The D \& N Micro Products ${ }^{8}$ MEM-CM9 card will support 24 K of Static Ram as well as an OSI type floppy disk controller.

The card uses industrial standard 2114 type memory chips. Memories, assembled and tested by D \& N_{8} are supplied with 300 ns . access time chips for card operation with 6502 clocks up to 2 Mhz . and Z -80 CPU clocks up to 4 Mhz .

CIRCUIT DESCRIPTION

The 24 K of memory is divided into two independent blocks each with DIP SWITCH address selection. One block is 8 K in size with U13, a magnitude comparator, performing the decoding function. The second block is 16 K in size with $U 12$ performing the decoding. The memory card may also be addressed into 1 of 16 memory partitions by the use of U7. Two cards may be placed in each partition, thereby allowing 48 K of memory in each partition, for use in multiterminal time shared systems.

All address lines are buffered to minimize loading on the backplane bus. Since the 2114 type memory is a static chip. the logic inversion of address lines AD through A9 does not affect their operation. Likewise address lines Ad through A9 are arranged on the P.C. board for minimum run length and may and may not necessarily go to pin $A \varnothing$ through $A 9$ in the memory chip. Since the same chip address is present during a read or write function, the output data will be correct. Each address line is terminated with a 1 K and 470 ohm resistor. The use of these line terminators reduces noise on the memory card.

Each 1 K of memory is enabled by the use of U3, U6, and U8 decoders. Each of these decoders is enabled by the magnitude comparators U12 or U13.

U1 and U4 interface the data line to the system backplane. U4 and U4 normally pass data from the system bus to the data input/outputs of the 2114° s. When the board is enabled. i.e. U13P6 or U12P6 go high, $\varnothing 2$ is high and Read/Write line is high, U1 and U4 change direction and pass data from the memories to the system bus. When the board is enabled and a Write function is requested (R / W line low), data is written into the memory chips when $\varnothing 2$ goes high.

The MEM-CM9 card contains a floppy disk controller which
is compatible with OSI software using $5 \frac{1}{4}{ }^{\prime \prime}$ or $8^{\prime \prime}$ drives. The controller is designed to operate with disk drives having separated clock and data outputs. The MEM-CM9 also includes an OSI-type real time clock. The real time clock is derived from the crystal controlled write circuit but is not required for disk operation.

Address decoding for the floppy controller is done with U75 and U76. When U75P6 goes high, the controller function is en abled. The transmitted signal to the floppy disk is generated by U62 and U65. The transmitter clock one shot fires on the negam tive edge of the signal at U65P1 producing a negative pulse which is always sent to the disk. The transmitter data one shot fires on the positive edge of the signal at U65P10 producing a positive pulse. This pulse is gated with the transmit data coming from ACIA U62, and combined with the transmitter clock, to provide the write data signal to the floppy disk.

The received separated clock pulse output from the floppy disk is stretched via a one shot and applied to the receive clock input of the ACIA. The separated data pulses from the floppy disk are stretched so the data is valid during the beginning of the next clock pulse.

The PIA U63 provides all handshaking control signals to the floppy disk. The real time clock counts down the crystal oscillator and applies pulses to the CAl and CB1 inputs of the PIA. The PIA is programmed to cause IRQ interrupts upon the receipt of these pulses. The real time clock function is not required for proper disk operation.

CONSTRUCTION NOTES

Although not required, it is highly recommended that sockets be used in all IC locations. This will aide in troubleshooting and may prevent damage to the IC's. Memory chips and bi-directional bus drivers (8 T26) are sensitive to static electricity and should only be handled on a conductive surface. It is suggested to place aluminum foil on the table top and then placing memory devices in their anti-static tubes on the foil. Place the memory card on the foil and remove the memory from the tubes and insert into the card.

All soldering on the P.C. card should be done with a pencil tip iron of only 15 to 25 watts.

ASSEMBLY INSTRUCIIONS

Memory Section

() Install IC sockets in all locations Uf through U61.
() Using an Ohm Meter, check for solder bridges between lines running through the memory matrix.
Install the following resistors:
() R6 through R91, 4.7 K ohm () R12 \& R13, 1 K ohm
) R14 \& R15, 470 ohm () R16 through R24, 1K ohm
() R25 through 33, 470 ohm
() Check for solder bridges in the area of R12 through R33.
() Install Dip Switch at S1.
() Install Data Direction diode D2.
() Wait diode D1 required only if low speed memory chips are used with a 2 MHz . CPU clock.
() Install 24.1 mfd disc capacitors.
() Install 647 mfd 10 V capacitors. Install:
() Jumper wire JW2, 3 \& 4 if +5 Volts is to come from the normal 48 pin backplane. Use $J 2$ if external power input is desired. See Fig。1.
() Install Jumper wire JW1 if board is built for memory only (no floppy controller). See Fig. 1.
() Install Jumper wire JW5 between pin 4 and 5 of $\mathbb{U 8}$. See Fig. 1.
() If memory partitioning is desired, install the following:
() Dip Switch S2
() R1 through R5, 4.7 K ohm.
() Check for solder bridges with the card placed in front of a high intensity lamp.
() Install IC's U1 through U6 into their sockets.
() Install IC's U8 through U93 into their sockets.
() Install memory chips in desired block. See Fig. 2.
() Set 51 to desired address. See Table 1.
NOTE: Be sure the 8 K and 16 K blocks are set to an address that do not conflict with each other, or do not conflict with memory (ROM or RAM) already in the system. Example; C4 system with 8 K of memory, set new 8 K block to $2 \varnothing \varnothing \varnothing-3 \mathrm{FFF}$ and the 16 K block to $4 \varnothing \varnothing \varnothing-7 \mathrm{FFF}$, even if there are no memory chips in the 16 K block.
() If memory partitioning is used, refer to Table 2 for correct user address.

Disk Controller Section

() Install IC sockets in all locations U62 through U77. Install the following resistors:
() R34 through R39, 220 ohm.
() R41, 220 ohm.
() R49, 4.7K
() Check for solder bridges in the area of R34 through R58.
() Install Pots R60, 70, 72, 74 .
() Install IRQ jumper wire.
() Jumper U71, U72, and U73 Pin 9 to U71 Pin 8
() Install C13 a 390pf cap. from J3 Pin 5 to J3 Pin 12
() Install R59, 65, 73,754.7K ohm
() Install R66 \& R68, 220 ohm.
() Install R67 \& R69, 390 ohm.
() Install R61 - R64, 1 K ohm.
() Install R71, 4.7K for $8^{\prime \prime}$ drives - 12 K for $5 \frac{11}{4}$ drives.
() Install 3.1 mfd disc capacitors.
() Install Capacitors C7 through C12.
() Install 4 MHz o crystal.
() Install jumper wires per Fig. 3 for $5^{\frac{1}{4}}{ }^{\prime \prime}$ or $8^{\prime \prime}$ floppy disk drive.
() Install male MOLEX connectors at J3.

* When building only the floppy disk controller section, install the following:
() Jumper wire J2, 3, ©4. See Fig. 1.
() Install Data Direction diode D2.
() Install a Jumper wire from U13 Pin 6 location to U13 Pin 8.
() Install a Jumper wire from U12 Pin 6 location to U12 P8.
() Install sockets at Iocations U1, 2, 4, 5, 9, 10 \& 11.
() Install IC's at U1, 2, 4, 5, 9, 10 \& 11.
() Install IC's at U62 through U77.

ADJUSTMENT

() Temporarily install a jumper wire between J3 P9, 10 \& 11.
() Adjust R60, 70, 72 and 74 to obtain the waveforms and timing length as shown in Fig. 4, when observed with a triggered oscilloscope.
() Remove Jumper wire between J3 P9, 10 \& 11.
() Connect floppy disk to controller.
() Install board into system.
ADDING DISK TO C4 OR C8
A floppy disk controller can be added to a C4 or C8 computer with only one modification to the 502 CPU card. This involves enabling the floppy disk boot software already present in the Monitor ROM. This may be done permanently or with a switch if the use of ROM Basic is desired. Refer to Figure 5 for Monitor addressing change. After making the change, powering up the comm puter and pressing BREAK key will result in the video display of "H/D/M?". To initialize the floppy disk, type the letter "D". Typing a "M" will enter you into the OSI machine code monitor.

Qty.	Part No.	Description	Qty.	Part No.	Description
	MEMORY				
3	7485	U7,12,13	3	74TS138	U3,6,8
1	74367	011	3	7404	U2,9,10
1	7427	05	2	8 T26	U1.4
48	2114	U14-61	11	4.7 K	R1-11
11	470 ohm	R14, 15,25-33	11	1 K	R12,13,16-24
1	1 N914	D2	6	47 mfd 10 V	C1-6
24	. 1 mfd	Capacitor	4	14 Pin Sockets	
9	16 Pin S		48	18 Pin Sockets	
4	Female Mol	Connectors	2	Dip Switch	

DISK CONTROLLER \& REAL TIME CLOCK

1	6520 or 6821	U63	1	6850	U62
2	74123	1064, 65	2	74367 anmetat	-66,69
2	7400	U70,77	1	7404	U68
1	7493	074	1	7410	067
3	CD4518	U71-73	2	7485	U75,76
4	10K Pot	R60,70,72,74	2	150ps	68,9
1	360pf	C10	1	1000pf	C 11
1	47 mfd 10 V	67	1	30pf	012
3	.1 mfd	Capacitor	9	220 ohm	$\frac{R 34-39.41,66}{68}$
5	4.7K	R49,59,73,75,65	9	390 ohm	R42-48,67,69
10	470 ohm	R40,50-58	4	1 K ohm	R61-64
1	4.00 MHz 。	Xtal	1	40 Pin Socket	
1	24 Pin Socket		9	16 Pin Sockets	
5	14 Pin Sockets		2	Male Molex	Connectors C13

R71 4.7 K for 8^{11} disk drives
R71 12K for 5 $\frac{1}{4}$ " disk drives
When building only disk controller section, add U1,2,4,5,9,10 \& 11 from memory section.

ADDRESS DECODING

TABLE 1

$$
\text { Enable }=\mathrm{Si}=3 \text { MEMORY } \quad \begin{aligned}
& \text { PARTITIONING } \\
& \text { Disable }=S 1-3 \text { off }
\end{aligned}
$$

User Selection for Memory Partitioning

User	S2-1	S2 -2	$S 2-3$	$S 2-4$	User	S2 -1	$S 2 \infty 2$	$S 2-3$	$S 2-4$
$\# 0$	off	off	off	off	$\# 8$	on	off	off	off
$\# 1$	off	off	off	on	$\# 9$	on	off	off	on
$\# 2$	off	off	on	off	$\# 10$	on	off	on	off
$\# 3$	off	off	on	on	$\# 11$	on	off	on	on
$\# 4$	off	on	off	off	$\# 12$	on	on	off	off
$\# 5$	off	on	off	on	$\# 13$	on	on	off	on
$\# 6$	off	on	on	off	$\# 14$	on	on	on	off
$\# 7$	off	on	on	on	$\# 15$	on	on	on	on

TABLE 2

Install JW4 only when
not using floppy controller
FIGURE 1

FIGURE 2

	53" Drives	8* Drives
U65 Pin 4	400 ns	260ns
U65 Pin 5	400 ns	260ns
U64 Pin 4	6ys	$2.75 \mu \mathrm{~s}$
064 Pin 5	1\%S ${ }_{\text {FIGURE }}$	9 ps

When the SYN 600 Monitor ROM is in the CPU board change the jumper wire between \#3 and \#10 to \#3 and \#14.

When the SYMMON V1.O Monitor ROM is in the GPU board change the jumper wire between \#3 and \#10 to \#3 and \#7. Figure 5

USING DOUBLE-SIDED FLOPPY DISK DRIVES
Double-sided drives can be used with the controller by making the cuts and jumpers shown below. When using this function, J3P3 becomes a binary drive select, i.e., low=drive 1, high=drive 2, and J3P18 becomes the side select output.

DISK CONTROLLER
${ }_{1}{ }_{1}$ \#
2
3
4
5
6

14
15
16
17
18
19.

20
21
22
23
24

HEAD LOAD
LUW CURRENT
SHUGART 801R and SIEMENS FDD 100-8
Pin \# 18

NC
SELECT DRIVE 1 26
FAULT RESET NC
STEP 36
DIRECTION 34
ERASE ENABLE NC
WRITE ENABLE 40
WRITE DATA 38
SEPARATED CLOCK 50
SEPARATED DATA 48
GROUND $17,25,33,35$
GROUND
+5 V DC
37.39.47.49

NC
$-9 \mathrm{~V} D \mathrm{C}$
4
NC
INDEX 20
SELECT DRIVE 2 28
WRITE PROTEGT 44
READY DRIVE 222
SECTOR 24
FAULT
NC
TRACK \varnothing
42
READY DRIVE 122
SHUGART 801R DISK JUMPER SETUP Drive A, Move Jumper DS1 to DS2 for B

| Pin |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $Y=J$ | $\mathrm{Z}=0$ | $X=0$ | $\mathrm{HI}_{1}=0$ | DS $=\mathrm{J}$ | $A=J$ | $B=J$ | DC=0 |
| $\mathrm{D}=0$ | $\mathrm{C}=\mathrm{J}$ | DS1 $=$ J | DS2 $=0$ | DS3 $=0$ | DS4 $=0$ | $800=J$ | $801=0$ |
| L=\% | $T 1=0$ | T2 $=0$ | T3 $=1$ | $T 4=1$ | $T 5=1$ | $T 6=1$ | |

SIEMENS FDD 100-8 JUMPER SETUP Drive A, Move Rad Sel Jumper from \emptyset to 1 for Drive B
Pin Pin Pin Pin Pin Pin Pin Pin
$V=0 \quad E=J \quad D=J$
$H=J \quad G=0 \quad F=0$
$B=0$
$M=J$
$1=0$
$2=\mathrm{J}$
SS=J
$L=J$
$K=0$
$\mathrm{U}=\mathrm{J}$
$R 1=J$
$\begin{aligned} 32 & =J \\ R & =0\end{aligned}$
$S E=J$ $\bar{T} E=0$ $J=0$

Place resistor termination at 7D in last drive.

[^0]

24K MEMORY

DISK CONTROLLER

D\&N MICRO PRODUCTS, INC.

DETAIL A

48 PIar bus PInout

PIN \#	FUNCTION	PIN \#	FUNCTION
1	WAIT	25	+5 VOLTS
2	$\overline{\text { MMI }}$	26	+5 VOLTS
3	$\overline{\text { IRQ }}$	27	GROUND
4	DATA DIRECTION	28	GROUND
5	$\overline{\mathrm{DG}}$	29	A6
6	D1	30	A7
7	$\overline{\mathrm{D} 2}$	31	A5
8	$\overline{\text { D3 }}$	32	A8
9	$\overline{\text { D4 }}$	33	A9
10	$\overline{\text { D5 }}$	34	A1
11	$\overline{\text { D6 }}$	35	A2
12	$\overline{\text { D7 }}$	36	A3
13	D8	37	Al_{4}
14		38	A \varnothing
15		39	¢2
16	,	40	R/W
17	Resat	41	VMA
18		42	¢2.VMA
19	A19	43	A1¢
20	A19	44	A99
21	A16	45	A12
22	A17	46	A13
23	+12 VOLTS	47	A14
24	-9 VOLTS	48	815

6 Pin DC power connector

Pin \#	Shugart 801	Siemens FDD -100
1	+24 VDC	+24 VDC
2	24 V Gnd	Gnd
3	-5 V Gnd	N.C.
4	-5 VDC	N.C.
	Opt.	
5	-7 to -16	
6	+5 VDC	+5 VDC
	5 V Gnd	N.C.

3 Pin AC power connector
Pin \# Function
$\frac{85-127 \text { V AC input }}{\frac{1}{2}} \frac{\text { Frame gnd. }}{2}$

[^0]: $J=$ Jumpered $0=0$ Oen $\%=$ DCen fower input -7 to -12 volt in. $\quad=$ Jumper on last

