WD W N W W Wy e e ey ey ey

0S-65D V3.0 User's
Table of Conte
Features

Introduction
Using the System in BASIC

Mitiii=0r 1 GEE0 DEBIE o & os ors aw avs wiwaie o b e o h 8 o wm o ok ® &5 & @ e

Development Disks
BASIC and the Immediate Mode
Loading, Saving and Running BASIC

Floppy Disk FOrmats ceessesessronesnsacsnnsssansocsnsans

Utilizing Named Program Files
Mini-Floppy Disk Directory
Full Size Floppy Disk Directory

Saving a BASIC Program On Disk Via a Named File

Loading a BASIC Program From Disk
Deleting Files

Backing Up Files

Modifying BEXEC* and Applications
Advanced Features of 0S-65D V3.0 9-
BASIC I/0 Handling

BASIC to DOS Interface

Data Files an BASIC saewvewwwsssaea
Sequential Data Files

Manual

nts

Programs

By File Name

DASkS wiswis ziek S48 Teuder B

-Digit BASIC

Steps to Using Sequential Data Files

Random Data Files

Steps to Using Random Data Files .
Using the Assembler/Editor

Using the Extended Monitor

System Overview

Systen ArchiteCtUle . vvis we ve as s s
Memory Map

Utility Programs
Create File Utdlity covevisasss
Change Parameter Utility
Delete File Utility
Directory Utility
sorted rectory ULIlity «icows
Random Access File List Utility
Rename File Utility
Sector Directory Utility
Sequential File Lister Utility
Trace Utility
File Zeroing Utility

0S-65D V3.0 Kernel

Changing I/0 DisStributor FlagsS ««eeveeeneeeronnenennnns

Transferring Disk Sectors
Executing a Machine Code File
Using Indirect Files

erndl UEITTEIBE am 26 50 00 05 55 3.0 0554 55 578 0 vim 580 v's s 0 3 5 o 1e

Initializing Diskettes
Copying Diskettes
0S-65D V3.0 for the I-P
I-P Pico DOS

Appendix
0S-65D V3.0 User's Guide

Manual (C) 1978 OHIO SCIENTIFIC, INC.

65D V3.0 (C) 1978 OHIO SCIENTIFIC
9-Digit BASIC (C) MICROSOFT, INC.

INC.

Features

*Convenient to use "conventional" disk operating system

*Available for all OSI 6502 mini-floppy and 8" floppy
configurations

*Supports 9-Digit BASIC, Assembler/Editor, Extended Machine
Code Monitor and transient code programs

*Utilizes named files and manually allocated files inter-

changeably

*Features convenient to use BASIC oriented sequential and
random access data files

*Supports up to four floppy drives

*Supports 430 serial, 550 serial (16 port) parallel printer,
cassette and memory I/0 as well as serial console and/or
keyboard with video console

*Can be directly converted to a locked menu-oriented system

for end users

*Contains all 0S-65D V2.0 features as a subset and can read
version 2 files and assign file names to them
*Supports multiple variable length disk buffers and variable

length sectors on diskette

—]

-

Introduction

0S-65D Version 3.0 is a convenient to use disk operating
system which fully supports Microsoft's 9-Digit Extended BAS]JC,
a 6502 resident Assembler/Editor, 6502 Extended Machine Code
Monitor and various I/O devices. The operating system is
available for all Ohio Scientific mini-floppy and full size
floppy disk configurations. The system is convenient for
beginners to use via the programming language BASIC. It
supports writingtprograms in BASIC, storing programs on disk,
recalling programs and reading and writing sequential and
random access data files in BASIC. The system also fully
supports assembler language programming for the 6502. In
conjunction with its assembler and machine code capabilities,
it offers an extensive machine code debugging aid, the Extended
Monitor. The system is also well suited to utilize machine code
subroutines in conjunction with BASIC programs. It has several
advanced features such as variable sector length and the capability
of its stand-alone disk operating system kernel to support other
languages.

This manual will cover the above features starting with
fundamental operation of the system for the BASIC programmer
and advancing to more detailed levels. The manual is written
to permit the user to fully utilize the computer system at the
BASIC language level, without ever having to read those portions
of the manual covering assembler level operation. For the user's
convenience, a condensed User's Guide that covers all features of

0S-65D Version 3.0 is included at the end of this manual.

Using the System in BASIC

Before using any floppy diskettes, please carefully read
alli the warnings about the care and handling of diskettes and
the floppy disk system in the main operator's manual accompany-
ing your computer. Once you have the system properly connected
and pcwered up, place the 65D Version 3.0 diskette, label side
up, in the "A" drive of your disk system. There are basically
two types of 65D 3.0 diskettes: Development disks and menu-
oriented Applications disks. Both boot up directly in the
programming language BASIC and execute a BASIC program called
BEXEC*. With either type of diskette, the proper procedure is
as follows:

1. Place the diskette into the disk drive.

2. Close the drive door.

3. Depress the reset button in front of the CPU or the

break key on the computer's keyboard depending on

the model of the computer you have.

4, Check to be sure the shift lock key is in the locked
or down position on polled keyboard systems.

5. Depress the "D" key. This selects the floppy disk
bootstrap which will load the operating system from
disk into memory. A series of messages will appear
on the screen,

Menu-Oriented Disks

Applications disks display a menu when booted which is a list
of numbers and program descriptions, and finally, a message such
as "YOUR SELECTION?", To select the desired program, you simply
type the number corresponding to the desired selection and depress
the RETURN key. The operating system will then load that program

and execute it,.

{

—

Note that all inputs you type into the computer must be
followed by pressing the RETURN key. This is referred to as
"line-oriented input". It offers a tremendous advantage over
character oriented input in that until the RETURN key is pressed,
typing errors can be corrected by merely typing a delete
character after the error, then typing the correct character.

(On various keyboards the delete character (hex code 5F) may be

a shift-0, underline or back arrow.) On video terminals with
backspace capability the erroneous character is then erased and
the cursor is le;t at the proper position for entry of the correct
character. On printing terminals that have backspace capability
the erroneous character obviously cannot be erased. However, the
print head is left correctly positioned for entry of the correct
character. On terminals without backspace capability the cursor/
print head is not repositioned but the delete is performed per-
mitting simple correction of errors. As many delete key strokes

as needed can be used at any time. For example, if two characters
were typed in error, two delete key strokes can be used to eliminate
them. In addition to the single character delete, a control-U key
entry may be used to delete a whole line. This is done by pressing
the U key while holding the CTRL key down.

Menu-oriented operating systems provide operational messages
as you go so it is usually not necessary to refer to this manual
while operating an Applications disk. It is possible to gain
access to the internal software of an Applications disk by typing
in the proper response when the menu is displayed. This feature
will be covered later, after the user has gained a familiarity

with Development disks.

Development Disks

Development disks are specifically for users who wish to
write their own programs. Development disks contain utility
programs which will provide assistance in developing software
instead of providing end user application programs. A Development
disk will boot in with a message such as "0S-65D Version 3.0"
followed by some other messages and a selection of possible
functions, ultimately asking the question "FUNCTION?". The
functions in this menu are utility programs which will be covered
later.

BASIC and the Immediate Mode

The first objective in mastering 65D Version 3.0 is to learn
to utilize the programming language BASIC in the immediate mode
and to write simple programs. This is accomplished by selecting
a Development disk, booting it in by typing D and answering
"UNLOCK" to "FUNCTION?". (Note that the RETURN key must be hit at
the completion of each line of input.) This operation initializes
BASIC, prepares it for end user programming and returns the user
to the BASIC immediate mode displaying the prompter "OK". At
this point, the computer will accept almost all standard BASIC
statements in the immediate mode. The immediate mode can be used
in conjunction with any standard BASIC textbook for mastering the
concepts of the programming language BASIC. The following is a
short introduction to programming in BASIC and some sample programs
that can be run. Once you have mastered elementary programming in
BASIC, proceed to the next section which covers loading BASIC

programs from disk and storing BASIC programs on disk.

1

PROGRAM EXAMPLE

The following program example demonstrates some of the
more fundamental concepts of BASIC. This program may be
entered when the computer replies "OK". Enter the program
exactly as it appears, including all punctuation, etc.

1¢ PRINT "HELLO! I'M YOUR NEW COMPUTER!" <éﬁTUR§:>

20 PRINT <RETURD>
3y END <RETURY>

Now, check the program to be sure you have entered it
correctly. Type in the word LIST and <<éETUR§>>. This
instructs the computer to print out the program as stored
within the computer's memory.

LIST <RETURN>

To have the computer execute ("run") the program, type in:
RUN <RETURY>
The computer should then print:

HELLO! I'M YOUR NEW COMPUTER!

The BASIC language makes it easy to modify (edit) a
program. Errors within a line may be corrected by retyping
the line. Additional statements may be incorporated into a
program by sequencing the new line numbers within the existing
program. The following additions to the example program
demonstrate these editing concepts.

5 FOR X=§ TO 3§ <RETURY>

25 NEXT X <RETURN>
To examine the program as amended, type LIST <§?TUR§>>.

To execute the new program, type RUN ~<§ETUR§>-.

The computer operating manual contains a more in-depth
discussion of BASIC, several sample programs and a reference
manual on BASIC.

You may also wish to refer to one of the many BASIC

programming texts now available for an in-depth study of BASIC.

B

dl

——y

Loading, Saving and Running BASIC Programs

0S-65D Version 3.0 allows the user to LOAD, SAVE and RUN
BASIC programs specified by starting track number or by up to
a six character file name. This unique approach allows maximum
versatility in that the user can allow the disk system to locate
the space for files or can manually specify exactly where files
appear on the disk, as desired.

Floppy Disk Formats

Floppy disks are divided into concentric circles called
tracks. Each track can be further divided into entities called
"sectors". An 8" floppy disk has 77 usable tracks. Mini-floppy
disks have from 35 to 40 usable tracks depending upon the guality
of the read/write head in the floppy diskette drive and the
quality of the floppy media. Tracks are numbered from 0 up such
that the 5th physical track on the disk is track 4. 0S-65D
Version 3.0 stores BASIC programs starting on track boundaries
and uses an integer number of tracks to store each program.

That is, it stores programs on a single sector per track. Pro-
grams that are multiple tracks in length are stored on contiguous
tracks, that is, if a program is 3 tracks long and is specified
to be stored on track 40, it is, in fact, stored on track 40, 41
and 42. On 8" floppies, approximately 2800 bytes or characters
are stored per track. On mini-floppies, approximately 2000 bytes
or characters are stored per track.

Not all of the diskette is available to store user programs.

Part of the diskette is occupied by the operating system, the

language processors such as BASIC and the Assembler, utility programs

and possibly other end user programs and data files. It is
necessary to maintain a directory of what is on the disk both
to be able to select desired information from the disk and to “~ﬁ
know what portions of the disk are available for future storage.
For the moment, we will bypass the methods of obtaining dir-
ectories and proceed to storing a program on diskette and
recalling it.

First, type a short program into the computer in BASIC
and RUN it. Then, follow the procedure below. Note, when
you type EXIT, tge system will report the number of tracks
required to store the program. On 8" floppies store the
program on track 73; on 5" floppies store the program on track
34,

Procedure for Saving a Program on Disk by Track Number

A, After the program has been entered: ’

1. Type EXIT.(By now you should be remembering to hit
the RETURN key after each line of input.)

2, BASIC will report number of tracks needed for storace.
Then the DOS prompter A* will appear.

3. Type PUT (track number) where (track number) = 73 for
the example on 8" floppies and 34 on 5" floppies.

WARNING: PUT (track number) will place new programs
right over old files on the disk, so be sure
that the tracks you specify don't contain
other important software (in the example,
they don't).

4, Type RETURN BASIC or RE BA in shorthand.

5. The BASIC prompter "OK" should appear with the program
still in memory.

Type NEW to clear the program from memory and reinitialize
the work space. Now follow the procedure on the next page, ‘!\

specifying track 73 for 8" floppies and track 34 on a 5" floppy.

€

Procedure for Loading a Program from Disk by Track Number

l. Type EXIT
2. Ignore the track size report BASIC puts out

3. Type LOAD (track number) where (track number) is
the starting track of the desired program

4, Type RE BA

5. The BASIC prompter "OK" should appear with the
program in memory

6. RUN or LIST the program as desired

The preceding process could be considered tedious for
bringing in programs to be run. There is a much shorter way
of bringing in programs and running them. This can be demonstrated
by typing NEW to initialize the work space and then typing the
statement RUN (track number) where (track number) is 73 or 34.

This brings the program into the work space and automatically

starts executing it.

=10-

Utilizing Named Program Files

It is somewhat difficult to have to remember the locations _.‘\
of all programs by track number. For example, it is easy to |
forget whether a program you want is on track 72 or track 27.

Therefore, it is desirable to be able to utilize a name for a
program instead of its track number.

To utilize named files on the disk, utility programs which
are present on the diskette must be used. These programs are
written in BASIC and include DIR, CREATE and DELETE. There are
more utility programs, but these are the only ones necessary
for saving and recalling named BASIC programs. DIR is the
directory program. This program, when executed, lists or prints
out a directory of the disk files by name and track utilization.

Disk files can include BASIC programs, BASIC data files, assembler ,_.\
source code, machine code and other special files such as the

utilities programs. To obtain a disk directory, simple type

RUN"DIR while in the BASIC immediate mode. Or type DIR directly

to the question"FUNCTION?" when the system is booted. The

directory progfam then asks if you want line printer output in-

stead of console output. It then follows with the directory of

file names and track ranges. The fcllowing two listings show

the standard directory for mini-floppy and 8" floppy Development

disks.

=-11-

- T

—

-

Mini-Floppy Disk Directory

0S-65D VERSION 3.0
-— DIRECTORY --

FILE NAME

TRACK RANGE

e e e e

0S-65D3
BEXEC*
CHANGE
CREATE
DELETE
DIR
DIRSRT
RANLST
RENAME
SECDIR
SEQLST
TRACE
ZERO
ASAMPL

g-12
14-14
15~16
L7=149
20-20
21=21
22=d 2
23-24
25=25
26-26
27=28
29-29
3g-31
32=32

50 ENTRIES FREE OUT OF 64

-12-

Full Size Floppy Disk Directory

0S-65D VERSION 3. @
=~=- DIRECTORY ==

FILE NAME TRACK RANGE
0S65D3 @ - 8
BEXEC* 9 - 9
CHANGE 1@ - 1@
CREATE 13 - 14
DELETE 45 - 15
DIR 16 - 16
DIRSRT 17 - 17
RANLST 18 - 49
RENAME 20 - 28
SECDIR 21 - 21
SEQLST 82 - 23
TRACE 24 - 24
ZERO es ~ 26
ASANPL. 27 - 2¢

5@ ENTRIES FREE OUT OF 64

e

The directory listing shows that the program named DIR
resides on track 16 so that, in fact, the program could be
run on an 8" floppy by the statement RUN"16 just as well as
it could be by the statement RUN"DIR. For more information
on the directory program and the sorted directory program,
DIRSRT, refer to the utilities description portion of the manual.

Saving a BASIC Program on Disk Via a Named File

In order to save a program on disk as a named file, the
disk file must exist on the disk and appear in the directory.
A file is createé on disk by use of the CREATE utility program.
This program allows the creation of a disk file of any size from
one track to the total free space of the disk. The file must have
six character file name which is unique, that is, the name cannot
be the same as that of an existing file. The CREATE utility
also checks to make sure that the tracks specified are not in use
at the moment to preclude the possibility of over-writing or
destroying other data on the disk. To utilize the CREATE program,
simply type RUN"CREATE. To start, CREATE a one track long pro-
gram called TEST. For more detailed information on the CREATE
program, refer to the utilities description portion of the manual.
Once a file such as the example file TEST has been created with
the CREATE utility, you can directly store a program in it. Key
in a short program and run it. Then to store this program on
disk in the file TEST, type the following statement: DISK!"PUT
TEST". This statement saves the program currently in the work
space under the file name TEST. If TEST does not exist or you

misspell it, the disk operating system will report the error.

-14-

a

Loading a BASIC Program From Disk By File Name

To load and run a BASIC program by file name, use the same ’-“
procedure as you have used for utility programs. Simple type |
the statement RUN"TEST". If you want to bring the program into
the work space without running it, type DISK!"LOAD TEST". This
loads the program into the work space but does not execute it.

After these exercises have been completed, you can verify the
existence of the file TEST by running the directory program and
observing what track it appears on.

Deleting Files

After utilizing a diskette for awhile, it may be desirable
to remove a file from the disk because the file is no longer
needed or possibly because the program is becoming too large
for that particular file and the file must be recreated a larger A‘\
size. Files can be removed from the directory and subsequently
from the disk by use of the Delete Utility. Refer to the utility
documentétion portion of this manual for instructions on the use
of this utility.

Other Useful Features For Loading and Saving Programs on Disk

We have now covered all the fundamentals required to put
programs on a diskette and recall them from a diskette. The
following discussion will provide additional insichts into the
use of the disk system for BASIC programs and other files.

Tips for File Use

File names can be up to six characters long and are generally
three to six characters. The first character in the file name

must be alphabetic and the name cannot include spaces. The ,

-15-

-

-

directory program lists out file names as they appear in the
directory. For this reason, a sorted directory program, DIRSRT,
is available. It sorts the directory in alphabetic order or
track number order. The disk also contains a renaming utility
called RENAME which allows a file name to be changed.

Tips On File Size

The 0S-65D approach to data files requires that the user
know how large his file is initially. For programs, this should
not be a problem.

Tc be safe, the user can simply specify a disk file size
as larce as or slightly larger than the available RAM for BASIC
programs. For example, with the mini-disk system with 20K of
RAM slightly less than 8K is available for programs, thus, a
four track file will handle any program that can be typed into
the machine. The user should always maintain a scratch file,
usually with the name SRATCH, which is larger than the memory
size of the computer or simply have a large block of free tracks.
This file or block of tracks can act as temporary storage in
several situations. For example, the user types in a program
and i1hen remembers that he did not create a file for it. The
procedure is to simply store the program in SRATCH, create an
appropriate file, raload the program from SRATCH and store it
uncder its proper name. Another case comes up when a BASIC
program outgrows its file size. The program is then stored in
SRATCH, the old file is deleted and then recreated in a larger

size. These procedures will also be valuable for data files

which will be discussed later.

-16-

Backing Up Files

On computer systems with two or more disk drives, it is
recommended that the user periodically recopy his entire disk to
a "back up" disk by use of the Copy Utility. The Copy Utility
is a machine code utility and is described in the utilities
documentation portion of the manual. On single drive systems,
the best approach is to back up work by performing all disk
file functions on two diskettes. That is, when a new program
is being generated, a file for it should be created on two
diskettes and then when the program is entered in the machine,
it should be saved on both diskettes by storing it on one disk,
removing that disk from the system, placing the other diskette
in place and storing it in that diskette. This is a somewhat
tedious process which is why dual drive systems are popular.

Modifying BEXEC* and Applications Disks

We have now covered enough information to allow the customiza-
tion of existing Applications diskettes and the creation of new
Applications diskettes. All 0S-65D Version 3.0 diskettes boot up
in BASIC and call in and execute the BASIC program called BEXECY*,
On Applications disks, this program contains a menu of available
BASIC programs. On Development disks it may contain a menu of
some of the utilities. To access the operating system, that is,
to unlock an Applications disk such that programs may be listed
and modified, the user must type either UNLOCK or PASS to the
question "YOUR SELECTION?" depending upon the particular diskette.
The system then reports that it is open for modification. By

unlocking the Applications diskette and examining the listing of

-17=

‘-)

™

the menu program, the user can determine where programs are
located on the disk. Programs can then be called in via the

LOAD command, modified and saved back on disk. Additional
programs can be saved on the disk and menu changes can be

made as required. The Applications disks do not contain the
named file utility programs CREATE, DIR, etc., but can be
utilized in conjunction with these programs if they are brought
in from a Development disk. Likewise, the user can generate

new Applications disks by simply changing BEXEC* on a Development

¢
disk as desired for menu and locked operation.,

-]18-

Advanced Features of 0S-65D Version 3,0 9-Digit BASIC

The 9-Digit BASIC in 0S-65D Version 3.0 contains several

extensions to Microsoft 9-Digit BASIC.

These extensions provide:

1. Input/output distribution to various devices

2. Interfaces to the disk operating system kernel

3. Extensions for sequential and random access disk

data files

We will now discuss each of these extensions in detail.

BASIC I/0 Handling

BASIC input: and output is performed with the following

commands : INPUT, PRINT and LIST.

Under 0S-65D BASIC, these

statements can be utilized in the normal way for input and

output to the console device. Also, input/output can be

selectively routed from/to various other devices on the system

including a terminal, modem or cassette at the serial port,

video display, 430 board based UART, memory buffer, line printer,

two disk buffers, 16 port serial board and a null device. Input/

output can be routed from/to these devices by simply typing a

pound sign (#) and the device number (as listed in the table below)

immediately following the INPUT, PRINT or LIST command.

Input Devices

Serial Port (ACIA)
Keyboard on 440/540 Board
UART on 430 Board

Null

Memory

Disk Buffer 1

Disk Buffer 2

550 Board Serial Port
Null

Voaoausawih ke
® 8 = = * » = = =

=] =

W o0 udswiN -

Output Devices

Serial Port (ACIA)
Video on 440/540 Board
UART on 430 Board

Line Printer

Memory

Disk Buffer 1

Disk Buffer 2

550 Board Serial Port
Null

-

_—

-

The following are examples of the use of these statements.
INPUT #8,D$
PRINT #4, "LINE PRINTER"
LIST #6
For instance, to store a program on cassette that exists
cn disk, the user simply calls that program into memory and types
LIST#1 or LIST#3 depending on which port his cassette interface
is connected to. This lists that program on that device. To
output to a printer, the user simply types PRINT #4 and the out-
put will be routed to the line printer. Memory output, device 5,
is useful for various experimenter situations such as directly
displaying information on the 540 video screen without scrolling.
This particular application is covered in the Character Graphics
Reference Manual. Device 6 and device 7 are memory buffers for
use with disk files. The use of these disk file buffers will
covered in the following section. Care must be taken not to
route input or output to non-existent or turned off peripheral
devices since this will cause the computer system to "hang" and
will require a reset which may destroy data in memory.

BASIC to DOS Interface

0S-65D Version 3.0 utilizes a stand alone command processor
for the disk operating system. That is, disk operation can be
performed even if BASIC is not present in memory. Full discussion
of the disk operating commands are in another section of the manual
and in the User's Guide. We have already covered some of these
commands such as LOAD and PUT. The programmer can leave BASIC

and enter the DOS command mode by typing EXIT. If he does not

-20-

alter the BASIC interpreter in memory or the work space he can
return to BASIC by typing RETURN BASIC or in shorthand form

RE BA. The user can also execute a single DOS command without
leaving BASIC by utilizing the statement DISK!"string" where
string is an operating system command. This statement can be
part of a BASIC program, thus, allowing the user to conveniently
utilize all the disk operating system commands as part of any

BASIC program.

)

—-—)) N

-—

—

Data Files in BASIC

In many applications it is a practical necessity to store
many variables in such a way that they can be recalled at a
later date. Specifically, after the power has been turned on and
off several times. Such a collection of variables is referred
to as a data file. There are two fundamental types of data files
available under 0S-65D Version 3.0; sequential files and random
files.

Sequential Data Files

A sequential data file is a file in which information is
output to the file sequentially, one item right after another
from the beginning to end of the file. To read information from
the file one must sequentially input it. Examples of uses for
sequential files, would be store a large numeric array or to
store information that can be searched sequentially such as
names and phone numbers. Let's walk through the process of
having a name and phone number in a sequential file. First,

a file of adequate length must be created. Then a program must

be written which outputs names and phone numbers to this data file.
Another program can be written that reads the individual string
entries which are, in fact, names and phone numbers and compares
them with a targyet name which is the name a user is searching for.
If this name is found in the file, the next string from the

file will be the desired phone number. Each file is terminated

by an "end of file" marker which the programmer can use or the
programmer may utilize other techniques for his own end of file.

For instance, in the telephone program, the string "END" could

-22-

be utilized as the "end of file" indication. This would be the
last string output to the file and could be checked for when
inputting information from the file. 0S-65D allows the user

one or two disk buffers for use with one or two files. This
means that the user can have one or two sequential files in use
in his program at any given time. These files are referred to

as devices 6 and 7. To utilize files as device 6 and 7, obviously
one must equate them to physical files on disk. This is done by
use of the OPEN command which eguates a named file to a particular
device number. For example, the statement, DISK OPEN 6,"TEST2"
opens the previously created disk file TEST2 and equates it to
device 6., Once this statement has been executed, a statement
such as PRINT#6,AS will print the string A$ to the file TEST2.
Likewise, information can be input from a file by the statement
INPUT#6 ,BS. When this statement is executed, the next variable
in the data file TEST2 will be read into string variable BS.

At the end of a program or when one has completed their use of

a particular data file, the statement DISK CLOSE,6 should be
executed which closes the data file and assures that all updates
to the file are made. Two data files may be in use simultaneosly
by opening one on device 6 and one on device 7. Then INPUTS and
PRINTS to device 6 and 7 can be made interchangeably. More than
two data files can be used in a program by simply closing and re-
opening files, as needed.

Steps to Using Sequential Data Files

The following steps must be taken to create and fill a

sequential file with information.

-23=

- . N .

Using the CREATE utility, create a file to hold the
sequential output program with a name such as PROGl.
Create a data file with a name such as TEST2.
Execute the Change Utility by typing RUN"CHANGE.
Use the Change Utility to allocate space for one
disk buffer at the beginning of the BASIC program.
Refer to the section on disk utilities for explicit
information on using the Change Utility.
When the CHANGE program is complete, the work space
has been reconfigured with space allocated for a disk
buffer. The program for use of the single disk file
should be entered at this time. The following program
may be used. It will place four strings in the disk
file TEST2.

14 DISK OPEN,6,"TEST2"

20 FOR I=1 TO 4

3¢ PRINT #6,"STRING",I

40 NEXT I

5@ DISK CLOSE,6
Store the program on disk under the name specified in
Step 1.
Run the program which should output the strings to the
disk file TEST2.
Use the utility program SEQLST to list out the contents
of the data file TEST2. Refer to the utilities portion
of the manual for directions,.

Make the following changes to the program to use it to

Wi

list out the file.
30 INPUT #6,D$
35 PRINT D$
9. Run the modified program. The results should be the
same as they were when SEQLST was run.

Random Data Files

In may instances, sequential files become very impractical.
For instance, in an inventory application, one would like to be
able to quickly access an inventory item for reference or
change. This requires the use of a random data file. Random
data files differ from sequential files in that groups of entries
are combined into records. These records can be randomly (non-
sequentially) accessed. For instance, a random data file could
have a hundred records. A program could quickly access any one
of these records by record number. For example, the contents of
record 58 could be brought in and the contents of record 72 could
be brought in without looking at any of the records in between.
0S-65D Version 3.0 supports one random access file at a time as
device 6. This can be used in conjunction with an optional
sequential file as device 7. The length of individual records
within a random access file can be adjusted by the user but are
factory set at 128 bytes. There can be any number of individual
variable entries within a record of 128 bytes and one record can
overflow into the next so that if the user wanted 256 character
records for instance, he would just utilize even record numbers.
The following example will use the same data file, TEST2, and use

it as a random file with a total of ten records. To reuse this

=25

- ..

sequential data file as a random file, we must first perform
some housekeeping. This housekeeping is performed with the
Zero Utility. The Zero Utility erases all information in a
file. To accomplish this, type RUN"ZERO. Then specify TEST2
as the file to be erased. A more complete discussion on the
Zero Utility function is present in the utilities portion of
this manual. After TEST2 has been zeroed, proceed with the
following steps.

Steps to Using Random Data Files
'
l. Create a new program file or utilize the same program

file as in the sequential exercise.
2, Execute the Change Utility and allocate space for one
disk buffer.
3. Type in the following program:
lg DISK OPEN,6,"TEST2"
2¢ FOR I=@ TO 9
3 DISK GET,I
40 FOR J=1 TO 2
5¢ PRINT#6, "STRING";I;J
6@ NEXT J
7@ DISK PUT
8 NEXT I
99 DISK CLOSE,6
4, Save the program under the file name specified in
Step 1.
5. Run the program to fill TEST2 with ten records of

information.

-26=

6. Utilize the random file list utility RANLST to list
out the information placed in TEST2. Note that RANLST
only lists one string per record so it does not list
the second string we wrote to each file record.

7. Modify the original program via the following lines:

50 INPUT #6,DS
55 PRINT D$
7¢ (deleted)
8. Execute the modified program to observe the output
informa;ion. Output information should be the same
as was originally placed in the file.

Note that in the above example, an inner FOR loop is used to
write each of two strings to each record of the file. Execution
of the PRINT statement for each string causes the data followed
by a rarriage return character to be written to the file. Al-
though the carriage return character occupies a character of
file space, its use after each item written to the file greatly
simplifies inputting the data. If a record were written as a single
long string, commas would have to be written out between each item
or the user would have to provide the detailed programming to break
the long string into its separate items whenever the string was
input. It is much simpler to write each item with a separate PRINT
statement. There is also another limitation preventing long strings
from being read. The BASIC input buffer is 72 characters long.

Consequently, longer strings are truncated on input.

/Y

Using the Assembler/Editor

0S-65D Version 3.0 supports an interactive Assembler/
Editor. The Assembler/Editor can be brought in by proceeding
with the normal boot in procedure to BASIC's immediate mode.
Then type EXIT followed by ASM. This brings in the Assembler/
Editor and places the ~omputer in the Editor's immediate mode.
Assembler/Editor's operation is as specified in the separate
Assembler/Editor Manual, except for the extensions to the
Assembler covered here. The Assembler/Editor is an extra
cost option. The Assembler/Editor utilizes two types of
files. Source files which contain the assembler code and
optional object files which contain the machine code generated
by the assembly. Under 0S-65D Version 3.0, source files can be
named or specified by track number. Object files can be stored
in variable sector format for placement anywhere in memory or
can be stored in named file mode if they are set up to resice
in the standard work space. 1In addition, the disk operating
system includes an execute object file command (XQT file name)
which allows the direct and convenient execution cof machine
code files providing they are linked to the operating system
and reside in the normal work space area. Named files must be
created via the BASIC utility before the assembly process is
begun. The user has the option of exiting from the Assembler
to the DOS for DOS level commands by the use of the EXIT command
and returning by typing RE ASM after completing a command. Or,
a command can be sent directly to the DOS by simply preceeding it

with an exclamation point (!). For example, !LOAD file name

s

loads a source code file into the assembler's work space anc
returns control to the Assembler/Editor. Note you can only
return to the Assembler if the Asserbler is in the transient
processor area. Likewise, you can only return to BASIC if
BASIC is in the transient processor area. So, if the Asserhbler
was last used, you will have to type the DOS command BASIC to
reboot BASIC. If BASIC was last used, you will have to type

the DOS command ASM,

29~

Using the Extended Monitor

0S-65D Version 3.0 also includes an Extended Machine Code
Monitor for debugging programs at the byte level. This utility
is particularly useful for assembler code work. The Extended
Monitor can be entered by booting in the system, exiting BASIC
by typing EXIT and by typing EM which boots in the Assembler/
Editor and Extended Monitor and leaves the system in the extended
monitor command mode. The 0S-65D Version 3.0 User's Guide, at
the end of this manual, provides a complete list of the Extended

Monitor's commands.

=30~

System Overview

The 0S-65D Version 3.0 is a highly refined super set of
the original 0S-65D operating system which was first introduced
in 1976. Version 3.0 is a compact, highly responsive operating
system for BASIC, assembler and machine code programming. It is
suitable for all computer system uses except the most demanding
business applications where 0S-65U and OS-DMS should be utilized.

System Architecture

Version 3.0 utilizes a stand-alone DOS complete with command
interpreter. The DOS and command interpreter are part of the DOS
kernel and can be utilized without a programming language. In
addition to the DOS kernel, the system contains an I/0 distributor
which supports all standard Ohio Scientific I/O devices and can
route input and output through common locations to any combination
of these input and output devices. The system supports a transient
processor area, specifically for Microsoft BASIC, the 6502 Assembler/
Editor and the Extended Monitor and can be used for any other 6502
language processors which may be installed on the system. The
principal source code or object file work space starts at 317E
hex for 8" floppies and 327E for mini-floppies. The following

memory map Shows the overall layout of the system,

=3]=

"\s

- -

O-FF
100~FF
200-22FF

2300-3178
2300-265B
265C-2A4A
2A4B-2E78
2F79-3178

317E up to BFFF

System Memory Map

6502 Page Zero

6502 Stack

Transient Processor Area for BASIC or Assembler
or other language processor

0S-65D V3.0 (to 3278 on mini-floppy versions)
I/0 Routines

Disk Drivers

bperating System Kernel

Swapper

Source File Work Space (327E up for mini-floppy)
Disk buffers when present normally occupy from
317E up, offsetting the work space (327E on

mini-floppy versions)

-

Utility Program

A complete set of utility programs are provided in the 0S-6€5 ‘-\
Version 3.0 for use in creating new files, copying files, printinc |
directories of files or file contents, etc. These programs may be
used without any knowledge of their implementation. However, they
are all written in BASIC and may be used by the interested reader
as sample programs demonstrating various programming and file
accessing techniques.

Descriptiong of the operation of the utility programs appear

on the following pages.

o

-—

Create File Utility

This utility program is used to create new named files.
Note that a file must have been created with this program
before it can be referenced by any of the file commands. To
create a file, type:

RUN "CREATE"

The program output and the kind of input you may enter
in response are as shown below. Any unacceptable response will
result in an error message and/or a repeat of the request for
input.

FILE CREATION UTILITY

PASSWORD?

The program continues with an explanation of its
operation:

CREATES AN ENTRY IN DIRECTORY FOR A NEW FILE AND INITIALIZES

THE TRACKS THAT THE NEW FILE WILL RESIDE ON. THE TRACKS

WILL CONTAIN NULLS WITH A RETURN AT THE END OF THE TRACK.

FILE NAME?

Enter a one to six character file name that is not a duplicate
of an existing file name. It must start with a letter.

FIRST TRACK OF FILE?

Enter the number of the first track the file is to reside
on. Note that a file always begins on a track boundary and
resides on a whole number of tracks.

NUMBER OF TRACKS IN FILE?

Enter the number of tracks on which the file is to reside.

All tracks assigned to a file must not have been previously assigned.

= 3=

The program then continues with:

12 (8 for mini-floppy) PAGES PER TRACK. IS THIS OK? —\

Type YES if the specified number of pages per track is
acceptable; otherwise, type NO. If you type NO, the following
question is asked:

HOW MANY PAGES PER TRACK THEN?

Enter the number of pages of storage you want each track
to contain. Any number up to the default number of pages is
acceptable., For full size diskettes this is twelve pages and
for mini-diskettes it is eight pages per track.

The file will now be created and its name and track
location will be entered into the directory. Each of the
tracks of the file will be initialized to nulls with a return

character at the end of each track.

-35=

Change Parameter Utility

This utility program is used to change the systemr parameters
for terminal width and for the work space limits.

The defined terminal width value for the system is used by
the BASIC interpreter to provide automatic line rollover when
lines longer than the terminal width are output. A carriage
return and line feed character are automatically inserted into
the output line when it hits the terminal width. Thus, long
lines are outputt!as two or more lines rather than a single
truncated line. Since some serial terminals and all OSI video
systems automatically provide line rollover, you may not need
to change this parameter. Note that changing terminal width
with this utility program provides only a temporary change.
Whenever the system is rebooted or BASIC is cold started (by
typing BAS), the terminal width is set back to its default
value 132. If you write a BASIC program that requires a
different terminal width, then you must run this utility program
to appropriately change the terminal width parameter prior to
running that BASIC program. Or, you can include into the BASIC
program the following commands which setup terminal width (WD is
a BASIC variable which must contain the desired terminal width) :

POKE 23,WD
NC = INT(WD/14) *14
POKE 24 ,NC
The second POKE, above, sets the column beyond which there are

no more 14 character output fields. (Fourteen is the number of

character positions allotted to each output field when commas

-36-

are used to separate the variables in a PRINT statement.)

The "work space" is that RAM area where the assembler and
BASIC source programs reside. It is used to hold these source
programs and various tables, lists, etc., that are used during
assembly or BASIC program interpretation. The work space
normally begins at 12670 (hex 317E) for full size floppy disk
systems and at 12526 (hex 327E) for mini-floppy disk systems.
The end of the work space is normally the end of the main memory
(that memory which starts at address zero and is contigquous up
to some higher address).

The BASIC command RUN "file name" and the DOS commands
LOAD and PUT provide a means to easily load a disk file into
the work space and to put a file that is in the work space back
onto disk either by name or by track number. Such files are
referred to as LOAD/PUT (or L/P) files.

The Change Parameter Utility Program permits chanages to
the work space limits so that you can reserve space in a LOAD/PUT
file for disk I/O buffers, assembly language object code or
whatever. The following diagram shows relevant work space

addresses.

-37-

¢

€

Full Size
Floppy Disk

sttem

Depends on Size
of System Memory
or No. of Pages
Specified

User Defined

User Defined

18814 (497E)

12 Pages

15742 (3D7E)

Buffer Size is

3072 (C00) Bytes
12 Pages

12670 (317E)

Normal End of Work Space

Room at the Top
(if present)

Changed End of Work Space

Source code,
tables, lists, etc.
storage used
by BASIC

Changed Start of Work Spacé

Additional Room
(if present)

Second Buffer
(if present)

- e Em me owm m e s = e mm wm e

First Buffer
(if present)

Normal Start of Work Space

Mini-Floppy
Disk
sttem

Depends of Size

of System Memory
or No. of Pages

Specified

User Defined

User Defined

17022 {(427E)

8 Pages

14974 (3A7E)

Buffer Size is

2048 (800) Bytes
8 Pages

12926 (327E)

0S=-65D V3.0 Work Space Addresses in Decimal (Hexadecimal)

-38-

To change system parameters, type:
RUN "CHANGE" ‘.\
The program output and the kind of input you may enter in
response are as shown below. Any unacceptable response will
result in an error message and/or a repeat of the request for
input.
CHANGE PARAMETER UTILITY
THE TERMINAL WIDTH IS SET FOR 132
DO YOU WANT TO CHANGE IT (Y/N)?
Enter YES or NO. If you enter YES, the program requests
a new value for the terminal width.
NEW VALUE?
Enter a new value from 14 through 255.
The program continues with:
BASIC & ASSEMBLER USE xx K WORK SPACES (yyy PAGES) ‘\
WOULD YOU LIKE TO CHANGE THIS (Y/N)?
This refers to the total amount of main memory available to
the system software. Each K (1024 bytes) contains four 256 byte
pages. A change to this parameter will make a portion of highest
memory unavailable to systems software. Note that such memory
will not be included within LOAD/PUT files.
Enter YES or NO. If you enter YES, the program requests
the number of pages to be used by system software.
HOW MANY PAGES SHOULD THEY USE?
Enter a number of pages from 50 through 191.
The program continues with:
CHANGE BASIC'S WORK SPACE LIMITS (Y/N)? ‘\

Enter YES or NO. If you enter NO, the program terminates.

-39~

_A

If you enter YES, the program requests the following:

HOW MANY 12 (8 for mini-floppy) PAGE BUFFERS DO YOU

WANT BEFORE THE WORK SPACE?

Enter 0, 1 or 2 to reserve that many track buffers at the
beginning of the work space. Note that device 6 memory buffered
I/0 uses the first buffer by default while device 7 uses the
second buffer by default. Of course, these defaults can be
changed with appropriate POKES. If no buffers are specified,
the program asks:

WANT TO LEAVE ANY ROOM BEFORE THE WORK SPACE?

Enter YES or NO. If you enter NO, the program outputs
the address of the start of the BASIC work space as shown
below. If YES is entered, proceed to the "HOW MANY BYTES?"
guestion below.

If one or more buffers was specified, the program continues

with:

WANT TO LEAVE ANY ADDITIONAL ROOM?

Enter YES or NO. If you enter YES, the following question
is asked:

HOW MANY BYTES?

Enter the number of additional bytes to be allocated
before the start of the work space.

The program then outputs the new address for the start
of the work space and the total number of bytes reserved for
buffers, etc.

THE BASIC WORK SPACE WILL BE SET TO START AT aaaaa

LEAVING bbbb BYTES FREE IN FRONT OF THE WORK SPACE

IS THAT ALRIGHT?

~g)=

Enter YES or NO. If you enter NO, the program requests

that you specify an exact lower limit address for the work space.

NEW LOWER LIMIT?

Enter a lower limit address. The program then confirms this

value by outputting:

bbbb BYTES WILL BE FREE BEFORE THE WORK SPACE
The program then continues with:

YOU HAVE xx K OF RAM

DO YOU WANT TO LEAVE ANY ROOM AT THE TOP?

Enter YES or NO. If you enter YES, the following question

is asked:

HOW MANY BYTES?

Enter the number of bytes to be allocated between the top

of the work space and the end of main memory.

that

this

The program then outputs:

THE BASIC WORK SPACE WILL BE SET TO END AT ccccc

LEAVING dddd BYTES FREE AFTER THE WORK SPACE

IS THAT ALRIGHT?

Enter YES or NO. If you enter NO, the program requests

you specify an exact number limit address for the work space.
NEW UPPER LIMIT?

Enter an upper limit address. The program then confirms
value by outputting:

eeee BYTES WILL BE FREE AFTER THE WORK SPACE.

Note that the reservation of space after the work space is

not recorded on disk with a program when it is saved in a file.

The allocation is only recorded as a RAM resident change to the

=i~

-

- W W W

BASIC interpreter and remains in effect until explicitly
changed again, or BASIC is reloaded by typing BAS in the
DOS command mode. Later, running a program that results
in an "Out of Memory" (OM) error may be the result of a
reduced work space that is no longer required.

Program output continues with:

YOU WILL HAVE fffff BYTES FREE IN THE WORK SPACE

IS THAT ALRIGHT?

Enter YES or NO., If NO is entered, the Change Parameter
Utility Program ;estarts from the beginning. Otherwise, the

requested changes are made, the work space contents are cleared

and the program terminates.

D

Delete File Utility

This utility program may be used to delete a named file

from the directory. This frees the tracks on which that file

resided,
tracks.

on those
contents
a direct

RUN

but it does not actually alter the contents of those
Consequently, until a new file is created residing
tracks or the tracks are otherwise changed, the

of the old (deleted) file are still recoverable by
track number access. To delete a named file, type:

"DELETE!

The program output and the kind of input you may enter

in response are as shown below. Any unacceptable response

will result in an error message and/or a repeat of the request

for input.

DELETE UTILITY

REMOVES AN ENTRY FROM THE DIRECTORY

PASSWORD?

Enter the appropriate password.

The program continues with:

FILE NAME?

Enter the name of the file to be deleted.

The file will now be deleted from the directory.

=tk

el ol el

—

-

aal s

—

el

. |

N R R B

W R |

-

T . =-.

-

Directory Utility

(“ This utility program is used to output a list of all current-
ly existing named files and the numbers of the tracks on which
they reside. To output a directory, type:

RUN "DIR"

The program output and the kind of input you may enter in
response are as shown below.

LIST ON LINE PRINTER INSTEAD OF DEVICE #d?

Enter YES or NO. (d is the current output device assignment.)
If you enter YES, the directory output will be on device 4; other-
wise, it will be on the currently assigned device. If you answer
YES and there is no device 4 on the system, the directory will
not be output.

A sample directory output appears below.

0S-65D VERSION 3.0

-- DIRECTORY --
FILE NAME TRACK RANGE
0S=-65D3 g-8
BEXEC* 9-9
CHANGE 19-19
CREATE 13-14
DELETE 15-15
DIR 16-16
DIRSRT 17-17
RANLST 18-19
RENAME 20-20
SECDIR 21-21
SEQLST 22-23
TRACE 24-24
ZERO 25-26
ASAMPL 27-27

5@ ENTRIES FREE OUT OF 64

‘ The above directory shows that the system software occupies

-44-

tracks zero through eight. 0S-65D3 is not a file in the
conventional sense, but appears in the directly solely to
delineate and reserve the tracks occupied by system software.
Track nine contains the BASIC Executive, BEXEC*., This is a
BASIC program which always runs when the system is booted and
which may be customized as needed to suit your application.

In general, tracks ten through 26 contain the various utility
programs; however, note that tracks 11 and 12 are free. Track

27 contains the sample assembler language program, ASAMPL,

-45=-

- . .. W

-

Sorted Directory Utility

This utility program may be used to output a list of all
currently existing named files and the numbers of the tracks
on which they reside. This output can be in alpha numeric
order by file name or by track number. To output a sorted
directory, type:

RUN "DIRSRT"

The program output and the kind of input you may enter in
response are as shown below. Any unacceptable response will
result in an error message and/or a repeat of the request for
input.

SORTED DIRECTORY UTILITY

SORTED BY NAME OR TRACK (N/T)?

Enter N or T to specify a named or a track sort, respectively.

The program continues with:

LIST ON LINE PRINTER INSTEAD OF DEVICE #d?

Enter YES or NO. (d is the current output device assignment.)
If you enter YES, the directory output will be on device 4; other-
wise, it will be on the currently assigned output device. If you
answer YES and there is no device 4 on the system, the directory
will not be output.

If neither N or T was entered above

THEN IT WILL BE UNSORTED
is output and the directory list will be in the same order as
the actual entries in the directory.

Sample directory outputs sorted by name and track number

appear on the next page.

46

0S-65D VERSION 3.0

==~ DIRECTORY =-=-

FILE NAME

TRACK RANGE

ASAMPL
BEXEC*
CHANCE
CREATE
DELETE
DIR
DIRSRT
0S-65D3
RANLST
RENAME
SECDIR
SEQLST
TRACE
ZERO

27=27
9-9
10-1¢
13~14
33=15
l6-16
L~17
g-8
1.8—=19
20-20
2121
22~23
24-24
25-26

5¢ ENTRIES FREE OUT OF 64

0S-65D

== DIRECTORY

FILE NAME

VERSION 3.0

TRACK RANCE

0S-65D3
BEXEC*
CHANGE
CREATE
DELETE
DIR
DIRSRT
RANLST
PENAME
SECDIR
SEQLST
TRACE
ZERO
ASAMPL

g-8
9-9
1g-19
13=14
35=15
16-16
Y717
18-19
20-29
21-21
22—23
24-24
25-26
27-=27

5¢ ENTRIES FREE OUT OF 64

-

-y

il Gl " G-

adl

[I

I "4‘ (‘ [.‘ _.l ﬁ_-l

ol

(-

Random Access File List Utility

This utility program may be used to list the contents of
a random access file either a single record at a time or in
groups of contiguous records. The program assumes 128 byte
records. To list a random file, type:

RUN "RANLST"

The program output and the kind of input you may enter in
response are as shown below. Any unacceptable response will
result in an error message and/or a repeat of the request for
input.

RANDOM ACCESS FILE READ

FILE NAME?

Enter the name of the random access file to be listed.

EXAMINE SINGLE RECORDS OR GROUPS (S/G)?

Enter S or G. If S is entered, the number of the single
record to be listed is requested.

RECORD NUMBER?

Enter the number of the record to be listed. (Records are
numbered from zero through n.) The specified record is listed,
then the RECORD NUMBER question is again asked. To terminate
the program, merely type a (return) to this question.

If G is entered, above, the range of record numbers to be

listed are requested.

FIRST RECORD?

Enter the number of the first record to be listed.
LAST RECORD?

Enter the number of the last record to be listed,

-48-

The specified records are listed, then the "SINGLE RECORDS OR
GROUPS" question is again asked. To terminate the program,
merely type a (return) to this question.

Note that this program reads and lists a single string
from the start of each record. Random files with more than
one entry (an entry is a string of printing characters followed

by a return) per record will not be fully listed by this program.

- N W =

-

Rename File Utility

This utility program may be used to change the name in the

directory of any file listed in the directory. To rename a
file, type:

RUN "RENAME"

The program butput and the kind of input you may enter in
response are as shown below. Any unacceptable response will
result in an error message and/or a repeat of the request for
input.

RENAME UTILITY

OLD NAME?

Enter the name of the file to be renamed as it currently
exists in the directory.

The program then outputs:

RENAME "aaaaaa" TO? (aaaaaa is the old name.)

Enter the new name for the file of one to six characters,
the first being a letter.

The name will be changed and the utility program will

terminate.

—50—

Sector Directory Utility

This utility program may be used to output the number
and size of each sector on each of a specified range of tracks.
To output a sector directory, type:

RUN "SECDIR"

The program output and the kind of input you may enter
in response are as shown below. Any unacceptable response will
result in an error message and/or a repeat of the request for
input.

SECDIR

USES 0S-65D'S DIR COMMAND TO PRINT OUT 2z SECTOR MAP

OF A GIVEN RANGE OF TRACKS

FIRST TRACK?

Enter any valid track number greater than zero and less
than the total number of existing tracks (76 for full size disks
or 39 for mini-disks).

LAST TRACK?

Enter any valid track number greater than that entered for
ihe firgt track.

A sector map for the specified tracks will be output, then
the program will terminate. A sample of such is shown below.

SECTOR MAP DIRECTORY
TRACK @1
g1-@5
g2-g5
TRACK @2
Fl-gB

.
etTC.,

CK

-5l

‘\

T TSR N N TEN SN WS WN Wm W W W W

€

In the sample, track 1 has two sectors, both five pages

in length. Track 2 has one sector of 11 (hex B) pages.

-52-

Sequential File Lister Utility

This utility program may be used to list the contents of
a sequential file., A sequential file is one in which all entries
within the file are contiguous with no intervening gaps. To list
a sequential file, type:

RUN "SEQLST"

The program output and the kind of input you may enter in
response are as shown below. Any unacceptable response will
result in an error message and/or a repeat of the request for
input.

SEQUENTIAL FILE LISTER

TYPE A CONTROL-C TO STOP

FILE NAME?

Enter the name of the sequential file to be listed.

The specified file is listed until you type a Control-C or
the end of the file is reached in which case the program terminates
with the following end-of-file message:

ERR #D ERROR IN LINE 100

OK

-53-

Trace Utility

This utility program may be used to initiate or terminate
a BASIC program line number trace. To trace a BASIC program,
type:

RUN "TRACE"

The program output and the input you may enter in response
are as shown below. Any unacceptable response will result in a
repeat of the request for input.

TRACE UTILITY

WHEN BASIC'S TRACE FEATURE IS ENABLED, BASIC WILL PRINT

OUT EACH LINE NUMBER OF THE PROGRAM BEFORE IT IS EXECUTED.

ENABLE OR DISABLE (E/D)?

Enter E to enable the trace or D to disable the trace. If
the trace is being enabled,

160

OK
will be output. The "160" is a trace of the last line of the
utility program. Now run the program you wish to test with
line number tracing.

Note that the execution of any program - including utility
programs such as this one - will include line number outputs
while the trace is enabled. This will not adversely affect the

operation of the program.

-54-

File Zeroing Utility

This utility program is used to zero the contents of a data
file. This fills the entire data file with null (hex @@) characters
which are ignored (skipped over) during BASIC input. You may
find it advantageous to "zero" random data files before entering
data into them in order to provide a "background" that is
"transparent”" (not seen) by a BASIC INPUT command. To zero a
file, type:

RUN "ZERO"

The program output and the kind of input you may enter in
response are as shown below. Any unacceptable response will
result in an error message and/or a repeat of the request for
input.

FILE ZERO UTILITY

COMPLETELY ERASES THE CONTENTS OF A DATA FILE

PASSWORD?

Enter the appropriate password.

FILE NAME?

Enter the name of the file to be zeroed.
The program continues with:
IS IT A NORMAL 12 (8 for a mini-floppy) PAGE DATA FILE?

Enter YES or NO. If NO is entered, the following message

is output:
THEN HOW MANY PAGES PER TRACK?

Enter 1 through 12 (8 for a mini-floppy) to specify the number

of 256 byte pages per track in the file.

The file will be zeroed and the program will terminate.

—55=

- -

-

0S-65D V3.0 Kernel

The 0S-65D V3.0 kernel contains its own command interpreter
for handling those commands that are basic to the system. These
include commands for initializing diskettes, selecting a disk
drive, transferring specific disk sectors and files, initiating
various language processors, etc. All kernel commands are listed
in the User's Guide with brief descriptions of their function.

Those requiring further explanation are also covered below.

Accessing the Kernel

Upon initializing the system, type UNLOCK to the question
"FUNCTION?". Then type EXIT. The DOS kernel prompter A* then

appears and any kernel commands may be entered.

Changing I/O Distributor Flags

IO nn,mm Changes input and output flag
IO nn Changes input flag only
IO ,mm Changes output flag only

This command changes I/O distributor flags to specify from
which device system input is to be taken and to which device or
devices system output is to be sent. The values nn and mm shown

above in the command are taken from the following table:

~56=

nn Input Device mm Output Device

@@ Null gg Null

@1 Serial Port (ACIA at FC@{) g1 Serial Port (ACIA at FC@g)
@2 Keyboard on 440/540 Board @2 Video on 440/540 Board

@4 UART on 430 Board g4 UART on 430 Board

@8 Null g8 Line Printer

1¢ Memory 1§ Memory

2@ Disk Buffer 1 2@ Disk Buffer 1

40 Disk Buffer 2 49 Disk Buffer 2

84 550 Board Serial Port 80 550 Board Serial Port

Note that the above values are hexidecimal numbers each of which
corresponds to the setting of one bit within the flag byte. Setting
no bits in an I/? flag byte specifies the "null device". Output to
the null device is thrown away. Input from the null device yields
undefined data. If more than one bit is set in the input flag,
input is taken from the lowest numbered device (other than null)
and the other bits are ignored. More than one bit set in the
output flag results in output being sent to each device for which
the appropriate bit is set. For example, the command "IO ,@9"
would result in all output going to both the Serial ACIA Port
and the Line Printer.

Some of the above devices need further explanation.

Memory input is from RAM starting at the address contained
in locations 238A (low) and 238B (high) with an automatic incre-
mentation of the address after each character is input. Memory
output is to RAM starting at the address contained in locations
2391 (low) and 2392 (high) with an automatic incrementation of
the address after each character is output. The addresses in
these locations can be changed by the user in order to do memory
I/0 to any available RAM area. The command MEM nnnn,mmmm is

provided for this purpose. The nnnn is a four hex digit address

=57=

for input, mmmm is an output address.

above.

Disk buffer I/0 operates similar to memory I/O described

However, I/0 to the disk buffers also results in automatic

disk transfers whenever a buffer (track) boundary is crossed. 1In

order for this disk I/O to properly take place, a few parameters

must be set up before performing any of the actual input/output

operations. (These parameters are set up in BASIC by the command
OPEN.) The parameters and their locations are:
Disk Buffer Locetions

¢
2326 (low), 2327 (high) Buffer start address (normally 317E)*
2328 (low), 2328 (high) Buffer end address +1 (normally 3D7E)*
2322 First track of file (BCD)
232B Last track of file (BCD)
232C Current track in buffer (BCD)
232D Buffer dirty flag (0 = clean)
Disk Buffer 2 Locations
232E (low), 232F (high) Buffer start address (normally 3D7E) *
2330 (low), 2331 (high) Buffer end address +1 (normallv 497E)*
2332 First track of file (BCD)
2333 Last track of file (BCD)
2334 Current track in buffer (BCD)
2335 Buffer dirty flag (0 = clean)

Locations of the current buffer addresses are:

Disk
Disk
Disk
Disk

Buffer
Buffer
Buffier
Buffer

Proper

includes:

1l Input 23AC (low) and 23AD (high)
2 Input 23FD (low) and 23FE (high)
1 Output 23C3 (low) and 23CA (high)
2 Output 2416 (low) and 2416 (high)

initialization of these parameters prior to disk I/0

- Setting the current buffer addresses to the buffer end
address +1

- Setting the current track in buffer to the first track
of file -1

After completing output to disk, the current buffer contents

may be left dirty. (Data has been written to the buffer, but the

*Add hex 1@@ to these addresses in mini-floppy systems.

-

disk hasn't yet been updated by transferring the buffer out to
disk.) If this is so, as indicated by a non-zero buffer dirty
flag, the user must perform the final disk transfer. This can
be done by reading past the end of the current buffer which will
cause a page fault and update the disk.

Transferring Disk Sectors

CALL address=track,sector

SAVE track,sector=address/page

These commands transfer a specified track, sector between
RAM and disk. Tﬁe address must always be four hexidecimal digits,
track must be two decimal digits and sector one decimal digit.
Pages must be one hexidecimal digit within the range 1-D for
full size floppies and 1 through 8 for mini-floppies. A given sector
can be referenced only if all lowered numbered sectors exist on
the specified track.

NOTE: This version of 0S-65D contains more comprehensive
disk transfer error checks than previdhs versions. As a result,
under some circumstances, error 9 will be reported when attempting
to read or write earlier version diskettes. The D9 command should
be entered when this occurs to temporarily defeat the checks for
error 9. The system should be reinitialized after completing the
transfer to restore error 9 checks.

Executing a Machine Code File

XQT file name
This command loads the file "file name" into the work space
at hex 3179 up (3279 up in mini-floppy systems) and transfers control

to location 317E (327E). The "file name" can be either the name of

=59

-

Ny T .- =,

a previously defined file or a track number. Relative location
four of the file (which loads into 317D) must contain the nurber
of tracks to be loaded.

Assembly language programs can be developed for use with
the XQT command by assembling them with an origin of 317E (327E)
and by entering the size of the program in tracks in location
317D (327D) prior to saving the program on disk with the PUT
command. Since the Assembler work space also resides at this
address, a two-step procedure must be used to create a program

{
with this origin.

1. Assemble the program with an origin of 317E (327E),
but with a memory offset (set with the Assembler Mnnnn
command) that places the object code into some available
memory.

2. Use the Extended Monitor move command to move the program
from the selected available memory area to the start of
the work space, enter the programs size in tracks then
save the program on disk with the PUT command.

For example, with available memory at hex 8000 up, you could use
an offset of 5000. The program would then be placed into memory
at 817E up (317E + 5000). A complete sample dialog for creating
such a program is shown below with user input underlined and
explanatory comments.

A*ASM Loads the Assembler

OST 6502 ASSEMBLER
COPYRIGHT 1976 BY OSI

.!LOAD file name Loads the assembler source file

.M5000 Sets memory offset

.A3 Assemble object code into memory

.EXIT Exit Assembler

A¥RE EM Enter the Extended Monitor

EM V2.0

:M317E=817E,1111 Moves the object code to work space

:@317D Set up size of program in tracks

3I7b/da g2 e.g., 2 tracks

:EXIT Exit the Extended Monitor

A*PUT file name PUT machine language program on disk
-60~-

Using Indirect Files

Often it is desirable to be able to merge two or more
BASIC or Assembler source files or transfer BASIC programs
between incompatible systems such as 0S-65D and 0S-65U. The
Indirect File provides a mechanism for doing this.

In order to use an indirect file, you must have enouch
RAM to hold the required program(s) in the BASIC or Asserbler
work space and another copy of the program(s) above the work
space. The top of the work space can be appropriately set up
with the Assembler Hnnnn command or the BASIC Change Utility
Program. Then the indirect file mechanism is set up with

this address +1 by entering it into the following locations:

decimal hex
9554 2552 Indirect file output address (high)
9368 2498 Indirect file input address (hiah)

The low part of these addresses is fixed at @@.

Transfers to and from the indirect file are then performed

as follows:

Dumping Source from the Work Space to an Indirect File

1. Load the source into the BASIC or Assembler work space
with the LOAD command.

2. Output the source but type a [after typing LIST or
PRINT and before hitting the RETURN key. This turns
the indirect file output on.

3. At the completion of the output type a]. This will

be echoed as]] and will turn the indirect file out-
put off.

Loading Source from an Indirect File to the Work Space

l. Clear the work space by typing NEW in BASIC or INIZ,Y

-61-

- . .

-

—

-—

in the Assembler. Or, load the source file into the
work space into which the indirect file is to be merged.

Type a Control-X. The indirect file data will be loaded
into the work space. When the] character is loaded at
the end of the file, the indirect file input will be
automatically terminated.

-62-

Kernel CUtilities

For normal use, only two operations from the KERNEL mode
will be rguired - Initializing Diskettes and Copying Diskettes.

Initializing Diskettes

Once the kernel is entered, a new diskette can be
initialized for use by 0S5-65D V3.0 by removing the operating
system disk and placing the diskette to be copied in the "A"
drive.

Then type

INT
The machine answers

ARE YOU SURE?

You answer

Y

After the initialization is complete, the prompter A* will re-

appear. If an error message is reported during the initialization

process, the diskette is probably bad and should be discarded.

kdkkhkhkhkhkhkdkdkhkhkhkhk

* N O T E *
' 2222222222222

OSI mini-floppy systems have write protect capability.
Write protected diskettes have a label covering a notch

on one side cf the disk. A write protected disk will
imrediately report an error upon initialization or copying

attempts. Simply remove the write protect label before
using.

Copying Diskettes

Diskettes can be copied on dual drive systems as follows:
l. First initialize the new diskette as specified above.

2. Place the newly initialized diskette in the "B" (or lower)

-63=-

M

-

- .

- =)

1

NOTE :

drive and the diskette to be copied in the "A" drive.
With the KERNEL mode prompter A* on the screen, tyre
CA @g2¢@g=g1,2 for 8" floppies or
CA @2¢@=13,1 for 5" floppies

Type
GO @20¢

The disk copier will appear on the screen. Select 1
and copy from drive "A" to drive "B".

Specify from track @ to 34 on mini-floppies and from
track @ to 76 on 8" floppies.

¢
As each track is copied, its track number will appear
on the screen.

If an error is reported during copying, reinitialize

the B diskette and repeat the process. If the error

persists, the new diskette is probably bad and should
not be used.

0S-65D V3.0 can be used to initialize and copy diskettes
for all previous versions of 0S-65D but not vice versa.
In fact, the use of Version 3.0 is recommended over the
use of earlier versions for this purpose.

-64-

0S-65D Version 3.0 for the I-P

A version of 0S-65D V3.0 is available for use with mini-
floppies on the OSI I-P Personal Computer. It is identical
to that described throughout this manual with the following
exceptions:

- the device 4 line printer driver is not included

- the device 3 UART input/output drivers are not
included

- only the 440 style video is supported (24 character
display) &s appropriate to the I-P display

- the device 1 serial ACIA port address is changed to
Fg@Q as appropriate to the I-P

-65=-

-1

I-P Pico DOS

A version of 0S-65D V3.0 is available as a "Pico-DOS" for
use with mini-floppies on the OSI I-P Personal Computer. This
system extends the 6-Digit BASIC LOAD and SAVE commands to permit
files to be saved on a diskette as well as on the usual cassette.

In order to use the Pico DOS, insert a Pico DOS diskette
into the A mini-floppy drive and type a D in response to the

D/C/W/M?imessage. The Pico DOS will boot up with the following

message:
MINI-65D3 V1.0
MEMORY SIZE? 8955
TERMINAL WIDTH?
Note that the memory size has automatically beer specified.
This is because the Pico DOS occupies memory above this point.
Continue with the initialization by entering terminal width

as usual.

The new commands available under the Pico DOS are:
LOAD n

SAVE n

where n is a program, number 1 through 8,

-66~-

USER”S GUIDE

0s-65D V3.8 DISK OPERATING SYSTEM

COMMANDS

—————————————

BASIC

CALL NNNN=TT. S

D9

DIR NN

EM

EXAM NNNN=TT

GO NNHN

HOME

INIT

INIT TT

IO NN. MM

I0 .MM
IO NN
LOAD FILNAM

LORD TT

MEM NNNN. MMMM

LOAD THE ASSEMBLER AND EXTENDED MONITOR.
TRANSFER CONTROL TO THE ASSEMBLER

LOAD BASIC AND TRANSFER CONTROL TO IT.

LORD CONTENTS OF TRACK, "TT" SECTOR. "S"
TO MEMORY LOCATION "NNMNN".

DISABLE ERROR S. THIS IS REQUIRED TQO RERAD SOME
EARLIER YERSION FILES <vi. 5, Ve. 8. PLEASE
REFER TO COMPATABLITY DISCUSSION LATER.

PRINT SECTOR MAP DIRECTORY OF TRACK "HNN"

LOARD THE ASSEMBLER AND EXTENDED MONITOR.
TRANSFER CONTROL TO THE EXTENDED MONITOR.

EXAMINE TRACK. LOARD ENTIRE TRACK CONTENTS.
INCLUDING FORMATTING INFORMATION, INTO LQCATION
"NNNN".

TRANSFER CONTROL <(GO> TO LOCATICON "NHNNN"

RESET TRACK COUNT TO ZERU AND HOME THE CURRENT
DRIVE“S HERAD TO TRACK ZERO

INITIARLIZE THE ENTIRE DISK. IE. ERASE THE
ENTIRE DISKETTE (EXCEPT TRACK 8> AND WRITE

NEW FORMATTING INFORMATION ON EACH TRACK.

SAME AS "INIT", BUT ONLY OPERATES ON TRACK "TT"

CHANGES THE INPUT I/0 DISTRIBUTOR FLAG TO "NN".
AND THE OUTPUT FLAG TO "MM".

CHANGES ONLY THE OUTPUT FLAG.
CHANGES ONLY THE INPUT FLAG
LOARDS NAMED SOURCE FILE., "FILNAM" INTO MEMORY

LOADS SOURCE FILE INTO MEMORY GIVYEN STARTING
TRACK NUMBER "TT".

SETS THE MEMORY I/Z0 DEVYICE INPUT POINTER TO
"NNNN", AND THE OQUTPUT POINTER TO "MMMM",

-1-

- -

- -

-

pra—

PUT FILNAM SAVES SOURCE FILE IN MEMORY ON THE NAMED DISK
FILE "FILNAM".

PUT TT SAYES SOURCE FILE IN MEMORY ON TRACK "TT" AND
FOLLOWING TRACKS

RET ASHM RESTART THE RSSEMBLER.

RET BAS RESTART BASIC.

RET EM RESTART THE EXTENDED MONITOR

RET MON RESTART THE PROM MONITOR (VIR RST VYECTORD.

SAVE TT., S=NNNN/P SAYE MEMORY FROM LOCATION "NNNN" ON TRRCK "TT"

SECTOR "S" FOR "P" PRGES.

SELECT X SELECT DISK DRIVE, "X" WHERE "X" CAN BE;

A, B, C, OR D. SELECT ENABLES THE REQUESTED
DRIVE AND HOMES THE HEAD TO TRACK 8.

XQT FILNAM LOAD THE FILE. "FILNAM" AS IF IT WAS A SOURCE

FILE. AND TRANSFER CONTROL TO LOCATION $317E.

NOTE:

ONLY fHE FIRST 2 CHARACTERS ARE USED IN RECOGNIZING A
COMMAND. THE REST UP TO THE BLANK ARE IGNORED

THE LINE INPUT BUFFER CAN ONLY HOLD 18 CHARACTERS INCLUDING
THE RETURN.

THE COMMAND LOOP CAN BE REENTERED AT $2AR51.

FILE NAMES MUST START WITH A "A" TO "Z" AND CAN BE ONLY
€ CHARACTERS LONG.

THE DICTIONARY IS ALWAYS MAINTAINED ON DISK. THIS PERMiTS
THE INTERCHANGE OF DISKETTES

THE FOLLOWING CONTROL KEYS ARE VALID:
CONTROL - @ CONTINUE OUTPUT FROM R CONTROL-S
CONTROL - S STOP OUTPUT TO THE CONSOLE.
CONTROL - U DELETE ENTIRE LINE A5 INPUT.
BACKARROW DELETE THE LAST CHARACTER TYPED

ERROR NUMBERS

———— o ————— o —— T —————

1 - CAN‘T READ SECTOR (PARITY ERROR>

2 - CAN’T WRITE SECTOR (REREAD ERROR)

3 - TRACK ZERO 1S WRITE PROTECTED RAGRINST THAT OPERATION.
4 — DISKETTE IS WRITE PROTECTED

S - SEEK ERROR (TRACK HEARDER DOESN’T MATCH TRACK)

-

=J

- DRIVE NOT RERDY.

- SYNTAX ERROR IN COMMAND LINE.

- BAD TRACK NUMBER.

— CAN‘T FIND TRACK HEADER WITHIN ONE RE'Y OF DISKETTE

- CAN‘T FIND SECTOR BEFORE ONE REQUESTED.

- BAD SECTOR LENGTH *%ALUE.

- CAN“T FIND THAT NAME IN DIRECTORY.

- READ/WRITE ATTEMPTED PAST END OF NAMED FILE!

i

]
TRANSIENT UTILITIES

BEXECH*

CHANGE

CRERTE

DELETE
DIR
DIRSRT
RANLST
RENARME
SECDIR
SEQLST
TRACE

ZEROD

PROGRAM

PERMITS

ENTER R

WHICH GARINS CONTROL ON BOOT IN END LUSER SYSTEMS

ADJUSTMENT OF THE FOLLOWING:

TERMINARL WIDTH FOR BASIC.

THE HIGHEST PAGE OF MEMORY AYARILABLE. WHICH
IS WHAT BASIC AND ASM USE WHEN LOADED.

THE ADJUSTMENT OF THE WORKSPACE LIMITS FOR
BASIC. THE RESULT IS A EMPTY WORKSPRCE TO
THE USER SPECIFICATIONS

FILE NAME INTO THE DIRECTORY. AND ZERO CQUT

THE CREATED FILE ON DISK.

REMOVE A FILE NAME FROM DIRECTORY.

PRINT UNSORTED DISK DIRECTORY

PRINT SORTED <(BY NAME OR TRACK> DIRECTORY

GENERAL RANDOM ACCESS FILE LIST UTILITY.

RENAME A FILE NAME IN DIRECTORY.

PRINT A SECTOR MAP DIRECTORY OF DISK.

GENERAL SEQUENTIAL FILE LIST UTILITY.

ENABLE OR DISABLE STATEMENT NUMBER TRACE FEARTURE.

INITIALIZE CONTENTS OF A DATA FILE TO ZEROCS

——

I~ 0 FLAG BEIT SETTINMNGS

————————— T —————— — - —— —————— —— {——————— ot

INPUT:
BIT 8 — ACIA ON CPU BOARD <(TERMINAL).
BIT 1 - KEYBORRD ON 446./548 BOARD.
BIT 2 - UARRT ON 438 BOARD (TERMINFAL).
BIT 3 - NULL.
BIT 4 - MEMORY INPUT (AUTD INCREMENTINGD.
BIT 5 - MEMORY BUFFERED DISK INPUT.
BIT 6 - MEMORY BUFFERED DISK INPUT.
BIT 7 - 558 BORRD RACIA INPUT. AS SELECTED BY "RINDEX"
AT LOCATION $2323 (&995 DECIMAL).
QUTPUT:
BIT 8 — ACIA ON CPU BOARD <(TERMIMNAL).
BIT 14 - VIDEO OQUTPUT ON 448./548@ BOARD.
BIT 2 - UART ON 436 BOAR (TERMINARLD
BIT 3 - LINE PRINTER INTERFACE.
BIT 4 - MEMORY CQUTPUT <AUTO INCREMENTING>.
BIT S - MEMORY BUFFERED DISK QUTPUT.
BIT 6 - MEMORY BUFFERED DISK QUTPUT.
BIT V7 - 558 BOARD ACIA OQUTPUT. AS SELECTED BY "RINDEX"

SOURCE FILE FORMAT

—————— —— ——— ——— — o {1 o T o i i o i o e i et

RELATIVE DISK ADDRESS MEMORY ADDRESS USAGE

a $3179 SOURCE START <LOW>

1 $317AH SQURCE STHRT (HIGH>
2 $317RE SOURCE END f{LOW>

3 $317C SOURCE END <HI>

4 $317D NUMBER OF TRACKS REQ®.
S AND CON. .. $317E AND ON. .. SOURCE TEXT.

CTRECTORY FORMAT

R et ——

THO SECTORS <4 AND 2> ON TRACK 8 HOLD THE DIRECTORY.

REQUIRES 8 BYTES. THUS THERE ARE A TOTAL OF 64 ENTRIES
TWO SECTORS. THE ENTRIES RRE FORMATTED AS FOLLOWS:

a - 5 ASCII & CHARACTER NAME OF FILE.
6 BCD FIRST TRACK OF FILE.
7 BCD LAST TRACK OF FILE {(INCLUDED IN FILE).

ERCH ENTRY
BETWEEN THE

MEMORY ALLOCSTION

BASIC OF ASSEMBLER/EXTENDED MONITOR.

geman - 22FE COLD STRRT TNITIALIZATION ON ROOT.

INPUTA0OUTPUT HANDLERS.

FLOPPY DISK DRIVERS.

ZR4B - 2EVS8 0S-65SD> V3. 8 DOPERATING SYSTEM KERNEL.

DIRECTCRY BUFFER.

ol e e i gl = PAGE ©-/1 SHAP BUFFER

3179 — 317D

SOURCE FILE HERDER.

317E - SOURCE' FILE.

DISKETTE RLLOCATION

—————————————

— - A T S S S T S W s — -

a 0S-635D V3. 8 (BOOTSTRAF FORMAT LOADS TO 22688 FOR 2 PAGES)
s L SECTOR 4 - REMARINDER OF 0S-65D V3.6 (LOADS TO 2R8& FOR
S PRAGES).
SECTOR 2 - TRACK ZERO RERD/ZWRITE UTILITY AND COFPIER.
(LORDS TO @288 FOR 5 PAGES).
I o 2 DIGIT MICROSOFT 6582 BRSIC
Sh=B 6502 RESIDENT RASSEMBLER/ZEDITOR.
7 EXTENDED MONITOR.
8 SECTOR 1 - FIRST PAGE OF DIRECTORY.
SECTOR 2 - SECOND PRGE OF DIRECTORY.
SECTOR 3 - QVYERLAY PAGE FOR 9 DIGIT BASIC.
SECTOR 4 - PUT/GET OVERLAY FOR 9 DIGIT BASIC.

9 - 76 USER PROGRAMS AND 0S-65SD UTILITY BASIC PROGRAMS.

=2 DIGIT BASIC EXTENTIONS

INFUT PHDSGHCDEVYICE HNUMBER>.

(INPUT IS SET TO WNEW DEYICE.
OUTPUT IS SET TO NULL DEWICE
IF DEVICE NUMBER > 3, AND
NULL INPUTS ARE IGNORED IF
DEVICE NUMBER > 3.

INFUT "TEXT"; PNDSGN<{DEVICE NUMBER>, <¢(PRINT "TEXT" AT CURRENT
QUTPUT DEVICE. THEN FUNCTION

AS ABOVYE?

r‘ PRINT PHNDSGNCDEVICE NUMBERD>. ¢PRINT OUTPUT FOR THIS COMMAND
AT NEW DEVICED

LIST PNDSGN<DEVICE NUMBER>. ¢LIST PROGRAM OR SEGMENTS OF
PROGRAM TO NEW DEVICED

WHERE <DEYICE NUMBER> FOR OUTPUT IS:

- ACIA TERMINAL

- 44p/54@ YIDEO TERMINAL

- 430 UART PORT

- LINE PRINTER

. MEMORY OUTPUT

-4 MEMORY BUFFERED DISK OUTPUT <(BIT 5>
- MEMORY BUFFERED DISK OUTPUT (BIT 6>
- 558 ACIA OUTPUT

- NULL OUTPUT

VONOTALEWNPE
|

<DEVICE NUMBER> FOR INPUT IS:

- ACIA TERMINAL

~ 440/548 KEYBOARD

- 438 UART PORT

- NULL DEVICE

MEMORY INPUT

- MEMORY BUFFERED DISK INPUT <BIT 5>
- MEMORY BUFFERED DISK INPUT <BIT 6>
- 550 ACIA INPUT

- NULL INPUT

VO~NOUAHLWNLE
|

AND WHERE PNDSGN IS A POUND SIGN.

EXIT EXIT TO 0S-65D VY3. 0@

RUN <STRING> LOAD AND RUN FILE WITH NAME IN
<STRING>.

DISK ! <STRING> SEND <STRING> TO 0S-&53D V3.8 RS A

COMMAND LINE.

DISK OPEN.<DEVICE>, <STRING> OPEN SEQUENTIAL RCCESS DISK FILE
WITH FILE NAME. <STRING>. USING
MEMORY BUFFERED DISK I/0 DISTRIBUTOR
DEVICE NUMBER & OR 7. RERDS
FIRST TRACK OF FILE TO MEMORY RAND SETS

UP THE HMEMORY POINTERS TO START oF
BUFFER.

DISK CLOSE. <DEVYICE> FORCES A DISK WRITE OF THE CURRENT
BUFFER CONTENTS TO CURRENT TRACK.

(-‘ DISK GET. {RECORD HUMBER> USING LAST FILE OPENED ON THE LUN
6 DEVICE. A CALCULATED TRACK IS READ
INTO MEMORY. WHERE THAT TRACK IS:
INTC(<REC. NUM. >/24>+BASE TRACK GIVEN
IN LAST OPEN COMMAND

i

DISK PUT

IT ALSO SETS BOTH MEMORY POINTERS TO:
128#%({REC. NUM. >=INTC(<KREC. NUM. >-243>
+BASE BUFFER ADDRESS FOR LUN é DEYICE

WRITE DEYICE & BUFFER

OUT TO DISK.

THE EFFECT IS THE SAME AS A

"DISK CLOSE.&".

END USER FOKES TO BARASIC

——— ——————

B e T L T ————

LOCATION OLD NEMW FUNCTION
2972 28 13 DISABLE . AND : TERMINATORS ON STRING INPUT
2976 44 13
2873 173 96 IGNORE CONTROL-C
2893 S5 2a DISABLE BREAK ON NULL INPUT.
2894 B8 11 "REDO FROM START"
41 4] i@ REMOVE KEYWORDS, "NEW" AND "LIST"
750 73 i@
OTHER FPOKES TO BASIC
LOCATION FUNCTION
23 TERMINAL WIDTH
2883, 8722 IF BOTH ARE 8 A NULL INPUT TO A "INFUT" STATEMENT
YIELDS AN EMPTY STRING OR A 8. IF BOTH ARE 27 THEN
THE INPUT STATEMENT FUNCTIONS AS NORMAL.
8917 USR<(X> DISK OPERATION CODE:
@ - WRITE TO DRIVE A
3 - READ FROM DRIVE A
é - WRITE TO DRIVE B
9 - READ FROM DRIVE B
9826 TRACK NUMBER FOR USR(X> DISK OPERATION
9822 SECTOR NUMBER FOR USR(X> DISK OPERATION
9823 PAGE COUNT FOR USR<X> DISK WRITE. OR
NUMBER OF PAGES REARD IN BY DISK RERD
9824 LOW BYTE OF ADDRESS OF MEMORY BLOCK FOR USR(X)>
DISK OPERATION
9825 HIGH BYTE OF ADDRESS OF MEMORY BLOCK FOR

USRCX> DISK OPERATION

-

8954

3933

8994

899%

8996

89608

9098
9099

9185
9186

9132
9133

9455
9156

9213
9214

9238
9239

8998

9806

12a42

]

LOCATION OF JSR TO A USR FUNCTION. PRESET TO
JSR $22D4. 1IE. SET UP FOR USR{X> DISK OPERATION

I/0 DISTRIBUTOR INPUT FLAG
I/0 DISTRIBUTOR OUTPUT FLAG

INDEX TO CURRENT ACIA ON S55@ BOARD. IF NUMBERED
FROM @ TO 15 THE VALUE POKED HERE IS & TIMES THE
ACIA NUMBER.

LOCATION OF A RANDOM NUMBER SEED. THIS LQCATICN
IS5 CONSTANTLY INCREMENTED DURING KEYBCOARD FOLLING

HAS PAGE NUMBER OF HIGHEST RAM LOCATION FOUND ON
05-65D“S COLD START BOOT IN. THIS IS THE DEFAULT
HIGH MEMORY RDDRESS FOR THE ASSEMBLER RAND BARSIC

LOW BYTE ADDRESS FOR MEMORY INFUT
HIGH BYTE [DDRESS FOR MEMORY INPUT

LOW BYTE ADDRESS FOR MEMORY OQUTPUT
HIGH BYTE ADDRESS FOR MEMORY OUTPUT

LOW BYTE ADDRESS FOR MEMORY BUFFERED DISK INPUT
HIGH BYTE ADDRESS FOR MEMORY BUFFERED DISK INPUT
BIT 5 DEVICE. DEFRULTS TO #$#317E.

LOW BYTE ADDRESS FOR MEMORY BUFFERED DISK OUTPUT
HIGH BYTE ADDRESS FOR MEMORY BUFFERED DISK QUTPUT
BIT 5 DEYICE. DEFARULTS TO $3417E.

LOW BYTE ADDRESS FOR MEMORY BUFFERED DISK INPUT
HIGH BYTE ADDRESS FOR MEMORY BUFFERED DISK INPUT
BIT 6 DEVYICE. DEFRULTS TO $3DFE.

LOW BYTE ADDRESS FOR MEMORY BUFFERED DISK OUTPUT
HIGH BYTE ADDRESS FOR MEMORY BUFFERED DISK OUTPUT
BIT & DEVYICE. DEFRAULTS TO $3DPE.

MEMORY BUFFERED DISK I-0 BIT S DEVICE PARAMETERS:
8998-8999 - BUFFER START ADDRESS «<$317E)
9086-9001 - BUFFER END ADDRESS ($3D7E>

gaa2 = FIRST TRACK OF FILE

9063 - LAST TRACK OF FILE

f8a4 - CURRENT TRACK IN BUFFER
9085 - DIRTY BUFFER FLAG <B=CLEAN>

MEMORY BUFFERED DISK I-Z0 BIT é DEVICE PARAMETERS:
90@6-9@87 - BUFFER START ADDRESS <$3D7E)
90@8-9@09 - BUFFER END ADDRESS ($437E)

901a@ - FIRST TRACK OF FILE

Se11 - LAST TRACK OF FILE

gei1:2 - CURRENT TRACK IN BUFFER
S@13 = DIRTY BUFFER FLAG (@=CLERAN>

LOCATION OF THE 24 USED BY THE RANDOM ACCESS FILE
CALCULATION ROUTINES. THIS LOCATION SHOULD ONLY

BE ALTERED AFTER THE OPEN HAS OCCURRED FOR THE
RANDOM ACCESS FILE BECAUSE THE PUT GET CODE IS LOARD-

. -

ED INTO THE DIRECTORY BUFFER. THIS IS WHERE THIS

24 RESIDES. MAKING IT A 48 GIYES ONE 64 BYTE RECORDES.

ERI-T HIGH BYTE ADDRESS FOR INDIRECT FILE INPUT {LOW=08)>

2554 HIGH BYTE ADDRESS FOR INDIRECT FILE OUTPUT <(LOW=aa>

EXTENTIONS TO ASSEMEBLER

E EXIT TO 05-65D %3. 8.
H<HEX NUMZ SET HIGH MEMORY LIMIT TO <HEX NUM>.
MCHEX NUM> SET MEMORY OFFSET FOR A3 ASSEMBLY TO <HEX NUM>

!<CMD LINE> SEND <CMD LINE> TO 0S-65D V3. @ AS A COMMAND TO
BE EXECUTED AND THEN RETURN TQ RS3EMBLER.

CONROL-I TAB 8 SPACES. ALSO:
CONTROL-U 7 SPRCES.
CONTROL-Y 6 SPRCES.
CONTROL-T S5 SPACES
CONTROL-R 4 SPRCES
CONTROL-E 3 SPACES.

CONRQL-C ABORT CURRENT OPERATION

EXTENDED MONITOR

——————————— T ——— — — —— ——— — ——————

FTEXT SENT "TEXT" TO 0S-65D V3. @8 AS A COMMAND.
@NNNN OPEN MEMORY LOCATION "NNNN" FOR EXAMINATION.
SUBCOMMANDS:

LF - OPEN NEXT LOCATION.

CR - CLOSE LOCARTION.

DD - PLACE "DD" INTO LOCRTION.

" = PRINT ASCII VALUE OF LOCATICN.
7/ — REOPEN LOCATION

UPARROW - OPEN PREVYIOUS LOCATION.

A PRINT AC FROM BREAKPOINT.

BN. LLLL PLACE BREAKPOINT "N" <(1-8> AT LOCATION, "LLLL".
c CONTINUE FROM LAST BREAKPOINT.

DNNNN. MMMM DUMFP MEMORY FROM "NNNN" TO "MMMM®.

EN ELIMINATE BREAKPOINT "N".

EXIT EXIT TO 0S-A5D ¥3. @

FNNNN. MMMM=DD

FILL MEMORY FROM "NNNN" TQO "MMMM"-1 WITH "0DD".

e

A

GNNNMN

HMNNM

I
K.

L

MHNMN=MMMM. LLLL

NHEX>NNHM. MMMH

a

P

» MMM OF S

GNNMM

RMMMM=NHNN. LLLL

SMMMM. NNMN

T

W

WTEXT>MMMM, NNNN

TRANSFER CONTROL TO LOCATION "NNHW"

HEXDECIMAL CALCULATOR PRINTS RESULT OF.
“NNNH"COP>"MMMM" WHERE <COF> IS5 + — %

PRINT BRERK INFORMATION FOR LAST BREAKFOINT
PRINT STACK POINTER FROM RREAKPOTHT
LaARD MEMORY FROM CRASSETTE

MOVE MEMORY BLOCK "MMMM" TO "LLLL"-1 TO LOCTATICOM
"NNHN" AND LIP IWN MEMOEY

SEARCH FOR STRING OF BYTES "HEX" v1-4) BETHWEEN
MEMGRY LOCATICON "HMNMH" AND “HpEaMt-1

PRINT, OVERFLOW/REMAINDER FROM HEX CALCULATOR.
FRINT PROCESSCOR STATUS WORD FROM BREAKPOIMNT

DISASSEMBLE 23 LINES FROM LOCATION "HNHNNN"
A LIMEFEED CONTIMUES DISASSEMELY FOR 23 MORE

RELOCATE "HWMNW" TO "LLLL"-1 TO LOCATICON "MMMM".
SAYE MEMORY BLOCK. "MMMM" TO "NMNN"-1 ON CR3SETTE
PRINT BREAKPOINT TRELE

VYIEW CONTENTS OF CRASSETTE

SEARCH FOR ASCII STRING "TEXT" BETHEEHW "MMMM" AND
AND "NNNN"-1.

PRINT X INDEX REGISTER FROM LAST BREAK

PRINT Y IMDEX REGISTER FROM LAST BREAK.

NOTE: ALL COMMANDS ARE LINE BUFFERED BY 03-65D

THUS

ONLY 18 CHARACTERS PER LINE ARE ALLOWEL

AND CONTROL-U AND BRACKARROW RPFPLY

DISKETTE COFPIER

THE DISKETTE COPY UTILITY IS FOUND ON TRACK 1 SECTOR 2. IT
SHOULD BE LOARDED INTO LOCATION 200 WITH A "CA @20@=@1.2". TQ START IT
TYPE. "GO @280". TO SELECT THE COPIER TYPE AR "1, THE COFIER

AUTOMATICALLY FORMATS THE DESTINATION DISKETTE BEFORE WRITING ON IT

-10-

TRACK @ FEEEFW[)f’bJFE]:1'EE B 5 g Bn iy)

THIS UTILITY PERMITS THE READING OF DATA ON TRACK 8 ANYWHERS
INTO MEMORY. ALSO THE CAPABLITY IS AYAILABLE TO WRITE ANY BLOCK OF
MEMORY TO TRACK @ SPECIFYING R LOARD ADDRESS AND PAGE COUNT.
THE TRACK ZERO FORMAT IS AS FOLLOMWS:
= 1 MILLISECOND DELARY AFTER THE INDEX HOLE.
- THE LOAD ADDRESS OF THE TRACK IN HIGH-LOW FORM
= THE PAGE COUNT DOF HOW MUCH DATA IS ON TRACK ZERO.

TRACK FORMATTING

THE REMAINING TRACKS ARE FORMATTED AS FOLLOWS:
= 41 MILLISECOND DELAY RAFTER THE INDEX HOLE.
- A 2 BYTE TRACK START CODE. $43 $57.
- BCD TRACK NUMBER.
- A TRACK TYPE CODE. ALKWAYS A $58

THERE CAN BE ANY MIXTURE OF VYARIOUS LENGTH SECTORS HERERFTER.

THE TOTAL PAGE COUNT CAN NOT EXCEED 12 PRAGES IF MORE THRAN ONE SECTOR
IS ON ANY GIVEN TRACK. 43 PAGES CAN BE PLACED ON A TRACK IF ONLY ONE
SECTOR RESIDES ON A TRACK. EACH SECTOR IS WRITTEN IN THE FOLLOWING
FORMAT:

= PREVIOUS SECTOR LENGTH ¢4 IF NONE BEFORE> TIMES

808 MICROSECONDS OF DELRY.

- SECTOR START CODE., $76.

= SECTOR NUMBER IN BINARY.

= SECTOR LENGTH IN BINARRY

= SECTOR DATA.

COMPATABILITY KWITH EARLIER O0OS—SSDS

THE EARLIER YERSIONS OF 0S-65D (IE. EARLIER THAN 3.8> HAD A
AUIRK OF OPERATION. WHEN THEY ATTEMPTED TO DO AR READ THE HERD WAS
LOADED AND THE ACIA INITIALIZED AT THE RISING EDGE OF THE INDEX HOLE.
SINCE THE ERARLIER 65D“S FORMAT INCLUDED NO GAP AFTER THE INDEX HOLE.
THE ACIA MAY BE INITIALIZED IN THE MIDDLE OF A BYTE. THIS WOULD SET
THE ACIA OUT OF SYNC WITH THE DATA. IT MWOULD THEN TARKE SEVYERAL
REVOLUTIONS OF THE DISKETTE BEFORE THE ACIA GOT BACK IN SYNC AND THE
TRACK HERDER FOUND. FOR THIS REASON THERE MAY BE PROBLEMS IN RERDING
EARLIER YERSION FILES. THE ERROR ENCOUNTERED IS ERROR 9. THIS ERRCR
INDICATES THAT THE TRACK HEADER WAS NOT FOUND IN ONE REYOLUTION. S0
THAT EARRLIER YERSION FILES CAN BE COPIED OYER TO THE NEW SYSTEM. THE
D9 COMMAND IS AVAILABLE. IT PREVENTS THE ERROR 9 ERROR CHECKING.

-11~-

‘-\

