- C4
7	- C5
8	- C6
9	- C7
10	- R6
11	- GNE
12	- NC

In this case R6 and R7 are the inputs for the two joysticks and C1–C7 supply the bitcombinations depending on the particular position of the joystick. To use two joysticks simultaneously you must neutralize them with diodes. But first you must cut the traces leading to R7 and R6 (about 1/2 " from pin 2 resp. pin 10). Pin 10 is to be connected to the cathode of the outermost diode and pin 2 to the cathode of the diode next to it. (The wire for that will be about 10" long). These diodes are two of the eight you can find directly above the keyboard.

The Fairchild-Joysticks are to be connected as follows:

R7 white from joystick no. 2 C2 brown C3 blue C4 green C5 grey C5 grey C6 yellow C7 Black R6 white from joystick no. 1 Joystick 1 is initialized by POKE 57088,191, joystick 2 by POKE 57088,127 (57088 is the address of port J4)

The following program shows you, which value is at address 57088 dependent on the joysticks position. You need these values when you want to develop software for the joysticks.

100 FORX = 1TO30:?:NEXT 110 POKE 530,1 120 POKE 57088,127 130 ?PEEK (57088) 140 GOTO 130

Change line 120 to POKE 57088,191 for the other joystick

You should get the following values if you run the above program:

Sample program 1: 1 Tank, Sound (Superboard III) Line Description pokeing in the USR(X)-routine (shot) 50 - 70beginning 0230 hex start-address of USR(X)-routine 80 105 read in the directions of movements and matching graphics-symbols from line 10000 disable CTRL-C 120 turn of tank, depending on joystick position 130 - 220forward movement of the tank 300-310 shot (optical and accoustical) 1000 - 1030

50 FORX=0T078 60 READW: POKE560+X,W 70 NEXTX 80 POKE11,48:POKE12,2 100 FORX=1T030:PRINT:NEXT 105 FORX=1T08:READM(X),T(X):NEXT 110 A=54040:T=248:I=1 115 POKEA,T 120 POKE530.1 130 POKE57088,127 140 P=PEEK(57088) 150 IFP=127THEN1000 160 IFP=191THEN300 180 IFP=247THENI=I+1 182 IFI=9THENI=1 190 IFP=223THENI=I-1 192 IFI=OTHENI=8 200 POKEA,T(I) 210 M=M(I):T=T(I)215 FORX=1T0200:NEXT 220 GOT0140 300 POKEA, 32: A=A+M: POKEA, T 305 FORX=1T0100:NEXT 310 GOT0140

Sample program 2: 2 Tanks, Sound (Superboard III) Description Line pokeing in the USR(X)-routine 50--70 start address f USR(X)-routine (lower byte 80 \rightarrow II, higher byte \rightarrow 12) read in the directions of movements and 100 matching graphics-symbols from line 10 000 disable CTRL-C 120 80-300 definition of direction of movement and of graphics-symbol depending on joystickposition short, control whether a bit 1000 -1010 2000 explosion and score 2070 output of final score 3000 -3030 50 FORX=0T078 60 READW: POKE560+X,W 70 NEXTX 80 POKE11,48:POKE12,2 90 FORX=1T030:PRINT:NEXT

130 POKE57088,127:G=A:T=T1:GM=M1:Y=0:GOSUB170:T1=T

140 POKE57088,191:G=B:T=T2:GM=M2:Y=1:GOSUB170:T2=T

135 POKEA, 32: A=A+M: POKEA, T1: IFM<>OTHENM1=M

150 POKEB, 32: B=M+B: POKEB, T2: IFM<>OTHENM2=M

100 FORX=1TO8:READM(X),T(X):NEXT

120 POKE530.1

160 GOT0130

200 M=0

170 P=PEEK(57088)

110 A=54040:B=54070:T1=248:T2=248

190 IFP=127ANDY=1THENZ=A:GOSUB1000

195 IFP=127ANDY=OTHENZ=B:GOSUB1000

210 IFP=191THENM=M(1):T=T(1)

220 IFP=223THENM=M(2):T=T(2)

230 IFP=239THENM=M(3):T=T(3)

240 IFP=247THENM=M(4):T=T(4) 250 IFP=159THENM=M(5):T=T(5)

94

260 IFP=207THENM=M(6):T=T(6) 270 IFP=231THENM=M(7):T=T(7) 280 IFP=183THENM=M(8):T=T(8) 300 RETURN 1000 FORX=1T010:POKEG+X*GM,171 1005 IFPEEK(Z)=171THEN2000 1006 POKEG+X*GM.32 1007 NEXT 1008 X=USR(X) 1010 RETURN 2000 E=42 2010 FORX=1T05:POKEZ+X,E:POKEZ-X,E:POKEZ-32,E:POKEZ+32,E 2020 POKEZ-32*X, E: POKEZ+32*X, E: POKEZ-32*X, E: NEXTX 2030 IFE=42THENE=32:GOT02010 2035 X = USR(X)2040 FORX=1T025:PRINT:NEXT 2042 A\$="B" 2045 IFY=OTHENA\$="A" 2050 PRINT" SCORE 2055 PRINT

Installation of MOLEX-plug at Superboard III Connect the points C3, C4, C5, C6, C7, R6, R7 with the matching pins at the MOLEX plug at the backside of the Superboard III. picture a)

picture A

picture B

bottom view, left corner under the keyboard

Picture a) shows the Superboard III under the keys (soldering side)

Picture b) shows the connections of R6 and R7, how to wire them to the cathodes of the two diodes.

picture c)

12 pin plug on the backside of the board

A COMPENSE.	-	
a Start Start	-	
white	-	R6
2 x black	-	C7
2 x yellow	-	C6
2 x orange	-	C5
2 x green	-	C4
2 x red	-	C3
1	-	
	-	
white	-	R7
Section 1	-	

If your connections match the picture shown above you can control your tank by turning the joystick. If you want to use only one joystick, connect C3 - C7 and R6. If you want to use two sticks C3-C7 have to be connected, neutralized by diodes, the whire from stick 2 is to be connected to R7.

Sample program 3:

Line 10 000 contains the changes of the screen addresses and the matching graphics symbols. For instance: -32,248 means that the new address is old address -32 and in that location is the graphics symbol 248 poked, which represents a tank driving upwards;

-32 accounts for the line length (-32 equals 1 line up) -32 equals -32 + / which is a movement to the upper right. If you use a computer with another line length you have to change those numbers.

90 FORX=1T030:PRINT:NEXT 100 FORX=1T08:READM(X),T(X):NEXT 110 A=54040:B=54010:T1=248:T2=248 120 POKE530.1 130 POKE57088,127:G=A:T=T1:GM=M1:Y=0:GOSUB170:T1=T 135 POKEA, 32: A=A+M: POKEA, T1: IFM<>OTHENM1=M 140 POKE57088,191:G=B:T=T2:GM=M2:Y=1:GOSUB170:T2=T 150 POKEB, 32:B=M+B:POKEB, T2:IFM<>OTHENM2=M 160 GOT0130 170 P=PEEK(57088) 190 IFP=127ANDY=1THENZ=A:GOSUB1000 195 IFP=127ANDY=OTHENZ=B:GOSUB1000 200 M=0 210 IFP=191THENM=M(1):T=T(1) 220 IFP=223THENM=M(2):T=T(2) 230 IFP=239THENM=M(3):T=T(3) 240 IFP=247THENM=M(4):T=T(4) 250 IFP=159THENM=M(5):T=T(5) 260 IFP=207THENM=M(6):T=T(6) 270 IFP=231THENM=M(7):T=T(7) 280 IFP=183THENM=M(8):T=T(8) 300 RETURN 1000 FORX=1T010:POKEG+X*GM,171 1005 IFPEEK(Z)=171THEN2000 1006 POKEG+X*GM, 32 1007 NEXT 1010 RETURN 2000 E=42

```
2010 FORX=1T05:POKEZ+X,E:POKEZ-X,E:POKEZ-32,E:POKEZ+32,E

2020 POKEZ-32*X,E:POKEZ+32*X,E:POKEZ-32*X,E:NEXTX

2030 IFE=42THENE=32:GOTO2010

2040 FORX=1T025:PRINT:NEXT

2042 A$="B"

2045 IFY=0THENA$="A"

2045 PRINT S C O R E "

2055 PRINT

2060 PRINT" FOR ";A$

2063 PRINT:PRINT:PRINT:PRINT:PRINT

2065 INPUT"PLAY AGAIN (Y/N)";Q$

2067 IFQ$="N"THENEND

2070 RESTORE:GOTO90

10000 DATA -32,248,1,250,32,252,-1,254,-31,249,33,251,31,253,-33,255
```

```
1
```

EPROM/RAM board (Bytewide)

EPROM/RAM-Board for 6502 computers

ELCOMP has developed an EPROM/RAM-board which can be connected to all 6502 computers through the expansion board 606. We have used the board with the following computers:

OHIO Scientific
 APPLE II(plus) without expansion board 606
 PET 2001/CBM 3016
 ATARI 800

The practicality of the ELCOMP board is demonstrated by the fact that you can define the first socket beginning in any 8K block. It doesn't matter in which slot of the expansion board the EPROM/RAM board is located.

For instance: Your board can start from 0 0 0 0 hex 2 0 0 0 hex 4 0 0 0 hex 6 0 0 0 hex 8 0 0 0 hex

. A 0 0 0 hex

1.1.1.1

Another advantage is that you can use EPROM-compatible RAMs like the MOSTEK 4802 or the Mitsubishi 8725. You also can mix EPROMs and RAMs: for instance, two EPROM 2716's and two RAM 4802's. You can also use EPROMs or RAMs with 4K x 8 or the RAMs from Mostek with 1K x 8. Below you can see an overview of the RAMs and EPROMs offered with the Bytewide concept (the trademark of Mostek).

24 PIN MEMORY EPROMS & RAMS

DEVICE	TYPE	MANUF	SIZE	PIN 18	PIN 19	PIN 20	PIN 21
2708	EPROM	ті	1Kx8	PROG	+12V	CS*(PE)	-5V
2508	EPROM	TI	1Kx8	PC/ PROG	NC	CS*	Vpp
2758	EPROM	TI	1K×8	PD/ PROG	AR	CS*	Vpp
3628	PROM	INTEL	1K×8	CS4	CS3	CS2*	CS1°/ PROG
4801	RAM	MOSTEK	1Kx8	CS*	NC	OE*	WE*
4118	RAM	MOSTEK	1Kx8	CS*	L*	OE*	WE*
4008	RAM	ті	1K×8	CS*	AR	OE*	WE*
2716	EPROM	INTEL	2Kx8	CS*/ PROG	+12V	A 10	-5V
2516	EPROM	TI	2K×8	CS*/ PROG	A10	OE*	Vpp
3636	PROM	INTEL	2K×8	CS3	CS2	CS1°/ PROG	A10
4802/	RAM	MOS/TI	2Kx8	CS*	A10	OE*	WE*
2732	EPROM	INTEL	4Kx8	CS*	A10	OE*/ PROG	A11
2532	EPROM	ΤI	4Kx8	A11	A10	PD/ PROG	Vpp
4732	PROM	ті	4Kx8	A11	A10	CS	CS*/ PROG
4764	PROM	TI	8K×8	A11	A10	S*/ PROG	A12
58725	RAM	MITSU- BISHI	2Kx8	CS	10	OE	WE

CS*/S* = Chip Select (Low) OE* = Output Enable (Low) WE* = Write Enable (Low) PD = Power Down PROG/(PE)= Program Enable

102

103

picture 2

For the use of EPROM-compatible RAMs you have to connect the R/\overline{W} -signal to the common W/E (write enable) on the EPROM board (order no. 609). The R/W-signal is on pin 18 of the bus on the ELCOMP-expansion board.

The equipping of the board is easy (see picture). Use a socket for each IC.

The definition of the start address of the first socket happens by making connections on the soldering side of the board in the upper left corner. Make a connection where you want to have your start address. If you make a connection as in picture 2, your start address on the first socket will be \$A000.

If you define the startaddress to C000, it looks similar: C000-C7FF, C800-CFFF, D000-D7FF, D800-DFFF.

On our tests we used 2kx8 RAMs from Mitsubishi. When we used $1k \times 8$ RAMs from Mostek (4801) we found that they are obviously 2k types in which only one of the two blocks is usable. Used in socket 3 the 1k RAM did not begin at address B000 but at B400. We believe that Mostek sells 2k models with a defective half as 4801 RAMs.

The EPROM/RAM-board can basically be used with any 6502 computer if the connections to A0–A15, D0–D7, ϕ 2, R/W, +5V, and GND are made.

To use with the APPLE, the EPROM/RAM-board can be put directly to an empty slot.

Here you can see the EPROM/RAM-board (component side). In socket no. 3 there is a 2k x 8 static RAM.

The advantage of the EPROM/RAM-board is that you can test programs in RAM at the right place in memory and replace it by an EPROM in the same place if the program is acceptable. For instance:

If you want to relocate a monitor program from A000 to B000, put the monitor into the # 1 socket and a RAM 8725 into the # 3 socket. Relocate the program to the RAM beginning at B000. Then you can get the program to the area beginning \$1000 with a block-move and burn a new EPROM.

The Superboard 8K is free for RAM/EPROM-expansion from \$2000-9FFF (BASIC starts at A000).

Schematics of the EPROM/RAM board (Bytewide)

EPROM-board 4 x 2716

After the EPROMs are burned with our EPROM-BURNER they can be wired to a 6502 system by the EPROM-board which can include up to four EPROMs. There are two different ways of decoding.

Connection of the EPROM/RAM-Board to the Superboard

Normal Decoding

Needed are the addresses A0 to A15, the data lines D0 to D7 and the inverted clock ϕ 0.

With the 74LS138 the startaddress of the 8K byte block is defined to 0000, 2000, 4000, 6000, 8000, A000, C000 or E000.

The range is selected by wiring at J0. Further decoding happens by the 74LS138-2.At J1 there are 4 bridges to be soldered.

The schematic shows this kind of decoding with the start address at 8000.

This way the board may be connected to the expansion board ELCOMP-1 or by a 50 pin plug to any 6502 system. in that case the ICs 74LS175 and 74LS00 are not needed.

You can put the EPROM/RAM-board in any of the four slots of the expansion board 606. It is important that you by-pass the driver on the Superboard. The best way to do this is to use 16-pin sockets and make the connections as shown in the figure below.

How to assemble the board

Parts list:

4 x 24 pin DIL-sockets 1 x 74LS175 1 x 7400 1 x 74LS04 1 x EPROM/RAM board 2 x 14pin DIL sockets 1 x 16pin DIL-sockets

First solder all the sockets for the integrated circuits. Then wire the necessary jumpers.

74S138 74LS138

GND 8

CONNECTION DIAGRAM PINOUT A A0 1 16 Vcc A1 2 15 Oo A2 3 14 01 E1 4 13 02 E2 5 12 03 E) 6 11 04 07 7 10 Os

9 00

LOGIC SYMBOL

Vcc = Pin 16 GND = Pin 8 TRUTH TABLE

INPUTS						OUTPUTS							
Ēı	Ē2	E3	Ao	Aı	A2	Ō0	Ō1	Ō2	Ō3	Ō4	Ō5	Ō6	O 7
н	X	x	x	X	x	н	н	н	н	н	н	н	н
×	н	X	X	X	x	н	н	н	н	н	н	н	н
x	x	L	x	X	х	н	н	н	н	н	н	н	н
	E	н	L	L	L	L	н	н	н	н	н	н	н
5	ĩ	н	H	L	L	H	L	н	н	н	н	н	н
5	- T	н	L	н	L	H	н	L	н	н	н	н	н
Ē.	ĩ	H	H	н	L	H	н	н	L	н	н	н	н
	1998	н	1	L	н	н	н	н	н	L	н	н	н
-	- F	н	H	L.	н	H	н	н	н	н	L	н	н
5	ī	н	1	H	н	H	н	н	н	н	н	L	н
5	ĩ	н	H	H	H	H	н	н	н	н	н	н	L

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

6-Channel Analog-Digital-Converter

Simple 6-Channel Analog-Digital-Converter

The pick-up of analog values like voltage, current etc. and divided values such as temperature, humidity, pressure, angle values etc. will figure greatly in the future of microcomputer technique.

Many semiconductor producers offer a low-priced integrated A/D converter which may easy be connected to an 8-bit microcomputer. Fairchild offers a simple, efficient but still low-prices 6channel 8-bit converter which can easily be used with personal computers like CBM, AIM, ATARI or the Ohio Scientific Superboard.

This figure shows the connections to a 6522. The main part of the control though lies in the software. The procedure of measurement is based on the fact that first during a ramp-startpulse the external capacitor C is charged up to the same voltage lying at the selected analog-input. (The inputs are selected by AO -A3). As soon as the ramp-start-pulse goes to high, the capacitor begins to discharge with a constant current. (The current is specified by the reference voltage U_{ref} and the resistor R). When the capacitor C is discharged, the comparator output ramp-stop goes to low. The discharging time (t) of the capacitor is therefore the time between the rising ramp-start-pulse (Γ) and the ramp-stoppulse (🗲). This time is proportional to the analog-voltage at the selected input. This means that the analog-digital-conversion is really a measurement of time. Therefore the software has to select the input, produce a ramp-start-pulse, and count the time until the ramp-stop goes to low. Since it is a real-time-problem the software has to be written in machine language.

Description of measurement:

During the ramp-start-pulse the capacitor C is charged with the voltage (Vin) lying at the selected analog-input. As soon as the ramp-start-pulse ends, the capacitor starts to discharge with a constant current (defined by V_{ref} and R_{ref}).

As soon as the capacitor is completely discharged, the rampstop-pulse goes to low. This means that the time between end of ramp-start and end of ramp-stop has to be measured by software. This time is directly proportional to the applied voltage.

Lapse of time of the signals:

The following program shows, how the time can be taken. The ADC μ A9708 was then connected to PORT A of a 6522. A0 to PA0, A1 to PA1, A2 to PA2, ramp-start to PA3 and ramp-stop to PA4. In this example there is analog input 1 selected. If you want to select another input, for instance, no. 6 you have to change 2 lines:

line 5 from LDA # \$01 to LDA # \$06 (A9 06) line 10from LDA # \$09 to LDA # \$0E (A9 0E)

D:1000-1024 I:1000	A9	oF	З	MNC-	-CODE =\$OF
I:1002	8D	СЗ	CO	STA	\$COC3
I:1005	AS	08		LDA	
I:1007	8D	C1	CO	STA	\$COC1
I:100A	A9	01		LDA	=\$01
I:100C	8D	C1	CO	STA	\$COC1
I:100F	A2	64		LDX	=\$64
I:1011	CA			DEX	
I:1012	10	FD		BPL	\$1011
I:1014	AS	09		LDA	=\$09
I:1016	8D	C1	CO	STA	\$COC1
I:1019	EB			INX	
I:101A	AD	C1	CO	LDA	\$COC1
I:101D	29	10		AND	=\$10
I:101F	DO	F8		BNE	\$1019
I:1021	8A			TXA	
I:1022	35	10		STA	\$10
I:1024	00			BRK	
V _{ref} = 3.32	/	▶\$	FF for	Vin = V	Vref
V _{ref} = 3.32	/	►\$	03 for	$V_{in} = 0$	V

Hex-Dump

M:1000-1024	0	1	2	3	4	5	G	7	
K:1000-1007	EA	OF	8D	C3	CO	A9	08	BD	
W:1008-100F	C1	CO	A9	01	SD	C1	CO	A2	
W:1010-1017	64	CA	10	FD	AS	09	8D	Ci	
W:1018-101F	CO	E8	AD	C1	CO	29	10	DO	
W:1020-1027	FS	8A	85	10	00	AA	AA	AA	

The analog voltage V_{in} can be between 0 V and the reference voltage V_{ref}. For best resolution V_{ref} is set so that V_{in} = V_{ref} causes \$FF (or 255) in location \$10. With V_{ref} = 3.32 V we got \$FF, with V_{in} = V_{ref} and \$03 with V_{in} = 0V.

If you replace the break-command at the end of the machinelanguage routine by a RTS (=60) you can call the routine from BASIC and print the value on the screen: 10 POKE 11,0 20 POKE 12,16 30 X = USR(X) 40 PRINT PEEK (16) 50 GOTO 30

Circuit with the Superboard

Parallel Interface Adapter (PIA) 6520 Memory expansion for the OSI – Superboard

Parallel Interface Adapter (PIA) 6520

The PIA 6520 is a predecessor of the 6522 and is equal to the 6820 (6821).

Block diagram:

Internal structure:

The block diagram shows that the 6520 has two ports, A and B and four control lines for communication with the outside world. To the processor side there is the 8-bit data bus and control lines. For details see figure below.

Port A and B are controlled by the data direction registers D DRA and DDRB and the control registers CRA and CRB. So there are six registers but only two address lines R50 and R51 (RS=register select). The data direction registers and the port have the same address. One bit in the control register (CRA and CRB) define which one of the two registers will be selected (see figure below).

RS0	RS1	CRA2	CRB2	Selected registers
0	0	1	-	PORTA
0	0	0	-	DDRA
0	1		n Se-wash	CRA
1	0	-	1	PORTB
1	0	-	0	DDRB
1	1	104-140	17. <u>11</u> 17. jau	CRB

Selection of the registers

If you want all lines of port A to be outputs, use the following program:

STA	#\$00 \$C0C1	;;	DDR Select DDRA
	#\$FF	;	all lines = 1
	\$C0C0 #\$04	i	Port A coloct
	\$C0C1	;;	Port A select
	#\$AA	;	\$AA to
STA	\$C0C0	;	port A

It is assumed here that the start address of the 6520 is at \$COCO. Port B may be programed the same way, using control register CRB. The meaning of the bits in the control registers shows the figure below:

7	6	5	, 4	3	2	1	, 0	
IRQ A1	IRQ A2		CA2		DDRA		CA1	CRA
IRQ B1	IRQ B2	robili	CB2	1	DDRB		+CB1	CRB

Meaning of bits in control registers

Bits 0 and 1 control the inputs CA1 and also CA2. Bit 2 selects the data direction registers. Bits 3, 4, 5 control the bidirectional lines CA2 and also CB2. Bits 6 and 7 mark interrupts. They are usually one. If they are set to zero by external circumstances, this will cause a zero in IRQA and also IRQB and by that an interrupt. The two lines are open-collector-lines and can be connected via "wired or".

CRA (CRB)

Bit 1	Bit 8	Active Transition on CA1(CB1)	IRQA, (IRQB)
0	0		Disable – remain high
0	1		Bit 7 = 0 Interrupt
1	0		no interrupt
1	1		Bit 7 = 0 Interrupt

Interrupt Control CA1(CB1)

The above figure shows that an interrupt is triggered if, for instance, CA1 goes low, if bit 0 = 1. These two bits have the same meaning in both control registers. The figure below shows the effect of a pulse on line CA2. If bits 3, 4, 5, are zero, neither a negative nor a positive going edge will cause an interrupt. These three bits also have the same meaning in both registers.

CRA (CRB)

Bit 5	Bit 4	Bit 3	Active Transition on CA2(CB2)	IRQA (IRQB)
0	0	0		, ɔ interrupt
0	0	1		Bit 6 = 0 Interrupt
0	1	0		no interrupt
0	1	1		Bit 6 = 0 Interrupt

Interrupt Control CA2 (CB2)

If bit 5 is set to one, the control lines will act differently. The control register CRA performs the handshake for port A.

With bits 3 and 4 = 0 and bit 5 = 1, CA2 will be an output line. An interrupt on CAI sets line CA2 to 1. This line only becomes 0 again, if a "LOAD FROM PORT A" command had happened. With the next bit-record after a "LOAD FROM PORT A"-command, a negative pulse will be issued to CA2 for a period of one clock-cycle. With the next two bit-records CA2 can be set to 0 or 1.

	A		

Bit 5	Bit 4	Bit 3	Mode	Description
1	0	0	Handshake on read	CA2=1 if interrupt on CA1 CA2=0 if Load-command
1	0	1	pulse output	CA2 = L, after LOAD-command
1	1	0	NO NESS	CA2 = 0
1	1	1		CA2 = 1

Mode handshake read

Control-register CRB controls mode handshake write to port A. With bit 5 = 1 and bits 3 and 4 = 0 CB2 will be set to zero with a "STORE TO PORT B"-command. It will be put back with an active interrupt at CB1. With the bitcombination 101 a negative pulse will be send to CB2.

The length of that pulse is also one clock-cycle here. With the remaining two bitcombinations CB2 can be set to zero or one.

	F	

Bit 5	Bit 4	Bit 2	Betriebsart	Beschreibung
1	0	0	Handshake Schreiben	CB2 = 0 bei STORE-Befehl, CB2 = 1 bei Interrupt auf CB1
1	0	1	Ausgangs- impuls	CB2 =], nach STORE-Befehl
1	1	0	article and	CB2 = 0
1	1	1		CB2 = 1

Mode handshake write

As you can see the 6520 is very suitable for data transfer between the microprocessor and external devices.

The best way to build up a circuit with the 6520 is to use the prototyping card from ELCOMP (order no. 604).

VSS C	1		40	CA1
PAO	2		39	CA2
PAI	3		38	DIROA
PAZ	4		37	ROB
PAS	5		36	RSO
PAA	6		35	RSI
PAS	7	-	34	AES
PAG	8	65	33	00
PATE	9	N	32	DD1
PB0	10	0	31	002
PB1	11	P	30	003
PB2	12		29	004
PB3	13	Þ	28	0 05
P84 C	14		27	Dos
P85	15		26	007
P86	16		25	ENABLE
PB7	17		24	CS1
CB1	18		23	CS2
C82	19		22	CS0
VCC	20		21	BR/W

Pin-Out of the 6520

Connection of a parallel printer to the Superboard

We have used our expansion board ELCOMP-1 together with our 6522 I/O board in slot 1, to connect an EPSON printer with parallel interface to the OHIO Scientific Superboard.

Port A of the 6522 is used for data-transfer, two lines of Port B for control:

How to connect a parallel printer to the Superboard

On the 6522 I/O board there are 256 bytes of RAM (addresses C100-C1FF, if board is in slot 1). Into these locations we write our output routine:

C100	8507	STA	\$07	
C102	A9FF	LDA	#\$FF	
C104	8D93C0	STA	\$C093	
C107	A903	LDA	#\$03	
C109	8D92C0	STA	\$C092	
	A902	LDA	#\$02	
ClOE	8D90C0	STA	\$C090	
C111	A507	LDA	\$07	

C113	8D91C0	STA	\$C091	
C116	4E90C0	LSR	\$C090	
C119	0E90C0	ASL	\$C090	
CllC	AD90C0	LDA	\$C090	
	lofb		\$C11C	
	A507		\$07	
C123	4C69FF	JMP	\$FF69	

The output vector from the Superboard, which is stored in \$021A and \$021B, points to \$FF69, where you can find a routine, that puts the contents of the accumulator on the screen (interpreted as ASCII sign). We will change the output-vector so that it points to our routine. Since we want to do this in BASIC we have to convert the hexadecimal to decimal values:

\$021A = 538	(lower byte of output-vector)
\$021B = 539	(higher byte of output-vector)
\$00 = 0	
\$C1 = 193	

and we have to turn on the save-flag. So, after we have entered POKE 538.0:POKE539,193:POKE517,1

we can list our program on the EPSON printer by entering the command LIST.

Memory expansion for the Superboard

It is possible to expand the memory of the Superboard from 8k RAM on the board by 32k dynamic RAM to altogether 40k of RAM!

What you need for that is the universal expansion board ELCOMP-1 with four APPLE-busses and one S44-bus. Into this S44-bus you can plug in the 32k dynamic RAM card model 6502 DM from BETA COMPUTER DEVICES (1230 W. Collins, Orange, CA 92668).

32 K dynamic RAM board from BETA Computer Devices

If you use revision B of this board it should work without any changes. If you use revision C or revision D of this RAM-card notice that there are four changes:

A12 must be at pin K (is at C), A13 must be at pin 14 (is at X), A14 must be at pin R (is at B), A15 must be at pin 9 (is at Y). On the memory expansion card there is a 24pin bank selection wiring header. Here you can define the start addresses of the eight 4k banks.

The 8K of RAM on the Superboard itself have the addresses \$ 0000 to \$ IFFF. This means we have to set the start address of the first bank on the expansion board to \$2000, the second bank to \$3000 and so on up to \$9000 for the eighth bank. The addresses of our expansion board are thus \$2000 - \$9FFF. The next address \$A000 is already BASIC in ROM.

The eight connections on the bank selection leader are.

pin 17 to pin 14, 18 to 13, 19 to 12, 20 to 11, 21 to 10, 22 to 9, 23 to 8, 24 to 7.

Address Bank Selection Header Pin Identification

4K Bank Selection Header

Memory Bank	Decode (A12-A15	5)	
Pin	Bank		
1	Fxxx		
2	Exxx		
3	Dxxx		
4	Сххх		
5	Bxxx	Cardanian mar ant at	
6	Axxx		
7	9xxx	Address Selection Encode	
8	8xxx	Pin	Bank
9	7xxx	17	Bank 0
10	6xxx	18	Bank 1
11	5xxx	19	Bank 2
12	4xxx	20	Bank 3
13	Зххх	21	Bank 4
14	2xxx	22	Bank 5
15	1xxx	23	Bank 6
16	0xxx	24	Bank 7

Address bank selection header pin identification

Interface connection identification

Other very important book of interest

The First Book of Ohio Scientific

Introduction to OSI computers. Diagrams, hardware and software information not previously available in one compact source.

TABLE OF CONTENTS

Introduction to Personal Computing Small Computers are what Ohio Scientific	01
is all about	02
The Challenger Personal Computer as Business	01
Too1	06
Computer Glossary	0.7
Challenger 1P: The perfect starter computer	10
Challenger 1P MF: Greater Speed, More Versatility	11
Personal Computer Breakthrough	12
Superboard II: A computer for the budget-minded	13
Challenger 4P: Color, Sound, Exceptional Display Challenger 4P MF: The ultimate portable Perso-	14
nal Computer	15
Challenger 8P: Ohio Scientific's Mainframe	
Class Personal Computer	16
Challenger 8P DF: The Top of Line in Personal	
Computers	17
C1P Challenger Memory Map	19
Useful Subroutine Entry Points	28
Challenger Superboard Introduction	35
2P Extended Monitor Commands	43
Using Breakpoints for Program Debugging	49
2P Extended Monitor Command Reference List	51
Superboard II/C-1P Monitor Entry Points, 65VK Monitor	52
Superboard II/C-1P Monitor Entry Points,	52
Mini-Floppy Bootstrap Rout,	53
Superboard II/C-1P Monitor Routines	55
BASIC Support Routines	54
Bringing up BASIC	55
Introduction to Small Computer Software	57
BASIC and Machine Code Interfaces	66
CA-15 Universal Telephone Interface	71
New Products from OSI comming in mid 1980	74
ROM-Summary	75
Some real Products	87
Use of 542 REV B Audio Output	88
Ohio Scientific C1-P Mini Floppy Expansion	
Accessories	106
ELPACK Data Separator for MPI Model 51	107
MEMTST	108

OSI 65V Monitor Mod 2	118
65V Demonstration Program	122
Creating Data Files in BASIC	123
9-Digit BASIC Variables	136
High-Resolution Display Conversion f	or Challenger
1P	145
Video Update to OS65-D, For C1PMF	148
Program to Circumvent the Garbage Co	llection
Problem in OSI BASIC in ROM Compu	iters 151
Important Routines	155
Conventional Typewriter	176
Hex Conversion Table	180
	\$7.95

The Second Book of OHIO-Scientific

Very valuable information about OSI microcomputer systems. Introduction to OS65D and OS 65U. Networking. Hard- and software hints and tips. Systems specification. Business applications.

TABLE OF CONTENTS

Advantages of Challenger Computers	
for Business Applications	1
Small Businessman's Guide	
to Small Computers	5
Ohio Scientific	
Professional Computers	11
Personal Products	15
System Memory Map, C2-C3	19
Specification Chart, C-8P	21
Specification Chart, C-1P	23
Trouble-shooting Memory Boards	
to the Chip Level	25
Bringing Up BASIC	41
Cassette Assembler/C-1P and C-2P	
HOLD, BREAK Addition	42
Introduction to OS-65D, Version 3.2	74
Disc Operating System	44
OS-65D I/O Distributor Device Tables	54
Fix for OS-65D, Version 3.0, 3.1	24
Assembler (C-1P Only)	55
Fix for OS-65D, Version 3.0, 3.1	22
Extended Monitor	56
Model 22 OKIDATA Printer in OS-65D	57
inder an ontonin i i inter in 00 000	21

OS-65D Mini-Floppy Drive-to-Drive	
Compatibility	59
Track Zero Writer	64
Nine-Digit BASIC	enves alter
Under OS-65D, Version 2.0	66
Nine-Digit BASIC Math Functions	75
POKEs to Modify Length of	
OS-65D Random Access Files	76
Terminal/Cassette DOS Input Routine	78
WP-2 Word Processor	83
OS-65D and WP-2	84
Adaptive Stepping Rate Change WP-2 Correction	04
For Irregular Left Margins	86
for thegular Lerc Margins	00
WP-2, Second Release	
Changing Control Codes	87
WP-2 - 550 Board	89
Fix for Video-based Systems	
Hanging Up Under WP-2 and OS-65D	92
OS-65U The New Standard	
for Microcomputers	95
Introduction to OS-65U, Version 1.1	100
OS-65U Editor, Version 1.0	103
Important Memory Locations in	
OS-65U Editor	114
Fix for OS-65U Editor, Version 1.0	116
OS-65U 1/O Distributor	117 119
Moving Machine Code Into 05-650	124
OS-65U DMS Business Software Up-date	124
OS-DMS Corrections	120
New Adaptive Stepping Rate/ Operating System Patch for OS-65U	127
OS-65U PACK Command	131
OS-65U PNTR Command	137
Reserved Word List for	
OS-65U, Version 1.1	139
Dispatch Table for	0.69-2
OS-65U, Version 1.1	141
OS-65U String Variables	143
OS-65U Flag 13 and Flag 14	155
POKEs for OS-65U	157

Microcomputing Comes of Age	
OS-65U, Level 111	162
Multiple User Systems	165
OS-CP/M ESCORT Diskette	
Copier Program	167
OS-CP/M, Version 1.4	170
Complete Microcomputer Business	
System for OSI Computers	
AMCAP Information	171
Multiple Systems via "SYSDIR"	Contraction of Date
Under OS-65U,Level III	183
	\$7.95

The Fourth Book of OHIO Scientific Over 40 programs, games, personal, math functions, hints, memory map.

TABLE of CONTENTS

USEFUL PROGRAMS

AM Test	 . 3
lemory Test	 . 5
ex Dump in BASIC	
oystick for C1P	
rray Search	 10
emory Map	 11
MES	27
rchery	29
yatollah	33
all Dance	38
ack Box	41
oncentration	45
agic Square	 48
ickey Mouse	 50
pace Shuttle	52
ank in a Trap	55
urnabout	 57
SONAL UTILITIES	 59
ollar Converter	 61

Calorie Counter	!	62
Speed vs. Gasoline Consumption	'	0:
Gasoline Consumption vs. Speed	'	0
German Vocabulary		0
Astrology		11
Intra-Ocular Lens Power		
HINTS AND INSTRUCTIONS		
Tape/Disk - Disk/Tape Transfer		79
Two Computer Interface RS-232 to RS-232		8
POKE and PEEK		8
Self-starting BASIC Program		8
STOP		8
Important Tip		8
USR(X) for Fast Screen Clear		
Another Fast Screen Clear		8
USEFUL MATH ROUTINES		8
Determinant Programms		8
Matrix Multiplication		9
Classical Adjunct		9
Matrix Inversion		99
Peculiar Value of 3/3 Matrix	1	0
System of Linear Equations		
Co-ordinant Transformation	1	0
Geometry	1	0
Calculation of Pl		12
Number Converter		14
Sorting (Binary Tree)	1	1
Numerical Differentiation	1	18
Numerical Integration (Simpson)	1	19
Differential Equation	1	20
Prime Factors	1	2
Pythagorean Numbers	1	21
Decibel Program	1	29
Histograms		
Regression Analysis		
Simple Statistics	1	3
Function Plot	1	3
Precipitation'	1	3
	\$ 9 0	QF

The Fifth Book of Ohio Scientific

Advanced computer programming in 6502 machine language and BASIC, mailing list package, invoice writing with C4PMF/C1PMF, Games, Textwriter, Utilities and much more.

\$7.95

Superboard

expansion system

ELCOMP announces a new low cost expansion path for owners of 6502-based microcomputers. (APPLE, OSI, AIM KIM, PET etc.) . The basic element is the ELCOMP Expansion Board. This board provides:

- 1. Four APPLE-compatible fifty-pin slots
- 2. One S-44 card slot
- 3. Low cost, low parts count
- 4. Low power consumption
- 5. Extremely simple interfacing to existing systems
- 6. Provision for prototyping custom interfaces
- On-board decoding enables use as motherboard expansion to APPLE systems.
- 8. Complete, accurate documentation

The ELCOMP-1 Expansion Board provides owners of various 6502-based systems with access to a growing variety of compact, low-cost APPLE expansion products (excluding products requiring dynamic RAM refresh, APPLE monitor, or language card features). To provide these features, ELCOMP offers this system as an extensively documented bare board.

Available for use with the ELCOMP-1 Expansion Chassis, ELCOMP offers the following cards:

- 1. Model 604 Prototyping card for custom circuit development
- Model 605 6522 via I/O Experiment Card. Provides 6522, convenient 1K static RAM for user I/O routines and a large prototyping area.
- Model 607 2716 EPROM Programmer. Includes complete software, schematics, descriptions, etc. Ideal for programming single supply 2716 type EPROMs.

- 4. Model 609 8K EPROM Card. Provides sockets for four 2K 2716 single supply EPROMs. Provision for software/hardware bank switching. Ideal for conservation of ROM address space, and for software-selectable multiple monitor ROMs in OSI machines.
- Model 610 12-bit A/D Converter Board. Uses low cost 12bit A/D converter and precision reference. Includes software.
 - Model 608 software, schematic, and description for use of General Instrument AY3-8912 Sound Effects chip with the ELCOMP Model 605 I/O Board.

Each of the cards is available as a bare board plus complete documentation. Software, where applicable, is provided for the APPLE-II and Ohio Scientific systems. Software for other 6502 systems is forthcoming.

APPLE OWNERS! The above cards may be used with the ELCOMP-1 Expansion or inserted directly into your APPLE.

OSI OWNERS! ELCOMP-1 is ideal for Superboard expansion via 40 conductor ribbon. The S-44 slot is ideal for use with 32K dynamic RAM Board. (Available from Beta Computer Devices, Orange, California).

FUTURE PRODUCTS: S-44 8K Static RAM Disk Controller.

Pricing information:

Order-No.	Description	Price
Model 606	ELCOMP-1 Expansion Board	\$49.00
Model 604	Prototyping Card	\$29.00
Model 605	6522 VIA I/O Experiment Card	\$39.00
Model 607	2716 EPROM Programmer	\$49.00
Model 609	8K EPROM Card (2716)	\$29.00
Model 610	12 Bit A/D Converter Board	\$74.00
Model 608	Sound with the GI AY-3-8912	\$39.00

Prices are subject to change without notice.

ATARI is the trademark of ATARI Computers, Sunnyvale

ELCOMP BOOKS and SOFTWARE

For ATARI - PET - OSI - APPLE II - 6502

ATARI BASIC - Learning by Using

This new book is an "Action". Book. You do more than read it. Learn the intricacy of ATARI-BASIC thorugh the short programs which are provided. The suggestions challenge you to change and write program routines. Yes, it's exciting -Many of the programs are appropriate for beginners as well as experienced computer users. (Screen Drawings, Special Sounds, Keys, Paddles + Joysticks. Specialized Screen Routines, Graphics and Sound, Peeks and Pokes and special stuff). Order-No. 164 \$9.95

Games for the ATARI-Computer How to program your own games on the ATARI. Complete listings in BASIC and Machine Language of exciting games. Tricks and hints.

Order-No. 162 \$4.95 ATMONA-1

Machine Language Monitor for the ATARI 400/800.

This powerful monitor provides you with the firmware support that you need to get the most out of your powerful system. ATMONA-1 comes on a bootable cassette. No cartridges required. Disassemble, Memory Dump HEX + ASCII, (Change Memory Locations, Blocktransfer, fill memory block, save and load machine language programs, start mach. Lang. Progr. (Printer optional). Comes with introductionary

article on how to program the ATARI computer in machine language. (Available also in ROM) Order-No. 7022 \$19.95

ATMONA-2 Superstepper

A very powerful Tracer to explore the ATARI ROM/RAM area. Stop at previously selected address. Opcode or operand (cassette). Order-No. 7049 \$49.95

The Third Book of Ohio Scientific is now available!

Very important information for the OSI system experimenter. Interface techniques, system expansions, accessories and much more (EPROM-Burner, 6522 I/Ocard with 1K RAM, Soundboard, EPROM/RAM board).

Order-No. 159 \$7.95

The Fourth Book of OHIO VIP-Book – Very Important Programs, Many interesting programs for OSI computers. Sorting (Binary Tree). Differential Equitation, Statistics, Astrology, Gas Consumption, Games a. s. o. Order-No. 160 \$9.95

VIP Package – Above book plus a cassette with the programs. Order-No. 160 A \$19.95

The Fifth book of Ohio Scientific Many exciting programs programming hints and tricks, Textwriter, Debugger for C1P, Games, Utilities and much more (polled keyboard) Order-No. 161 \$7.95

Invoice Writing Program for OSI-C1PMF, C4P, Disk and Cassette, 8K RAM. Order-No. 8234 \$29.80

Mailing List for C1PMF or C4PMF 24K RAM 250 addresses incl. phone number and parameters on one 5 1/4 disk) Order-No. 8240 \$29.80

8K Microsoft BASIC Reference Manual

Authoritative reference for the original Microsoft 4K + 8K BASIC developed for ALTAIR and later computers including OSI, PET, TRS-80 and VIC. Order-No. 141 \$9.95

Expansion Handbook for 6502 and 6802

S-44 Card Manual describes all of the 4.5 x 6.5 44-pin S-44 cards incl. schematics. A MUST for every 6502 system user (KIM, SYM, AIM, VIC, PET, OSI) Order-No. 152 \$9.95

