
OS - 6SD V3 .0 User ' s Manual

Table of Cont ents

Features 1
Introduction 2
Using t he System in BASIC 3
Menu- Oriented D;isks 3
Development Disks 5
BASIC a nd the Immediate Mode S
Loading , Saving and Running BASIC Programs 8
Floppy Disk Formats 8
Utilizing Named Program Files 11
Mini- Floppy Disk Directo ry 1 2
Full Size Floppy Di sk Directory 13
Saving a BASI C Program On Dis k Via a Named File 14
Loading a BASIC Program From Disk By File Name IS
Delet ing Files 15
Backing Up Files 17
Modifying BEXEC i: and Applicat i ons Disks 17
Advanced Features of OS - 65D V3 . 0 9- Digit BASIC 19
BAS IC I/O Handling 19
BASIC to DOS Interface 20
Data File s in BASIC 22
Seq uential Data Files 22
Steps to Using Seq uential Data Fi les 23
Random Data Fil e s 25
Steps to Using Random Data Files 26
Us ing t he Assembler/Editor 28
Using the Extended Monitor 30
System Overview 31
System Architecture 31
Memor y Map 32

Ut ility Programs 33
Create Fil e Ut ility 34
Change ParameTer Utility 36
Delete File Uti l ity 43
Directory Util i ty 44
Sorted Directory Ut iIi ty 46
Random Access File List Utility 48
Rename File Ut ility 50
Sector Directory Utility 51
Seq uential File Lister Utility 53
Trace Utility 54
File Zeroing Utility 55

OS -65D V3. 0 Kernel 56
Changing I/O Distributor Flags 56
Transferring Disk Sectors 59
Executing a Machine Code File 59
Us i ng I nd irect Fi l es 61
Kernal Utilit i es 63
Initializing Di skettes 63
Copying Disket t es 63
OS - 65D V3 . 0 fo r the I - P 65
I - P Pico DOS 66

Appendix
OS - 65D V3.0 llser ' s Guide

Manual eC) 197 8 OHIO SCIE NTIFIC, INC.
65D V3 . 0 eC) 1978 OHIO SCIENTIFIC, INC .
9-Digit BASIC eC) MICROSOFT, INC.

Features

*Convenient to use "conventional" disk operating system

*Available for all OSI 6502 mini-floppy and 8" floppy

config urations

*Supports 9-Digit BASIC, Assembler/ Editor, Extended Machine

Code Monitor and transient code programs

*Utilizes named files and manually allocated files inter­

changeably

*Features convenient to use BASIC oriented sequential and

random access data files

*Supports up to four floppy drives

*Supports 430 serial, 550 serial (16 port) parallel printer,

cassette and memory I /O as well as serial console and/ or

keyboard with video console

*Can be directly converted to a locked menu-oriented system

for end users

*Contains all OS-65D V2.0 features as a subset and can read

version 2 files and assign file names to them

*Supports multiple variable length disk buffers and variable

length sectors on diskette

-1-

Introduction

OS-650 version 3.0 is a convenient to use disk operating

system which fully supports Microsoft's 9-0igit Extended BASlC,

a 6502 resident Assembler/Editor, 6502 Extended Machine Code

Monitor and various I/O devices. The operating system is

available for all Ohio Scientific mini - floppy and full size

floppy disk configurations. The system is convenient for

beginners to use via the programming language BASIC. It

supports writing' programs in BASIC, storing programs on disk,

recalling programs and reading and writing sequential and

random access data files in BASIC. The s y stem also fully

supports assembler language programming for the 6502. In

conjunction with its assembler and machine code capabilities,

it offers an extensive machine code debugging aid, the Extended

Monitor. The system is also well suited to utilize machine code

subroutines in conjunction with BASIC programs. It has several

advanced features such as variable sector length and the capability

of its stand-alone disk operating system ke r nel to support other

languages.

This manual will cover the above features starting with

fundamental operation of the system for the BASIC programmer

and advancing to more detailed levels. The manual is written

to permit the user to fully utilize the computer system at the

BASIC language level, without ever having to read those portions

of the manual covering assembler level operation. For the user's

convenience, a condensed User's Guide that covers all features of

OS-650 Version 3.0 is included at the end of this manual.

-2-

Using the System in BASIC

Before usinq any floppy diskettes, please carefully read

al~ the warnings about the care and handling of diskettes and

the fl oppy disk system in the main operator's manual accompany-

in s; yo ur computer . Once you have the system properly connected

anc pC"'ere d up, p lace the 65D Version 3.0 diskette, label side

up, in the " A" drive of your disk system. There are basically

t wo types of 6 5D 3 . 0 diskettes: Development disks and menu-

oriented Appl icati ons disks. Both boot up directly in the

programr..i ng language BASI C and e xecute a BASIC program called

BEXEC* . with e ither type of diskette, the proper procedure is

as follows:

1. Place the diskette into the c isk d ri ve.

2. Close the drive door .

3. Depress the reset button in fr ont of the CPU or the
break key on the computer's ke yboar d depending on
the model of the computer you have.

4. Check to be sure the shift lock key is in the locked
or down position on polled keyboard systems.

5. Depress the " D" k e y.
bootstrap which will
disk into memory. A
on the screen.

Me n u-Oriented Disks

This selects the floppy disk
load the operating s y stem from
series of messages will appear

Applications disks di s play a menu when booted ~,hi ch is a list

of numbers and p rogram descriptions, and fi nally, a message such

a s "YOUR SE LECTI ON? ". To select the desired program, you simply

t ype the number corresponding to the desired selection and depress

the RETU~~ key. The operating s ystem will then load that program

an d execute it .

- 3-

Note that all inputs you type into the computer must be

followed by pressing the RETURN key. This is referred to as

"line-oriented input". It offers a tremendous advantage over

character oriented input in that until the RETURN key is pressed,

typing errors can be corrected by merely typing a delete

character after the error, then typing the correct character.

(On various keyboards the delete character (hex code SF) may be

a shift-O, underline or back arrow.) On video terminals with

backspace capability the erroneous character is then erased and
•

the cursor is left at the proper position for entry of the correct

character. On printing terminals that have backspace capability

the erroneous character obviously cannot be erased. However, the

print head is left correctly positioned for entry of the correct

character. On terminals without backspace capability the cursor/

print head is not repositioned but the delete is performed per-

mitting simple correction of errors. As many delete key strokes

as needed can be used at any time. For example, if two characters

were typed in error, two delete key strokes can be used to eliminate

them. In addition to the single character delete, a control-U key

entry may be used to delete a whole line. This is done by pressing

the U key while holding the CTRL key down.

Menu-oriented operating systems provide operational messages

as you go so it is usually not necessary to refer to this manual

while operating an Applications disk. It is possible to gain

access to the internal software of an Applications disk by typing

in the proper response when the menu is displayed. This feature

will be covered later, after the user has gained a familiarity

with Development disks.

-4-

Development Disks

Development disks are specifically for users who wish to

write their own programs. Development disks contain utility

programs which will provide assistance in developing software

instead of providing end user application programs. A Development

disk will boot in with a message such as "OS-65D Version 3.0"

followed by some other messages and a selection of possible

functions, ultimately asking the question "F UNCT ION?". The

functions in this menu are utility programs wh ich will be covered

later.

BASIC and the Immediate Mode

The first objective in mastering 65D Version 3.0 is to learn

to utilize the programming language BASIC in the immediate mode

and to write simple programs. This is accomplished by selecting

a Development disk, booting it in by typing D and answering

"UNLOCK" to "FUNCTION?". (Note that the RETURN key must be hit at

the completion of each line of input.) This operation initializes

BASIC, prepares it for end user programming and returns the user

to the BASIC immediate mode displaying the prompter "OK". At

this point, the computer will accept almost all standard BASIC

statements in the immediate mode. The immediate mode can be used

in conjunction with any standard BASIC textbook for mastering the

concepts of the programming language BASIC. The following is a

short introduction to programming in BASIC and some sample programs

that can be run. Once you have mastered elementary programming in

BASIC, proceed to the next section which covers loading BASIC

programs from disk and storing BASIC programs on disk.

-5-

PROGRAM EXAMPLE

The following program example demonstrates some of the

more fundamental concepts of BASIC. This program may be

entered when the computer replies "OK". Enter the program

exactly as it appears, including all punctuation, etc.

114 PRINT "HELLO! I'M YOUR NEW COMPUTER!" ~TURN>

214 PRINT ~TU~

314 END ~TU~
Now, check ~he program to be sure you have entered it

correctly. Type in the word LIST and ~TURN>. This

instructs the computer to print out the program as stored

within the computer's memory.

LIST ~TU~
To have the computer execute ("run") the program, type in:

The computer should then print:

HELLO! I'M YOUR NEW COMPUTER!

The BASIC language makes it easy to modify (edit) a

program. Errors within a line may be corrected by retyping

the line. Additional statements may be incorporated into a

program by sequencing the new line numbers within the existing

program. The following additions to the example program

demonstrate these editing concepts.

5 FOR X=iJ TO 314 ~TURN>

25 NEXT X 4x:TURN>

To examine the program as amended, type LIST ~TURN>

To execute the new program, type RUN ~TU~.

-6-

The computer operating manual contains a more in-depth

discussion of BASIC, several sample programs and a reference

manual on BASIC.

You may also wish to refer to one of the many BASIC

FLogramming texts now available for an in-depth study of BASIC.

-7-

Loading, Saving and Running BASIC Programs

OS-65D Version 3.0 allows t .he user to LOAD, SAVE and RUN

BASIC programs specified by starting track number or by up to

a six character file name. This unique approach allows maximum

versatility in that the user can allow the disk system to locate

the space for files or can manually specify exactly where files

appear on the disk, as desired.

Floppy Disk Formats

Floppy disks are divide d into concentric circles called

tracks. Each track can be further di vided into entities called

"sectors". An 8" floppy disk has 77 usable tracks. Mini-floppy

disks have from 35 to 40 usable tracks depending upon the quality

of the read/write head in the floppy diskette drive and the

quality of the floppy media. Tracks are numbered from 0 up such

that the 5th physical track on the disk is track 4. OS - 65D

Version 3.0 stores BASIC programs starting on track boundaries

and uses an integer number of tracks to store each program.

That is, it stores programs on a single sector per track. Pro­

grams that are multiple tracks in length are stored on contiguous

tracks, that is, if a program is 3 tracks long and is specified

to be stored on track 40, it is, in fact, stored on track 40, 41

and 42. On 8" floppies, approximately 2800 bytes or characters

are stored per track. On mini-floppies, approximately 2000 bytes

or characters are stored per track.

Not all of the diskette is available to store user programs .

Part of the diskette is occupied by the operating system, the

language processors such as BASIC and the Assembler , utility programs

-8-

and possibly other end user programs and data files. It is

necessary to maintain a directory of what is on the disk both

to be able to select desired information from the disk and to

know what portions of the disk are available for future storage.

For the moment, we will bypass the methods of obtaining dir-

ectories and proceed to storing a program on diskette and

recalling it.

First, type a short program into the computer in BASIC

and RUN it. Then, follow the procedure below. Note, when
I

you type EXIT, the system will report the number of tracks

required to store the program. On 8" floppies store the

program on track 73; on 5" floppies store the p r og ram on track

34.

Procedure for Saving a Program on Disk by Track Number

A. After the program has been entered:

1. Type EXIT. (By now you should be remembering to hit
the RETURN key after each line of input.)

2. BASIC will report number of tracks needed for storage.
Then the DOS prompter A* will appear.

3. Type PUT (track number) where (track nu~ber) = 73 f o r
the example on 8" floppies and 34 on 5" floppies.

WARNING: PUT (track number) will place new programs
right over old files on the disk , so be sure
that the tracks you specify don 't contain
other important sofh' are (in the example,
they don't).

4. Type RETURN BASIC or RE BA in shorthand.

5. The BASIC prompter "OK" should appear with the prog ram
still in memory .

Type NEW to clear the p rogram from me~.ory and reini ti ali ze

the work space. Now follow the procedure on the next page,

specifying track 73 for 8" floppies and track 34 on a 5" floppy.

-9-

Procedure for Loading a Program from Disk by Track Number

1. Type EXIT

2 . Ignore the track size report BASIC puts out

3. Type LOAD (track number) where (track number) is
the starting track of the desired program

4. Type RE BA

5. The BASIC prompter "OK" should appear with the
program in memory

6. RUN or LIST the program as desired

The preceding process could be considered tedious for

bringing in programs to be run. There is a much shorter way

of bringing in programs and running them. This can be demonstrated

by typing NEW to initialize the work space and then typing the

statement RUN (track number) where (track number) is 73 or 34.

This brings the program into the work space and automatically

starts executing it.

-10-

Utilizing Named Program Files

It is somewhat difficult to have to remember the locations

of all programs by track number. For example, it is easy to

forget whether a program you want is on track 72 or track 27.

Therefore, it is desirable to be able to utilize a name for a

program instead of its track number.

To utilize named files on the disk, utility programs which

are present on the diskette must be used. These programs are

written in BASIC and include DIR, CREATE and DELETE. There are

more utility programs, but these are the only ones necessary

for saving and recalling named BASIC programs. DIR is the

directory program. This program, when executed, lists or prints

out a directory of the disk files by name and track utilization.

Disk files can include BASIC programs, BASIC data files, assembler

source code, machine code and other special files such as the

utilities programs. To obtain a disk directory, simple type

RUN"DIR while in the BASIC immediate mode. Or t ype DIR directly

to the question" FUNCTION?" When the sys tern is booted. The

directory program then asks if you want line printer output ~n­

stead of console output. It then follows with the directory of

file names and track ranges. The following two listings show

the standard directory for mini-floppy and 8" floppy Development

disks.

-11-

Mini-Floppy Disk Directory

OS-65D VERSION 3.0
DIRECTORY

FILE NAME TRACK RANGE

-~-----------------------------

OS-65D3
BEXEC*
CHANGE
CREATE
DELETE
DIR
DIRSRT
RANLST
RENAME
SECDIR
SEQLST
TRACE
ZERO
ASAMPL

.0'-12
14-14
15-16
17-19
2(1-2.0'
21-21
22-22
23-24
25-25
26-26
27-28
29-29
3.0'-31
32-32

5(1 ENTRIES FREE OUT OF 64

-12-

Full Size Floppy Disk Directory

OS-650 VERSION 3. 0

-- DIRECTORY --

FILE NAME TRACK RANGE

OS65D3 0-8
BEXEC'" 9 - 9
CHANGE 10 - 10
CREATE 13 - 14
DELETE 15 - 15
DIR 16 - 16
DIRSRT 17 - 17
RANLST 18 - 19
RENAME 20 - 20
SECDIR 21 - 21
SEQLST 22 - 23
TRACE 24 - 24
ZERO 25 - 26
ASAMPL 27 - 27

50 ENTRIES FREE OUT OF 64

-13-

The directory listing shows that the program named DIR

resides on track 16 so that, in fact, the program could be

run on an 8" floppy by the statement RUN"16 just as well as

it could be by the statement RUN"DIR. For more information

on the directory program and the sorted directory program,

DIRSRT,refer to the utilities description portion of the manual.

Saving a BASIC Program on Disk Via a Named File

In order to save a program on disk as a named file, the

disk file must exist on the disk an d appear in the directory.
(

A file is created on disk by use of the CREATE utility program.

This program allows the creation of a disk file of any size from

one track to the total free space of the disk. The file must have a

six character file name which is unique, that is, the name cannot

be the same as that of an existing file. The CREATE utility

also checks to make sure that the tracks specified are not in use

at the moment to preclude the possibility of over-writing or

destroying other data on the disk. To utilize t'1e CREATE prograrr.,

simply type RUN" CREATE. To start, CREATE a one track long pro-

gram called TEST. For more detailed information on the CREATE

program, refer to the utilities description portion of the manual.

Once a file such as the example file TEST has been created with

the CREATE utility, you can directly store a program in it. Key

in a short program and run it. Then to store this program on

disk in the file TEST, type the followin g statement: DISK! "PUT

TEST". This statement saves the program currently in the work

space under the file name TEST. If TEST does not exist or you

misspell it, the di sk operating system will report the error.

-14-

Loading a BASIC Program From Disk By File Name

To load and run a BASIC program by file name, use the sa~e

procedure as you have used for utility programs. Simple type

the statement RUN"TEST". If you want to bring the program into

the work space without running it, type DISK! "LOAD TEST ". This

loads the p~ogram into the work space but does not execute it.

After these' exercises have been comple ted, you can veri fy the

existence of the file TEST by running the directory prog ram and

observing what track it appears on.

Deleting Files

After utilizing a diskette for awhile, it may be desirable

to remove a file from the disk because the file is no longer

needed or possibly because the program is becoming too l arge

for that particular file and the file must be recreated a larger

size. Files can be removed from the directory and subsequently

from the disk by use of the Delete Utility. Refer to the utility

documentation portion of this manual for instructions on the use

of this utility.

Other Useful Features FOr Loading and Saving Programs on Disk

We have now covered all the fundament als required to put

programs on a diskette and recall them from a diskette . The

following discussion will provide additional insights into the

use of the disk system for BASIC programs and other files.

Tips for File Use

File names can be up to six characters long and are generally

three to six characters. The first character in the f ile name

must be alphabetic and the name cannot include spaces. The

-15-

directory program lists out file names as they appear in the

d irecto ry. For this reason, a sorted directory program, DIRSRT,

is available. It sorts the directory in a lphabetic order or

track number order. The disk also contains a renaming utility

called RENA~ffi which allows a file name to b e changed.

Tips On File Size

The OS-65D approach to data files re q uires that the user

know how large his file is initially.

not be a problem.

Fo r programs, this should

To be safe, the user can simply spe cify a d isk file size

as larS'e as or sli<;htly larger than the available RAN for BASIC

programs. For example, with the mini-disk system with 20K of

RAN slightly less than 8K is available f o r programs, thus, a

four track file will handle any program that can be typed into

the machine. The user should always maintain a scratch file,

usually with the name SRATCH, which is larger than the memory

size of the computer or simply have a large block of free tracks.

This f ile or. block of tracks can act as temporary storage in

seve l-al situat ions. For example, the user types in a program

and '_hen remembers that he did not create a file for it. The

procedure is to simply store the program in S RATCH, create an

appropriate f ile, r210ad the program from SRATCH and store it

unde r its p roper name. Another case comes up when a BASIC

program o utgrows its file size. The program is then stored in

SRATCH, the old file is deleted and then recreated in a larger

size. These procedures will also be valuable for data files

which will be discussed later.

-16-

Backing Up Files

On computer systems with two or more disk drives, it is

recommended that the user periodically recopy his entire disk to

a "back up" disk by use of the Copy Utility. The Copy Utility

is a machine code utility and is described in the utilities

documentation portion of the manual. On single drive systems,

the best approach is to back up work by performing all disk

file functions on two diskettes. That is, when a new program

is being generat~d, a file for it should be created on two

diskettes and then when the program is entered in the machine,

it should be saved on both diskettes by storing it on one disk,

removing that disk from the system, placing the other diskette

in place and storing it in that diskette. This is a somewhat

tedious process which is why dual drive systems are popular.

Modifying BEXEC* and Applications Disks

We have now covered enough information to allow the customiza­

tion of existing Applications diskettes and the creation of new

Applications diskettes. All OS-65D Version 3.0 diskettes boot up

in BASIC and call in and execute the BASIC program called BEXEC*.

On Applications disks, this program contains a menu of available

BASIC programs. On Development disks it may contain a menu of

some of the utilities. To access the operating system, that is,

to unlock an Applications disk such that programs may be listed

and modified, the user must type either UNLOCK or PASS to the

question "YOUR SELECTION?" depending upon the particular diskette.

The system then reports that it is open for modification. By

unlocking the Applications diskette and examining the listing of

-17-

the menu program, the user can determine where programs are

located on the disk. Programs can then be called in via the

LOAD command, modified and saved back on disk. Additional

programs can be saved on the disk and menu changes can be

made as required . The Applications disks do not contain the

named file utility programs CREATE, DIR, etc., but can be

utilized in conjunction with these programs if they are brought

in from a Development disk. Likewise, the user can generate

new Applications disks by simply changing BEXEC* on a Development
t

disk as desired for menu and locked operation.

-18-

Advanced Features of OS-650 Version 3.0 9-0igit BASIC

The 9-0igit BASIC in OS-65D Version 3.0 contains several

extensions to Microsoft 9-Digit BASIC. These extensions provide:

1 . Input/output distribution to various devices

2. Interfaces to the disk operating system kernel

3. Extensions for sequential and random access disk
data files

We will now discuss each of these extensions in detail.

BASIC I/O Handling

BASIC inputtand output is performed with the following

commands: INPUT, PRINT and LIST. Under OS-65D BASIC, these

statements can be utilized in the normal way for input and

output to the console device. Also, input/output can b e

selectively routed from/to various other devices on th e system

including a terminal, modem or cassette at the serial port,

video display, 430 board based UART, memory buffer, line printer,

two disk buffers, 16 port serial board and a null device. Input /

output can be routed from/to these devices by simply typing a

pound sign (#) and the device number (as listed in the table belOlv)

immediately following the INPUT, PRINT or LIST command.

Input Devices Output Devices

1. Serial Port (ACIA) 1. Serial Port (ACIAl
2. Keyboard on 440/540 Board 2. Video on 440 / 540 Board
3. UART on 430 Board 3. UART on 430 Board
4. Null 4. Line Printer
5. Memory 5. Memory
6. Disk Buffer 1 6. Disk Buffer 1
7. Disk Buffer 2 7. Disk Buffer 2
8. 550 Board Serial Port 8. 550 Board Serial Port
9. Null 9. Null

-19-

The following are examples of the use of these statements.

INPUT #8,0$

PRINT #4, "LINE PRINTER"

LIST #6

For instance, to store a program on cassette that exists

en disk, the user simply calls that program into memory and types

LIST#1 or LIST#3 depending on which port his cassette interface

is connected to. This lists that program on that device. To

output to a printer, the user simply types PRINT #4 and the out­

put will be routed to the line printer. Memory output, device 5,

is useful for various experimenter situations such as directly

displaying information on the 540 video screen without scrolling.

This particular application is covered in the Character Graphics

Reference Manual. Device 6 and device 7 are memory buffers for

use with disk files. The use of these disk f:'.le buffers will

covered in the following section. Care must be taken not to

route input or output to non-existent or turned off peripheral

devices since this will cause the computer system to "hang." and

will require a reset which may destroy data in memory.

BASIC to DOS Interface

OS-65D Version 3.0 utilizes a stand alone command processor

for the disk operating system. That is, disk operation can be

performed even if BAS IC is not present in memory. Full discussion

of the disk operating commands are in another section of the manual

and in the User's Guide. We have already covered some of these

commands such as LOAD and PUT. The programmer can leave BASIC

and enter the DOS command mode by typing EXIT. If he does not

-20-

alter the BASIC interpreter in memory or the work space he can

return to BASIC by typing RETURN BASIC or in shorthand form

RE BA. The user can also execute a single DOS command without

leaving BASIC by utilizing the statement DISK! "string" where

string is an operating system command. This statement can be

part of a BASIC program, thus, allowing the user to conveniently

utilize all the disk operating system commands as part of any

BASIC program.

-21-

Data Files in BASIC

In many applications it is a practical necessity to store

many variables in such a way that they can be recalled at a

later date. Speci f ically, after the powe r has been turned on and

off several times. Such a collection of v ariables is referred

to as a data file. There are two fundamental types of data files

ava ilable under OS-65D version 3.0; sequential files and random

files.

Sequential Data files

A sequential data file is a file in wh ich information is

output to the file sequentially, one item ri ght after another

from the beginning to end of the file. To read information from

the file one must sequentially input it. Examples of uses for

sequential files, would be store a large numeric array or to

store information that can be searched sequentially such as

names and phone numbers. Let's walk through the process of

having a name and phone number in a sequential file. First,

a fi le of adequate length must be created. Then a program must

be written which outputs names and phone numbers to this data file .

Another program can be written that reads the individual string

entries which are, in fact, names and phone numbers and compares

them with a tal~et name which is the name a user is searching for .

If this name is found in the file, the next string from the

fi le wil l be the de sired phone number. Each file is terminated

by an "end of file" ma rker which the programmer can use or the

programme r may utilize o ther techniques for his own end of file.

For instance, in the telephone program, the string "END" could

-22-

be utilized as the "end of file" indication. This would be the

last string output to the file and could be checked for when

inputting information from the file. OS-6SD allows the user

one or two disk buffers for use with one or two files. This

means that the user can have one or two sequential files in use

in his program at any given time . These files are referred to

as devices 6 and 7. To utilize files as device 6 and 7, obviously

one must equate them to physical files on disk. This is done by

use of the OPEN command which equates a name d f ile to a particular

device number. For example, the statement, DISK OPEN 6, "TEST2"

opens the previously created disk file TEST2 and equates it to

device 6. Once this statement has been executed, a statement

such as PRINT#6,A$ will print the string A$ to the file TEST2.

Likewise, information can be input from a file by the statement

INPUT#6,B$. When this statement is executed, the next var iable

in the data file TEST2 will be read into string variable BS.

At the end of a program or when one has completed their use of

a particular data file, the statement DISK CLOSE ,6 should be

executed which closes the data file and assures that all updates

to the file are made. Two data files may be in use simultaneosly

by opening one on device 6 and one on device 7. Then INPUTS and

PRINTS to device 6 and 7 can be made interchangeably. More than

two data files can be used in a program by simply closing and re­

opening files, as needed.

Steps to Us ing Sequential Data Files

The following steps must be taken to create and fill a

sequential file with information.

-23-

1. Using the CREATE utility, create a file to hold the

sequential output program with a name such as PROGI.

2. Create a data file with a name such as TEST2.

3. Execute the Change Utility by typing RUN" CHANGE.

Use the Change Utility to allocate space for one

disk buffer at the beginning of the BASIC program.

Refer to the section on disk utilities for explicit

information on using the Change Utility.

4. When the CHANGE program is complete, the work space

has been reconfigured with space allocated for a disk

buffer. The program for use of the single disk file

should be entered at this time. The following program

may be used. It will place four str~ngs in the disk

file TEST2.

I' DISK OPEN,6,"TEST2"

211 FOR 1=1 TO 4

311 PRINT #6,"STR1NG",1

4.0' NEXT I

5.0' DISK CLOSE,6

5. Store the program on disk under the name specified in

Step l.

6. Run the program which should output the strings to the

disk file TEST2.

7. Use the utility program SEQLST to list out the contents

of the data file TEST2. Refer to the utilities portion

of the manual for directions.

B. Make the following changes to the program to use it to

-24-

list out the file.

30 INPtJr 16,D$

35 PRINT D$

9. Run the modified program. The results should be the

same as they were when 5EQL5T was run.

Random Data Files

In may instances, sequential files become very impractical.

For instance, in an inventory application, one would like to be

able to quickly access an inventory item for reference or

change. This requires the use of a random data file. Random

data files differ from sequential files in that groups of entries

are combined into records. These records can be randomly (non­

sequentially) accessed. For instance, a random data file could

have a hundred records. A program could quickly access anyone

of these records by record number. For example, the contents of

record 58 could be brought in and the contents of record 72 could

be brought in without looking at any of the records in between.

05-65D Version 3.0 supports one random access file at a time as

device 6. This can be used in conjunction with an optional

sequential file as device 7. The length of individual records

within a random access file can be adjusted by the user but are

factory set at 128 bytes. There can be any number of individual

variable entries within a record of 128 bytes and one record can

overflow into the next so that if the user wanted 256 character

records for instance, he would just utilize even record numbers.

The following example will use the same data file, TEST2, and use

it as a random file with a total of ten records. To reuse this

-25-

sequential data file as a random file, we must first perform

some housekeeping. This housekeeping is performed with the

Zero Utility. The Zero Utility erases all information in a

file~ To accomplish this, type RUN"ZERO. Then specify TEST2

as the file to be erased. A more complete discussion on the

Zero Utility function is present in the utilities portion of

this manual. After TEST2 has been zeroed, proceed with the

following steps.

Steps to Using Random Data Files ,
1. Create a new program file or utilize the same program

file as in the sequential exercise.

2. Execute the Change Utility and allocate space for one

disk buffer.

3. Type in the following program:

111 DISK OPEN, 6, "TEST 2"

2$6 FOR I=11 TO 9

3$6 DISK GET,I

411 FOR J=l TO 2

511 PRINTil6, "STRING" ; I;J

6$6 NEXT J

711 DISK PUT

8$6 NEXT I

911 DISK CLOSE,6

4. Save the program under the file name specified in

Step 1.

5. Run the program to fill TEST2 with ten records of

information.

-26-

6. Utilize the random file list utility RANLST to list

out the information placed in TEST2. Note that RANLST

only lists one string per record so it does not list

the second string we wrote to each file record.

7. Modify the original program via the following lines:

5~ INPUT #6,D$

55 PRINT D$

7~ (deleted)

8. Execute the modified program to observe the output ,
information. Output information should be the same

as was originally placed in the file.

Note that in the above example, an inner FOR loop is used to

write each of two strings to each record of the file. Execution

of the PRINT statement for each string causes the data followed

by a ~arriage return character to be written to the file. Al-

though the carriage return character occupies a character of

file space, its use after each item written to the file greatly

simplifies inputting the data. If a record were written as a single

long string, commas would have to be written out between each item

or the user would have to provide the detailed programming to break

the long string into its separate items whenever the string was

input. It is much simpler to write each item with a separate PRI~T

statement. There is also another limitation preventing long strings

from being read. The BASIC input buffer is 72 characters long.

Consequently, longer strings are truncated on input.

-27-

Using the Assembler/Editor

OS-65D version 3.0 supports an interactive Assembler/

Editor. The Assembler/Editor can be brought in by proceeding

with the normal boot in procedure to BASIC's immediate mode.

Then type EXIT followed by ASM. This brings in the Assembler/

Editor and place s the c omputer in the Editor's immediate mode.

Assembler/Editor's operation is as specified in the separate

Assembler/Editor Manual, except for the extensions to the

Assembler covered here . The Assemble r/Edi tor is an extra

cost option. The Assembler/Editor utilizes two types of

files. Source files which contain the assembler code and

optional object files which contain the machine code generated

by the assembly. Under OS-65D Version 3.0, source files can be

named or specified by track number. Objec t files can be stored

in variable sector format for placement anywhere in memory or

can be stored in named file mode if they are set up to resi de

in the standard work space. In addit ion, the disk operating

system includes an execute object file command (XQT file name)

which allows the direct and convenien t execution of machine

code files providing they are linked to the operating system

and reside in the normal work space area. Named files must be

created via the BASIC utility before the assembly process is

begun. The user has the option of exiting from the Assembler

to the DOS for DOS level commands by the use of the EXIT command

and returning by typing RE ASM after completing a command. Or,

a command can be sent di rectly to the DOS by simply preceeding it

with an exclamation point (!). For example, !LOAD file name

-28-

loads a source code file into the assembler's work space anc

returns control to the Assembler/Editor. Note you can only

return to the Assembler if the Asse~hler is in the transient

processor area. Likewise, you can only return to BJI.SIC if

BASIC is in the transie~t processor area. So, if the Jlsse~bler

was last used, you will have to type the DOS cowmand BASIC to

reboot BASIC . If BASIC was last used, you I.Till have to type

the DOS command ASM.

-29-

Using the Extended Monitor

OS-65D version 3.0 also includes an Extended Machine Code

Monitor for debugging programs at the byte level. This utility

is particularly useful for assembler code work. The Extended

Monitor can be entered by booting in the system, exiting BASIC

by typing EXIT and by typing EM which boots in the Assembler/

Editor and Extended Monitor and leaves the system in the extended

monitor command mode. The OS-65D Version 3.0 User's Guide, at

the end of this manual, provides a complete list of the Extended

Monitor's commands.

-30-

System Overview

The OS-65D Version 3.0 is a highly refined super set of

the original OS-65D operating system which was first introduced

in 1976. Version 3.0 is a compact, highly responsive operating

system for BASIC, assembler and machine code programming. It is

suitable for all computer system uses except the most demanding

business applications where OS-65U and OS-OMS should be utilized.

System Architecture

Version 3.0 utilizes a stand-alone DOS complete with command

interpreter. The DOS and command interpreter are part of the DOS

kernel and can be utilized without a programming language. In

addition to the DOS kernel, the system contains an I /O distributor

which supports all standard Ohio Scientific I /O devices and can

route input and output through common locations to any combination

of these input and output devices. The system supports a transient

processor area, specifically for Microsoft BASIC, the 6502 Assembler/

Editor and the Extended Monitor and can be used for any other 6502

language processors which may be installed on the system. The

principal source code or object file work space starts at 3l7E

hex for 8" floppies and 327E for mini-floppies. The following

memory map shows the overall layout of the system.

-31-

System Memory Map

O-FF 6502 Page Zero

100-FF 6502 Stack

200-22FF Transient Processor Area for BASIC or Assembler

or other language orocessor

2300-3178 OS-65D V3 . 0 (to 3278 on mini-floppy versions)

2300-265B I/O Routines

265C-2A4A Disk Drivers
,

2A4B-2E78 Operating System Kernel

2F79-3178 Swapper

317E up to BFFF Source File Work Space (327E up for mini-floppy)

Disk buffers when present normally occupy from

317E up, offsetting the work space (327E on

mini-floppy versions)

-32-

Utility Program

A complete set of utility programs are provided in the OS-65

Version 3.0 for use in creating new files, copying files, printinq

directories of files or file contents, etc. These programs may be

used without any knowledqe of their implementation. However, they

are all written in BASIC and may be used by the interested reader

as sample programs demonstrating various programming and f i le

accessing techniques.

Description~ of the operation of the utility programs appear

on the following pages.

-33-

Create File Utility

This utility program is used to create new named files.

Note that a file must have been created with this program

before it can be referenced by any of the file commands. To

create a file, type:

RUN "CREATE"

The program output and the kind of input you may enter

in response are as shown below. Any unacceptable response will

result in an error message and/ o r a repeat of the request for

input.

FILE CREATION UTILITY

PASSWORD?

The program continues with an explanation of its

operation:

CREATES AN ENTRY IN DIRECTORY FOR A NEW FILE AND INITIALIZES

THE ~RACKS THAT THE NEW FILE WILL RESIDE ON. THE TRACKS

WILL CONTAIN NULLS WITH A RETURN AT THE END OF THE TRACK.

FILE NAME?

Enter a one to six character file name that is not a duplicate

of an existing file name. It must start with a letter.

FIRST TRACK OF FILE?

Enter the number of the first track the file is to reside

on. Note that a file always begins on a track boundary and

resides on a whole number of tracks.

NUMBER OF TRACKS IN FILE?

Enter the number of tracks on which the file is to reside.

All tracks ass igned to a file must not have been previously assigned.

-34-

The program then continues with:

12 (8 for mini-floppy) PAGES PER TRACK. IS THIS OK?

Type YES if the specified number of pages per track is

acceptable; otherwise, type NO. If you type NO, the following

question is asked:

HOW MANY PAGES PER TRACK THEN?

Enter the number of pages of storage you want each track

to contain. Any number up to the default number of pages is

acceptable. For full size diskettes this is twelve pages and

for mini-diskettes it is eight pages per track.

The file will now be created and its name and track

location will be entered into the directory. Each of the

tracks of the file will be initialized to nulls with a return

character at the end of each track .

-35-

Change Parameter Utility

This utility program is used to change the systeM Dara~eters

for terminal width and for the work space limits.

The defined terminal width value for the system is used by

the BASIC interpreter to provide automatic line rollover when

lines longer than the terminal width are output. A carriage

return and line feed character are automatically inserted into

the output line when it hits the terminal wicth. Thus, long

lines are output'as two or more lines rather than a single

truncated line. Since some · serial terminals and all OSI video

systems automatically provide line rollover, you may not need

to change this parameter. Note that changing terminal width

with this utility program provides only a terr.~orary change.

Whenever the system is rebooted or BASIC is cold started (by

typing BAS), the terminal width is set back to its default

value 132. If you write a BASIC program that requires a

different terminal width, then you must run this utility prograrr.

to appropriately change the terminal width p arameter prior to

running that BASIC program. Or, you can include into the BASIC

program the following commands which setup terminal width (WD is

a BASIC variable which must contain t he desired terminal width) :

POKE 23,WD

NC = INT(WD/ 14) *14

POKE 24,NC

The second POKE, above, sets the column beyond whi·ch there are

no more 14 character output fields. {Fourteen is the number of

character positions allotted to each output field when commas

-36-

are used to separate the variables in a PRINT statement.)

The "work space" is that RAM area where the assembler anc'.

BASIC source programs reside. It is used to hold these source

programs and various tables, lists, etc., that are used during

assembly or BASIC program interpretation. The work space

normally begins at 12670 (hex 3l7E) for full size floppy disk

systems and at 12926 (hex 327E) for mini-floppy d isk s ystems.

The end of the work space is normally the end of the main memory

(that memory which starts at address zero and is contiguous up

to some higher address) .

The BASIC command RUN "file name" and the DOS commands

LOAD and PL~ provide a means to easily load a disk f ile into

the work space and to put a file that is in the work space back

onto disk either by name or by tra ck number. Such fi les are

referred to as LOAD/PUT (or L/P) files.

The Change Parameter Ut ility Program permits changes to

the work space limits so that you can reserve space in a LOAD/PUT

file for disk I /O buffers, assembly language object code or

whatever. The following diagram shows rele vant work space

addresses.

-37-

Full Size
Floppy Disk

System

Depends on Size
of System Memory
or No. of Pages
Specified

User Defined

User Defined

18814 (49 7E)

12 Pages

15742 (3D7E)

Buffer Size is
3072 (COO) Bytes

12 Pages

12670 (317E)

Normal End of Work Space

Room at the Top
(if present)

~ - - - - - - - - - - -
Changed End of Work Space

Source code,
tables, lists, etc.

storage used
by BASIC

Changed Start of Work Space
- - - - - - - - - - - - - -

Additional Room
(if present)

- - - - - - - - - - - - - -

Second Buffer
(if present)

- - - - - - - - - - - - -
First Buffer
(i f present)

Normal Start of Work Space

Mini-Floppy
Disk

System

Depends of Size
of System Memory
or No. of Pages
Specified

User Defined

User Defined

17022 (427r.)

8 Pages

14974 (3A 7E)

Buffer Size is
2048 (800) Bytes

8 Pages

12926 (32 7E)

OS-65D V3.0 Work Space Addresses in Decimal (Hexadecimal)

-38-

To change system parameters, type:

RUN "CHANGE"

The program output and the kind of input you may enter in

response are as shown below. Any unacceptable response will

result in an error message and/or a repeat of the request for

input.

CHANGE PARAMETER UTILITY

THE TERMINAL WIDTH IS SET FOR 132

DO YOU WANT TO CHANGE IT (Y/N)?

Enter YES or NO. If you enter YES, the program requests

a new value for the terminal width.

NEW VALUE?

Enter a new value from 14 through 255.

The program continues with:

BASIC & ASSEMBLER USE xx K WORK SPACES (yyy PAGES)

WOULD YOU LIKE TO CHANGE THIS (YjN)?

This refers to the total amount of main memory available to

the system software. Each K (1024 bytes) contains four 256 byte

pages. A change to this parameter will make a portion of highest

memory unavailable to systems software. Note that such memory

will not be included within LOAD/PUT files.

Enter YES or NO. If you enter YES, the program requests

the number of pages to be used by system software.

HOW MANY PAGES SHOULD THEY USE?

Enter a number of pages from 50 through 191.

The program conLinues with:

r.HANGE BASI C'S WORK SPACE LIMITS (Y/N)?

Enter YES or NO. If you enter NO, the program terminates.

-39-

If you enter YES, the program requests the following:

HOW MANY 12 (8 for mini-floppy) PAGE BUFFERS DO YOU

WANT BEFORE THE WORK SPACE?

Enter 0, 1 or 2 to reserve that many track buffers at the

beginning of the work space. Note that device 6 memory buffered

I/O uses the first buffer by default while device 7 uses the

second buffer by default. Of course, these defaults can be

changed with appropriate POKES. If no buffers are specified,

the program asks:

WANT TO LEAVE ANY ROOM BEFORE THE WORK SPACE?

Enter YES or NO. If you enter NO, the program outputs

the address of the start of the BASIC work space as shown

below. If YES is entered, proceed to the "HOW MANY BYTES?"

question below.

If one or more buffers was specified, the program continues

with:

WANT TO LEAVE ANY ADDITIONAL ROOM?

Enter YES or NO. If you enter YES, the following question

is asked:

HOW MANY BYTES?

Enter the number of additional bytes to be allocated

before the start of the work space.

The program then outputs the new address for the start

of the work space and the total number of bytes reserved for

buffers, etc.

THE BASIC WORK SPACE WILL BE SET TO START AT aaaaa

LEAVING bbbb BYTES FREE IN FRONT OF THE WORK SPACE

IS THAT ALRIGHT?

-40-

Enter YES or NO. If you enter NO, the program requests

that you specify an exact lower limit address for the work space.

NEW LOWER LIMIT?

Enter a lower limit address. The program then confirms this

value by outputting:

bbbb BYTES WILL BE FREE BEFORE THE WORK SPACE

The program then continues with:

YOU HAVE xx K OF RAM

DO YOU WANT TO LEAVE ANY ROOM AT THE TOP?

Enter YES or NO. If you enter YES, the following question

is asked:

HOW ~~Y BYTES?

Enter the number of bytes to be allocated between the top

of the wo rk space and the end of main memory.

The program then outputs:

THE BASIC WORK SPACE WILL BE SET TO END AT ccccc

LEAVING dddd BYTES FREE AFTER THE WORK SPACE

IS THAT ALRIGHT?

Enter YES or NO. If you enter NO, the program requests

that you specify an exact number limit address for the work space.

NEW UPPER LI MIT?

Enter an upper limit address. The program then confirms

this value by outputting:

eeee BYTES WILL BE FREE AFTER THE WORK SPACE.

Note that the reservation of space after the work space is

not recorded on disk with a program when it is saved in a file.

The allocation is only recorded as a RAM resident change to the

-41-

BASIC interpreter and remains in effect until explicitly

changed again, or BASIC is reloaded by typing BAS in the

DOS command mode. Later, running a program that results

in an "Out of Memory" (OM) error may be the result of a

reduced work space that is no longer required.

Program output continues with:

YOU WILL HAVE fffff BYTES FREE IN THE WORK SPACE

IS THAT ALRIGHT?

Enter YES or NO. If NO is entered, the Change Parameter
I

Utility Program restarts from the beginning. Otherwise, the

requested changes are made, the work space contents are cleared

and the program terminates.

-42-

Delete File Utility

This utility program may be used to delete a named file

from the directory. This frees the tracks on which that file

resided, but it does not actually alter the contents of those

tracks. Consequently, until a new file is created residing

on thos e tracks or the tracks are otherwise changed, the

contents of the old (deleted) file are still recoverable by

a direct track number access. To delete a named file, type:

RUN "DELETEI'

The program output and the kind of input you may enter

in response are as shown below. Any unacceptable response

will result in an error message and/or a repeat of the request

for input.

DELETE UTILITY

RE MOVES AN ENTRY FROM THE DIRECTORY

PASSWORD?

Enter the appropriate password.

The program continues with:

FILE NAME?

Enter the name of the file to be deleted .

The file will now be deleted from the directory.

-43-

Directory Utility

This utility program is used to output a list of all current-

ly existing named files and the numbers of the tracks on which

they reside. To output a directory, type:

RUN "DIR"

The program output and the kind of input you may enter in

response are as shown below.

LIST ON LINE PRINTER INSTEAD OF DEVICE #d?

Enter YES or NO. (d is the current output device assignment.)

If you enter YES, the directory output will be on device 4; other-

wise, it will be on the currently assigned device. If you answer

YES and there is no device 4 on the system, the directory will

not be output.

A sample directory output appears below.

OS-6SD VERSION 3.0

FILE Nl>YJE

OS-6SD3
BE XE C*
CHANGE
CREATE
DELETE
DIR
DIRSRT
RANLST
RENAME
SECDIR
SEQLST
TRACE
ZERO
AS AMP L

DIRECTORY

TRACK RANGE

~-8
9-9

l~-l~
13-14
IS-IS
16-16
17-17
18-19
2f1-2~
21-21
22-23
24-24
2S-26
27-27

S~ ENTRIES FREE OUT OF 64

The above directory shows that the system software occupies

-44-

tracks zero through eight. OS-65D3 is not a file in the

conventional sense, but appears in the directly solely to

delineate and reserve the tracks occupied by system software.

Track nine contains the BASIC Executive, BEXEC*. This is a

BASIC program which always runs when the system is booted and

which may be customized as needed to suit your application.

In general, tracks ten through 26 contain the various utility

programs; however, note that tracks 11 and 12 are free. Track

27 contains the sample assembler language program, ASAMPL.

-45-

Sorted Di re ctory Utility

This utility program may be used to output a list of all

currently existing named files and the numbers of the tracks

on which they reside. This output can be in alpha numeric

order by f ile name or by track nurrbe r. To output a sorted

directory, type:

RUN " DIRSRT"

The program output and the kind of input you may enter in

response are as 6hown below . Any unacceptable response will

result in an error message an d / or a repeat of the request for

input.

SORTED DIRECTORY UTILITY

SORTED BY NAHE OR TRACK (N/T)?

Enter N or T to specify a named or a track sort, respectively .

The program continues with :

LIST ON LINE PRINTER INSTEAD OF DEVICE #d?

Enter YES or NO . (d is the current output device assignment.)

If you enter YES, the directory output will be on device 4; other­

wise, it will be on the currently assigned output device. If you

answer YES and there is no device 4 on the system, the directory

will not be output .

I f ne ither N or T was entered above

THEN IT WILL BE UNSORTED

is output and the directo r y list wil l be in the same order as

the actual entries i n the directory .

Sample directo ry outputs sorted by name and track number

appear on the next page .

-4 6 -

05-65D VERSION 3.0

DIRECTORY

FILE NAME T RACK RANGE

A5A~1PL 27 - 27
BEXEC* 9 - 9
CHANCE 10'-1 0'
CREATE 13-14
DELETE 15 - 15
orR 16-16
OIR5RT 17-17
05 - 6503 0'-8
RA.l'JL5T 18 - 19
RENAI"IE 21'- 20'
SECOIR 21-21
5EQL5T 22-23
TPACE 24 - 24
ZERO 25 - 26

50' ENTRIES FREE OUT OF 64

OS - 650 VERS ION 3.0

FILE NAl>'.E

OS - 6503
BEXEC*
CHANGE
CREATE
DELETE
DIR
DIRSRT
RANL5T
P.ENAME
5ECDIR
SEQLST
TRACE
ZERO
ASAMPL

01 Rr.CTORY

TRACK RANGE

1'- 8
9-9

10'-l fl
13-14
15-15
16-16
17-17
1 8 - 19
20' -2 0'
21 - 21
22 - 23
24 - 24
25-26
27 - 27

50' ENTRIES FREE OUT OF 64

- 47-

Random Access File List Utility

This utility program may be used to list the contents of

a random access file either a single record at a time or in

groups of contiguous records. The program assumes 128 byte

records. To list a random file, type:

RUN "RANLST"

The program output and the kind of input you may enter in

response are as shown below. Any unacceptable response will

result in an error message and/ or a repeat of the request for

input.

RANDOM ACCESS FILE READ

FILE NAME?

Enter the name of the random access file to be listed.

EXAMINE SINGLE RECORDS OR GROUPS (S / G)?

Enter S or G. If S is entered, the number of the single

record to be listed is requested.

RECORD NUMBER?

Enter the number of the record to be listed. (Records are

numbered from zero through n.) The specified record is listed,

then the RECORD NUMBER question is again asked. To terminate

the program, merely type a (return) to this question.

If G is entered , above, th~ range of record numbers to be

listed are requested.

FIRST RECORD?

Enter the number of the first record to be listed.

LAST RECORD?

Enter the numbe r of the last record to be listed.

-48-

The specified records are listed, then the "SINGLE RECORDS OR

GROUPS" question is again asked. To terminate the program,

merely type a (return) to this question.

Note that this program reads and lists a single string

from the start of each record. Random files with more than

one entry (an entry is a string of printing characters followed

by a return) per record will not be fully listed by this program.

-49-

Rename File Uti lity

This utility program may be used to change the name in the

c i recto ry of any file listed in the directory. To rename a

f ile, type:

RUN "RENAME"

The program output and the kind of input you may enter in

response are as shown below. Any unacceptable response will

result in an error message and/or a repeat of the r ,equest for

input.

RENAME UTILITY

OLD NAME?

Enter the name of the file to be renamed as it currently

exists in the directory.

The program then outputs:

RENAME "aaaaaa" TO? (aaaaaa is the old name.)

Enter the new name for the file of one to six characters,

the first being a letter.

The name will be changed and the utility program will

terminate.

-50-

Sector Directory Utility

This utility program may be used to output the number

and size of each sector on each of a specified range of track s .

To output a secto r directo ry , type:

RUN "SECDI R"

The program outp u t and the k ind of input you may enter

in response are as shown b e low . Any unaccep t ab le response will

result in an error message an d/ or a repeat of the request for

input.

SECDIR

USES OS-65 D' S DI R COMMAND TO PRINT Ol~ A SECTO R MAP

OF A GIVEN RANGE OF TRACKS

FIRST TRACK?

Enter any v alid track number greater t han zero and less

than the total number of e xistin g tracks (76 fo r f ull size d isk s

or 39 for mini-disks) .

LAST TRACK?

Enter any valid track number greater th a n that entered for

the first track.

A sector ma p fe r the s peci f~ed tracks wi l l b e output, then

the program will t erminate. A sample of such i s shown below.

SECTOR MAP DI RECTORY

TRACK In
.0'1 - .0' 5
.0'2 - .0'5

TRACK .0' 2
iJ' l-0'B
e tc .
OK

-51-

In the ~amp1e, track 1 has two sectors, both five pages

in length. Track 2 has one sector of 11 (hex B) pages.

-52-

Sequential File Lister Utility

This utility program may be used to list the contents of

a sequential file. A sequential file is one in which all entries

within the file are contiguous with no intervening gaps. To list

a sequential file, type :

RUN "SEQLST"

The program output and the kind of input you may enter in

response are as shown below . Any unacceptable response will

result in an error message and/ or a repeat of the request for

input.

SEQUENTIAL FILE LISTER

TYPE A CONTROL-C TO STOP

FILE NAME?

Enter the name of the sequential file to be listed.

The specified file is listed until you type a Control-C or

the end of the file is reached in which case the program terminates

with the following end-of-file message:

ERR #D ERROR IN LINE 100

OK

-53-

Trace Utility

This utility program may be used to initiate or terminate

a BASIC program line number trace. To trace a BASIC program,

type:

RUN "TRACE"

The program output and the input you may enter in response

are as shown below. Any unacceptable response will result in a

repeat of the request for input.

TRACE UTILITY

WHEN BASIC'S TRACE FEATURE IS ENABLED, BASIC WILL PRINT

OUT EACH LINE NUMBER OF THE PROGRAM BEFORE IT IS EXECtJrED.

ENABLE OR DISABLE (E/ D)?

Enter E to enable the trace or D to disable the trace. If

the trace is being enabled,

160

OK

will be output. The "160" is a trace of the last line of the

utility program. Now· run the program y ou wish to test with

line number tracing.

Note that the e xecution of any program - including utility

programs such as this one - will include line number outputs

while the trace is enabled. This will not adversely affect the

operation of the program.

-54-

....

File Zeroing Uti li t y

This utility program is used t o ze ro the conte nts of a data

file . This fills the enti r e data f i l e with null (hex ~~) chara c ters

which are ignored (skipped o ver) during BASIC input. You may

find it advantageous to "ze r o" random d a t a fil es be f o r e e nte ri ng

data into them in order to provide a "backgr o und " that is

"transparent" (not seen) b y a BASIC I NPUT command . To zero a

file, type:

RUN "ZERO"

The program output and t he ki n d o f input you may enter in

response are as shown be l ow. Any unacceptab le res ponse will

result in an error message and/ o r a repeat o f the request for

input.

FILE ZERO UTILITY

COMPLETELY ERASES THE CONTENTS OF A DATA FILE

PASSWORD?

Enter the appropriate password.

FILE NAME?

Enter the name of the file to be zeroed.

The program continues with:

IS IT A NORMAL 12 (8 for a mini-floppy) PAGE DATA FILE?

Enter YES or NO. If NO is entered, the following message

is output:

THEN HOW MANY PAGES PER TRACK?

Enter 1 through 12 (8 fo r a mini-floppy) to specify the number

of 25.6 byte- pages per tra c k in the file.

The file will be ze r oed a n d the program will terminate.

-55-

05-650 V3.0 Kernel

The 05-650 V3.0 kernel contains its own cowmand interpreter

for handling those commands that are basic to the system. These

include commands for initializing diskettes, selecting a disk

drive, transferring specific disk sectors and files, initiating

various language processors, etc. All kernel commands are listed

in the User's Guide with brief descriptions of their function.

Those requiring further explanation are also covered below.

Accessing the Kernel

Upon initializing the system, type UNLOCK to the question

"FUNCTION?". Then type EXIT. The DOS kernel prompter A* then

appears and any kernel commands may be entered.

Changing I/O Distributor Flags

IO nn,mm

IO nn

IO ,mm

Changes input and output flag

Changes input flag only

Changes output flag only

This command changes I/O distributor flags to specify from

which device system input is to be taken and to which device or

devices system output is to be sent. The values nn and mm shown

above in the command are taken from the following table:

-56-

I

nn Input Device

~~ Null
~l Serial Port (ACIA at FC~~)
~2 Keyboard on 440/540 Board
~4 UART on 430 Board
~B Null
111 Memory
2~ Disk Buffer 1
411 Disk Buffer 2
B~ 550 Board Serial Port

mm Output Device

~~ Null
~l Serial Port (ACIA at FC~0)
~2 Video on 440/540 Board
~4 UART on 430 Board
I1B Line Printer
l~ Memory
211 Disk Buffer 1
411 Disk Buffer 2
B~ 550 Board Serial Port

Note that the above values are hexidecimal numbers each of which

corresponds to the setting of one bit within the flag byte. Setting

no bits in an I/O flag byte specifies the "null device". Output to
I

the null device is thrown away. Input from the null device yields

undefined data. If more than one bit is set in the jnput flag,

input is taken from the lowest numbered device (other than null)

and the other bits are ignored. More than one bit set in the

output flag results in output being sent to each device for which

the appropriate bit is set. For example, the command "10 ,119"

would result in all output going to both the Serial ACIA Port

and the Line Printer.

Some of the above devices need further explanation.

Memory input is from RAM starting at the address contained

in locations 23BA (low) and 23BB (high) with an automatic incre-

mentation of the address after each character is input. Memory

output is to RAM starting at the address contained in locations

2391 (low) and 2392 (high) with an automatic incrementation of

the address after each character is output. The addresses in

these locations can be changed by the user in order to do memory

I/O to any available RAM area. The command MEM nnnn,mmmm is

provided for this purpose. The nnnn is a four hex digit address

-57-

for input, mf\'J1\m is an output address.

Disk buffer I / O operates similar to memory I/O described

above. Howe ver, I / O to the disk buffers also results in automatic

disk transfers whenever a buffer (track) boundary is crossed. In

order for this d is k I / O to properly take p lace, a few parameters

must be set up before performing any of the actual input/output

operations. (These parameters are set up in BASIC by the command

OPEN.) The parameters and their locations are:

Disk Buf!'er

2326 (low) ,
2328 (low) ,
232A
232B
232C
232D

Disk Buffer

232E (low) ,
2330 (low) ,
2332
2333
2334
2335

1 Locations

2327 (high)
2 329 (high)

2 Locations

232F (high)
2331 (high)

Buffer start address (normally 317E)*
Buffer end a ddress +1 (normally 3D7E)*
First tra ck o f file (BCD)
Last t r a ck o f file (BCD)
Current track in buffer (BCD)
Buffer dirty flag (0 ~ clean)

Buffer start address (normally 3D7E)*
Buffer end address +1 (normally 497E)*
First track of file (BCD)
Last track of file (BCD)
Current track in buffer (BCD)
Buffer dirty flag (0 ~ clean)

Locations of the current buffer addresses are:

Disk Buf f er 1 I nput 23AC (low) and 23AD (high)
Disk Buffer 2 Input 23FD (low) and 23FE (high)
Disk Bu ffe r 1 Output 23C3 (l ow) and 23CA (high)
Dis k Buffer 2 Out p ut 2416 (low) and 2416 (high)

Proper initialization of these parameters prior to disk

includes:

- Setting the current buffer addresses to the buffer end
address +1

Sett i ng the c urrent track in buffer to the first track
o f file -1

I/O

After completing output to disk, the current buffer contents

may be left dirty . (Data has been written to the buffer, but the

*Add hex l~~ t o these addresses in mini-floppy systems.

-58-

J

disk hasn't yet been updated by transferring the buffer out to

disk.) If this is so, as indicated by a non-zero buffer dirty

flag, the user must perform the final disk transfer. This can

be done by reading past the end of the current buffer which will

cause a page fault and update the disk.

Transferring Disk Sectors

CALL address=track,sector

SAVE track,sector=address / page

These commands transfer a specified track, sector between
f

RAM and disk. The address must always be four hexidecimal digits,

track must be two decimal digits and sector one decimal digit.

Pages must be one hexidecimal digit within the range I-D for

full size floppies and 1 through 8 for mini-floppies. A qiven sector

can be referenced only if all lowered numbered sectors exist on

the specified track.

NOTE: This version of 05-650 contains more comprehensive

. . .
disk transfer error checks than prev~ous vers~ons. As a result,

under some circumstances, error 9 will be reported when attempting

to read or write earlier version diskettes. The 09 command should

be entered when this occurs to temporarily defeat the checks for

error 9. The system should be reinitialized after completing the

transfer to restore error 9 checks.

Executing a Machine Code File

XQT file name

This command loads the file "file name" into the work space

at hex 3179 up (3279 up in mini-floppy systems) and transfers control

to location 317E (32 7E). The" file name" can be either the name of

-59-

a previously defined file or a track number. Relative location

four of the file (which loads into 3170) must contain the nupber

of tracks to be loaded.

Assembly language programs can be develo ped fo r use with

the XQT command by assembling them with an origin of 3l7E (327E)

and by entering the size of the program in tracks in location

3170 (3270) prior to saving the program on disk with the PUT

command. Since the Assembler work space also resides at this

address, a two-step procedure must be used to create a program
I

with this origin.

1. Assemble the program with an origin of 3l7E (327E),
but with a memory offset (set with the Assembler Mnnnn
command) that places the object code into some available
memory.

2. Use the Extended Monitor move command to move the program
from the selected available memory area to the start of
the work space, enter the programs size in tracks then
save the program on disk with the PUT command.

For example, with available memory at hex 8000 up, you could use

an offset of 5000. The program would then be placed into memory

at 8l7E up (317E + 5000). A complete sample dialog for creating

such a program is shown below with user input underlined and

explanatory comments.

A*ASM
osr-b502 ASSEMBLER
COPYRIGHT 1976 BY OSI
.!LOAO file name
.M5000
.A3
• EXIT
A~EM
EM V2.0
:M317E=8l7E,1111
:@3170
3i70/dd ~2
:EXIT
A~ file name

Loads the Assembler

Loads the assembler source file
Sets memory offset
Assemble object code into memory
Exit Assembler
Enter the Extended Monitor

Moves the object code to work space
Set up size of program in tracks
e.g., 2 tracks
Exit the Extended Monitor
PUT machine language program on disk

-60-

Using Indirect Files

Often it is desirable to be able to merge two or mo re

BASIC or Assembler source files or transfer BASIC programs

between incompatible systems such as OS-65D and OS-65U. The

Indirect File provides a mechanism for doing this.

In order to use an indirect file, you must have enou9h

RAM to hold the required program(s) in the BASIC or Asserr.blcr

work space and another copy of the program(s) above the work

space. The top ~f the work space can be appropriately set up

with the Assembler Hnnnn command or the BASIC Change Utility

Program. Then the indirect file mechanism is set up with

this address +1 by entering it into the following locations:

decimal hex

9554 2552 Indirect file output address (high)

9368 2498 Indirect file input address (hinh)

The low part of these addresses is fixed at ~~.

Transfers to and from the indirect file are then perfor~cd

as follows:

Dumping Source from the Work Space to an Indirect File

1. Load the source into the BASIC or Assembler wo r k space
with the LOAD command.

2. Output the source but type a [afte r .typing LIST or
PRINT and before hitting the RETURN key. This turns
the indirect file output on.

3. At the completion of the output type a 1. This ,oi 11
be echoed as 11 and will turn the indirect file out­
put off.

Loading Source from an Indirect File to the Work Space

1. Clear the work space by typing NEW in BASIC or INIZ,Y

-61-

.,

in the Assembler. Or, load the source file into the
work space into which the indirect file is to be merged.

2. Type a Control-X. The indirect file data will be loaded
into the work space. When the 1 character is loaded at
the end of the file, the indirect file input will be
automatically terminated.

-62-

Kernel L' lilities

r o r nor~al use, only two operations from the KERN~L mode

will be rq~ired - Initializing Diskettes and Copying Diskettes .

Initializing Diskettes

Once the kernel is entered, a new disket te can be

initialized for use by OS -65 D V3 .0 by removing the operating

system disk and placing the diskette to be copied in the "A"

drive.

Then type

INT

The machine answers

ARE YOU SURE?

You ar.s wer

Y

After the initialization is complete, the prompter A* will re-

appear. If an error message is reported during the initialization

process, the dis kette i s prob ably b ad and should be discarded.

* NOT E *

OS I mini-=loppy systems have write protect capability .
Write protected diskettes have a label covering a notch
on one side of the disk. A write protected disk will
imrrejiately report an error upon initialization or copying
at t. empts. S i r:lply remove the write protect label before
using.

Copying Diskettes

Diskettes can be c opie d on d ual drive systems as f ollows:

1. First initialize the new diskette as specified above.

2 . Place the ne~lly initialized diskette in the "B" (or lower)

-63-

drive and the diskette . to be copied in the " A" drive .

3. with the KERNEL mode prompter A* on the screen, ty oe

4. Type

CA ~2~~=~1 ,2 for B" floppies or

CA ~2~jl'=13,1 for 5" floppies

5. The disk copier will appear on the screen. Select'
and copy from drive "A" to drive "B".

6. Specify from track ~ to 34 on mini -floppies and fro~
track ~ to 76 on B" floppi es.

t

7. As each track is copied, its tra ck number will appear
on the screen.

B. If an error is reported during copying ,
the B diskette and repeat the process.
persists , the new diskette is probably
not be used.

reinitialize
If the error

bad and should

NOTE: OS-65D V3.0 can be used to initialize and copy diskettes
for all previous versions of OS-65D but not v ice versa .
In fact, the use of Version 3.0 is recommended over the
use of earlier versions for this purpose.

-64-

OS-65D Version 3.0 for the I-P

A version of OS-65D V3.0 is available for use wi th mi n i-

floppies on the OSI I-P Personal Computer. It i s identical

to that described throughout this manual with the following

e"xceptions:

- the device 4 line printer driver is not included

- the device 3 UART input/ output drivers are not
included

- only the 440 style video is supported (.24 character
display) ~s approp riate to the I-P d i splay

- the device 1 serial ACIA port address i s changed to
F~~~ as appropriate to the I-P

-65-

I-P pico DOS

A version of OS-65D V3.0 is available as a "Pico-DOS" for

use with mini-floppies on the OSI I-P Personal Computer. This

system extends the 6-Digit BASIC LOAD and SAVE commands to permit

files to be saved on a diskette as well as on the usual cassette.

In order to use the pico DOS, insert a Pico DOS diskette

into the A mini-floppy drive and type a D in response to the

D/C/ W/M?j message. The Pico DOS will boot up with .~he following

message:

MINI-65D3 Vl.O

MEMORY SIZE? 8955

TERMINAL WIDTH?

Note that the memory size has automatically beer. specified.

This is because the Pico DOS occupies memory above this point.

Continue with the initialization by entering terminal width

as usual.

The new commands available under the Pico DOS are:

LOAD n

SAVE n

where n is a program, number I through 8.

-66-

USER/S GUIDE

08-650 V3. 0 DISK OPERATING SYSTEM

C:OMI"1ANDS

ASM

BASIC

CALL NNNN=TT. S

D9

DIR NN

EM

EXAM NNNNaTT

GO NNNN

HOME

INIT

INIT TT

IO NN,MM

IO .MM

IO NN

LOAD FILNAM

LOAD TT

~lEM NNNN. MMMM

LOAD THE ASSEMBLER AND EXTENDED MONITOR.
TRANSFER CONTROL TO THE RSSEMBLER .

LOAD BASIC AND TRANSFER CONTROL TO ~1 .

LOAD CONTENTS OF TRACK, "TT" SECTOR.. "S"
TO M~MORY LOCATION "NNNN" .

DISABLE ERROR 9 . THIS IS REQUI RED TO READ SOME
EARLIER VERSION FILES (Vi . 5 , V2. 0) . PLEASE
REFER TO COMPATABLITY DISCUSSION LATER .

PRINT SECTOR MAP DIRECTORY OF TRACK "NN" .

LOAD THE ASSEMBLER AND EXTENDED MONITOR.
TRANSFER CONTROL TO THE EXTENDED MONITOR.

EXAMINE TRACK . LOAD ENTIRE TRACK CONTENTS,
INCLUDING FORMATTING INFORMATION, INTO LOCATION
"NNNN".

TRANSFER CONTROL (GO) TO LOCATION "NNNN" .

RESET TRACK COUNT TO ZERO AND HOME THE CURRENT
DRIVE'S HEAD TO TRACK ZERO.

INITIALIZE THE ENTIRE DISK. IE. ERASE THE
ENTIRE DISKETTE (EXCEPT TRACK 0) AND WRITE
NEW FORMATTING INFORMATION ON EACH TRACK.

SAME AS "INIT", BUT ONLY OPERATES ON TRACK "TT".

CHANGE S THE INPUT I/O DISTRIBUTOR FLAG TO "NN",
AND THE OUTPUT FLAG TO "MM" .

CHANGES ONLY THE OUTPUT FLAG .

CHANGES ONLY THE INPUT FLAG.

LOADS NAMED SOURCE FILE. "FILNAW INTO MEMORY.

LOADS SOURCE FILE INTO MEMORY GIVEN STAR TING
TRACK NUMBER "TT" .

SETS THE MEMORY I/O DEVICE INPUT POINTER TO
"NNNN". AND THE OUTPUT POINTER TO "MMMM".

-1-

PUT FILNAM

PUT TT

RET ASM

RET BAS

. RET E~l

RET MON

SAVES SOURCE FILE IN MEMORY ON THE NAMED DISK
FILE "FILNAM" .

SAVES SOURCE FILE IN MEMORY ON TRACK "TT" AND
FOLLOWING TRACKS .

RESTART THE ASSEMBLER.

RESTART BASIC.

RESTART THE EXTENDED MONITOR .

RESTART THE PROM MONITOR (VIA RST VECTOR) .

SAVE TT.S-NNNN/P SAVE MEMORY FROM LOCATION "NNNN" ON TRACK "TT"
SECTOR "S" FOR "P" PAGES.

SELECT X SELECT DISK DRIVE, "X" WHERE "X" CAN BE;
A. B. C. OR D. SELECT ENABLES THE REQUESTED
DRIVE AND HOMES THE HEAD TO TRACK 0 .

XQT FILNAM LOAD THE FILE. "FILNAM" AS IF IT WAS A SOURCE
FILE. AND TRANSFER CONTRO L TO LOCATION $317E.

NOTE :
- ONLY THE FIRST 2 CHARACTERS ARE USED IN RECOGNIZING A

COMMAND. THE REST UP TO THE BLANK ARE IGNORED.

- THE LINE INPUT BUFFER CAN ONLY HOLD 18 CHARACTERS INCLUDING
TI-IE RETURN.

- lHE COMMAND LOOP CAN BE REENTERED AT $2A51 .

- FILE NAMES MUST START WITH A "A" TO "Z" AND CAN BE ONLY
E CHARACTERS LONG.

- THE DICTIONARY IS ALWAYS MAINTAINED ON DISK. THIS PERMITS
THE INTERCHANGE OF DISKETTES.

.. THE FOLLOWING
CONTROL -
CONTROL -
CONTROL -
BACK ARROW

CONTROL KEYS ARE VALID :
Q CONTINUE OUTPUT FRO M A CON TROL-So
S STOP OUTPUT TO THE CONSOLE .
U DELETE ENTIRE LINE AS INPUT.

DELETE THE LAST CHARACTER TYPED.

ERROR NUMBERS

1 - CAN'T READ SECT OR (PARITY ERROR) .

2 - CAN'T WRITE SECTOR (R EREAD ERROR) .

3 - TRACK ZERO IS WRI TE PROTECTED AGAINST THAT OPERATION.

4 - DISKETTE IS WRITE PROTECTED.

5 - SEEK ERROR (TRACK HEADER DOESN ' T MATCH TRACK) .

-2-

6 - DRIVE NOT READY.

7 - SYNTAX ERROR IN COMMAND LINE .

8 - BAD TRACK NUMBER.

9 - CAN ' T FIND TRACK HEADER WITHIN ONE RE V OF DISKETTE

A - CAN ' T FIND SECTOR BEFORE ONE REQUESTED .

B - BAD SECTOR LENGTH VALUE .

C - CAN'T FIND THAT NAME IN DIRECTORY.

D - READ/WRITE ATTEMPTED PAST END OF NAMED FILE!

f

TRANSIENT UTILITIES

BEXEC+ - PROGRAM WHICH GAINS CONTROL ON BOOT IN END USER SYSTEMS.

CHANGE - PERMITS ADJUSTMENT OF THE FOLLOWING!
- TERMINAL WIDTH FOR BASIC.
- THE HIGHEST PAGE OF MEMORY AVAILABLE. WHICH

IS WHAT BASIC AND ASM USE WHEN LOADED .
- THE ADJUSTMENT OF THE WORKSPACE LIMITS FOR

BASIC. THE RESULT IS A EMPTY WORKSPACE TO
THE USER SPECIFICATIONS.

CREATE - ENTER A FILE NAME INTO THE DIRECTORY. AND ZERO OUT
THE CREATED FILE ON DISK.

DELETE - REMOVE A FILE NAME FROM DIRECTORY.

DIR - PRINT UNSORTED DISK DIRECTORY.

DIRSRT - PRINT SORTED <BY NAME OR TRACK) DIRECTORY.

RANLST - GENERAL RANDOM ACCESS FILE LIST UTILITY.

RENAME - RENAME A FILE NAME IN DIRECTORY.

SECDIR - PRINT A SECTOR MAP DIRECTORY OF DISK.

SEQLST - GENERAL SEQUENTIAL FILE LIST UTILITY.

TRACE - ENABLE OR DISABLE STATEMENT NUMBER TRACE FEATURE.

ZERO - INITIALIZE CONTENTS OF A DATA FILE TO ZEROS.

-3-·

I~O FLAG BIT SETTINGS

INPUT:

BIT 0 - ACIA ON CPU BOARD (TERMINAL) .
BIT 1 - KEYBOARD ON 440/540 BOARD.
BIT 2 - UART ON 430 BOARD (TERMINAL).
BIT 3 - NULL.
BIT 4 - MEMORY INPUT (AUTO INCREMENTING).
BIT 5 - MEMORY BUFFERED DISK INPUT.
BIT 6 - MEMORY BUFFE RED DISK INPUT .
BIT 7 - 550 BOARD ACIA INPUT. AS SELECTED BY "AINDEX"

AT LOCATION $2323 (8995 DECIMAL) .

OUTPUT:

BIT 0 - ACIA ON CPU BOARD (TER MI NAL).
BIT 1 - VIDEO OUTPUT ON 440 /540 BOAR D.
BIT 2 - UART ON 430 BOAR (TERMI NAL).
BIT 3 - LINE PRINTER INTERFACE.
BIT 4 - MEMORY OUTPUT CAUTO INCREMENTING) .
BIT 5 - MEMORY BUFFERED DISK OUTPUT.
BIT 6 - MEMORY BUFFERED DI SK OUTPUT.
BIT 7 - 550 BOARD ACIA OUTPUT. AS SELECTED BY "AINDEX"

SOURCE FILE FOR MAT

RELATIVE DISK ADDRESS MEMOR', ADDRESS USAGE

0 $3179 SOURCE START (LOW)
1 $317A SOURCE START (HIGH)
2 $3178 SOURCE END CLOW)
3 $317C SOURCE END CHI>
4 $317D NUMBER OF TRACKS REQ.
5 AND ON .. . $317E AND ON ... SOURCE TEXT.

DIF.:ECTORY FORMAT

TWO SECTORS (1 AND 2) ON TRACK 8 HOLD THE DIRECTORY. EACH ENTRY
REQUIRES 8 BYTES. THUS THERE ARE A TOTAL OF 64 ENTRIES BETWEEN THE
TWO SECTORS. THE ENTRI ES ARE FORMATTE D AS FOLLOWS:

0-5
6
7

ASCII 6 CHARACTER NAME OF FILE.
BCD FIRST TRACK OF FILE.
BCD LAST TRACK OF FILE (INCLUDED IN FILE) .

-4-

MEMORY ALLOCATION

0000 - 22FF

2200 - 22FE

2300 - 2658

265C - 2A4A

2A4B - 2E78

2E79 - 2F78

2F79 - 3178

3179 - 317P

317E -

BASIC OP ASSEMB LER / EXTENDED MONITOR .

COLD ST RRT INITI ALIZATION ON BOOT.

INPUT / OUT PUT HANDLERS.

FLOPPY DISK DRIVERS.

OS-65D V3. 0 OPERATING SYSTEM KERNEL.

DIRECTORY BUFFER.

PAGE 0/1 SWAP BUFFER.

SOURCE FILE HEADER.

SOURC~ FILE.

DISKETTE ALLOCATION

o OS-65D V3. 0 (BOOTSTRAP FORMAT LOADS TO 2200 FOR 8 PAGES) .

1 SECTOR 1 REMAINDER OF OS-65D V3 . 0 (LOADS TO 2AOO FOR
5 PAGES) .

SECTOR 2 - TRACK ZERO READ/WRiTE UTILITY AND COPIER.
CLOADS TO 0200 FOR 5 PAGES) .

2 - 4 9 DIGIT MICROSOFT 6502 BASIC.

5 - 6 6502 RESIDENT ASSEMBLER/EDITOR.

7 EXTENDED MONITOR .

8 SECTOR 1 - FIRST PAGE OF DIRECTORY.
SECTOR 2 - SECONP PAGE OF DIRECTORY.
SECTOR ~ - OVERL AY PAGE FOR 3 DIGIT BASIC.
SECTOR 4 - PUT/GET OVERLAY FOR 3 DIGIT BASIC.

9 - 76 USER PROGRAMS AND OS-65D UTILITY BASIC PROGRAMS.

9 DIGIT BASI C EXTENT IONS

INPUT PNDSGN<DEVICE NUMBER) .

-5-

(INPUT IS SET TO NEW DEVICE.
OUTPUT IS SET TO NULL DEVICE
IF DEVICE NUMBER> 3 • . AND
NULL INPUTS ARE IGNORED IF
DEvICE NUMBER > 3.)

INPUT "TEXT";PNDSGN<DEVICE NUMBER>. (PRINT "TEXT" AT CURRENT
OUTPUT DEVICE, THEN FUNCTION
AS ABOVE)

PRINT PNDSGN<DEVICE NUMBER>. (PRINT OUTPUT FOR THIS COMMAND
AT NEW DEVICE)

LIST PNDSGN<DEVICE NUMBER>, (LIST PROGRAM OR SEGMENTS OF
PROGRAM TO NEW DEVICE)

WHERE <DEI/ICE NUMBER> FOR OUTPUT IS :

1. - ACIA TERMINAL
2 - 4413/5413 VIDEO TERMINAL
3 - 4313 UART PORT
4 - LINE PRINTER
5 -. MEMORY OUTPUT
6 J MEMORY BUFFERED DISK OUTPUT (BIT 5)
7 - MEMORY BUFFERED DISK OUTPUT (BIT 6)
8 - 5513 ACIA OUTPUT
9 - NULL OUTPUT

<DEVICE NUMBER> FOR INPUT IS :

1 - ACIA TERMINAL
2 - 4413/540 KEYBOARD
3 - 4313 UART PORT
4 - NULL DEVICE
5 - MEMORY INPUT
6 - MEMORY BUFFERED DISK INPUT CBIT 5)
7 - MEMORY BUFFERED DISK INPUT CBIT 6)
8 - 550 ACIA INPUT
9 - NULL INPUT

AND WHERE PNDSGN IS A POUND SIGN.

EXIT

RUN <STRING>

DISK ! (STRING)

EXIT TO OS-65D V3. 13

LOAD AND RUN FILE WITH NAME IN
<STRING>.

SEND <STRING> TO OS-65D V3. 13 AS A
COMMAND LINE.

DISK OPEN,(DEVICE>.(STRING) OPEN SEQUENTIAL ACCESS DISK FILE
WITH FILE NAME. (STRING>. USING
MEMORY BUFFERED DISK 1/0 DISTRIBUTOR
DEVICE NUMBER 6 OR 7. READS

BUFFER.

DISK CLOSE. (DEVICE)

DISK GET. <RECORD NUMBER)

FIRST TRACK OF FILE TO MEMORY AND SETS
UP THE MEMORY POINTERS TO START OF

FORCES A DISK WRITE OF THE CURRENT
BUFFER CONTENTS TO CURRENT TRACK.

USING LAST FILE OPENED ON THE LUN
6 DEVICE. A CALCULATED TRACK IS READ
INTO MEMORY. WHERE THAT TRACK IS:
INT«REC. NUM.)/24)+BASE TRACK GIVEN
IN LAST OPEN COMMAND

-6-

DI SK PUT

IT ALSO SETS BOTH MEMOR¥ POINTERS TO :
129'" «REC. NUM. >-INT «REC. NUM.),"24))

+BASE BUFFER ADDRESS FOR LUN 6 DEVICE .

WRITE DEVICE 6 BUFFER OUT TO DISK.
THE EFFECT IS THE SAME AS A
" DISK CLOSE.· 6" .

E N D USER POKES TO BASIC

LOCATION OLD NE~J FUNCTION

2972 58 13 DISABLE , AND : TERMINATORS ON STRING INPUT
2976 44 13

2073 173 96 IGNORE CONTROL-C

2893 55 28 DISABLE BREAK ON NULL INPUT.
2994 0S 11 "REDO FROM START"

741 76 10 REMOVE KE¥WORDS, "NEW" AN[> "LIST"
750 7S 10

OTH ER POKES TO BASIC

LOCATION FUNCTION

23 TERMINAL WIDTH

2889, 9722 IF BOTH ARE 0 A NULL INPUT TO A "INPUT" STATEMENT
¥IELDS AN EMPT¥ STRING OR A 0 . IF BOTH ARE 27 THEN
THE INPUT STATEMENT FUNCTIONS AS NORMAL .

8917

9826

9922

9823

9824

9925

USR(X) DISK OPERATION CODE:
o - WRITE TO DRIVE A
3 - READ FROM DRIVE A
6 - WRITE TO DRIVE B
9 - READ FROM DRIVE B

TRACK NUMBER FOR USR(X) DISK OPERATION

SECTOR NUMBER FOR USR(X) DISK OPERATION

PAGE COUNT FOR USR(X) DISK WRITE, OR
NUMBER OF PAGES READ IN BY DISK READ

LOW BYTE OF ADDRESS OF MEMORY BLOCK FOR USR(X)
DISK OPERATION

HIGH B'rrE OF ADDRESS OF MEMORY BLOCK FOR
USR(X) DISK OPERATION

-7-

8954

8993

8994

LOCATION OF JSR TO A USR FUNCTION. PRESET TO
JSR $22D4. IE. SET UP FOR USR (X) DISK OPERATION

I/O DISTRIBUTOR INPUT FLAG

I/O DISTRIBUTOR OUTPUT FLAG

8995 INDEX TO CURRENT ACIA ON 550 BOARD. IF NUMBERED
FROM 0 TO ~5 THE VALUE POKED HERE IS 2 TIMES THE
ACIA NUMBER.

8996

8960

9098
9099

9~05

9~06

9~32

9~33

9~55

9~56

92~3

92~4

9238
9239

8998

9006

~2042

LOCATION OF A RANDOM NUMBER SEED. THIS LOCATION
IS CONSTANTLY I NCREMENTED DURING KEYBOARD POLLING

HAS PAGE NUMBER OF HIGHEST RAM LOCATION FOUND ON
OS-65D ' S COLD START BOOT IN. THIS IS THE DEfAULT . ,
HIDH MEMORY ADDRESS FOR THE ASSEMBLER AND BASIC

LOW BYTE ADDRESS FOR MEMORY I NPUT
HIGH BYTE ~DDRESS FOR MEMORY INPUT

LOW BYTE ADDRESS FOR MEMOR Y OU TPUT
~IGH BYTE ADDRESS FOR MEMORY OUTPUT

LOW BYTE ADDRESS FOR MEMORY BUFFERED DISK INPUT
HIGH BYTE ADDRESS FOR MEMORY BUFFERED DISK INPUT
BIT 5 DEVICE. DEFAULTS TO $3~7E .

LOW BYTE ADDRESS FOR MEMORY BUFFERED DISK OUTPUT
HIGH BYTE ADDRESS FOR MEMORY BUFFERED DISK OUTPUT
BIT 5 DEVICE. DEFAULTS TO $3~7E .

LOW BYTE ADDRESS FOR MEMORY BUFFERED DISK INPUT
HIGH BYTE ADDRESS FOR MEMORY BUFFERED DISK INPUT
BIT 6 DEVICE. DEFAULTS TO $3D7E.

LOW BYTE ADDRESS FOR MEMORY BUFFERED DISK OUTPUT
HIGH BYTE ADDRESS FOR MEMORY BUFFERED DISK OUTPUT
BIT 6 DEVICE. DEFAULTS TO $3D7E.

MEMORY BUFFERED DISK I/O BIT 5 DEVICE PARAMETERS :
899B-B999 - BUFFER START ADDRESS ($3~7E)
9000-900~ - BUFFER END ADDRESS ($3D7E)
9002 - FIRST TRACK OF FILE
9003 - LAST TRACK OF FILE
9004 - CURRENT TRACK IN BUFFER
9005 - DIRTY BUFFER FLAG (0=CLEAN)

MEMO RY BUFFERED DI SK I/O BIT 6 DEVICE PARAMETERS:
9006-900 7 - BUFFER START ADDRESS ($3D7E)
9008-9009 - BUFFER END ADDRESS ($497E)
90~0 - FIRST TRACK OF FILE
90~~ - LAST TRACK OF FILE
90~2 - CURRENT TRACK IN BUFFER
90~3 - DIRTY BUFFER FLAG (0=CLEAN)

LOCATION OF THE 24 USED BY THE RANDOM ACCESS FILE
CALCULATION ROUTINES. THIS LOCATION SHOULD ONLY
BE ALTERED AFTER THE OPEN HAS OCCURRED FOR THE
RANDOM ACCESS FILE BECAUSE THE PUT GET CODE IS LOAD-

-8-

ED INTO THE DIRECTORY BUFFER. THIS IS WHERE THIS
24 RESIDES. MRKING IT A 48 GIVES ONE 64 BYTE RECORD S.

9368 HIGH BYTE ADDRESS FOR INDIRECT FILE INPUT CLOW=00)

9554 HIGH BYTE ADDRESS FOR INDIRECT FILE OUTPUT (LOW=08)

EXTENTIO NS TO ASS EMBLER

E

H<HEX NUM::>

M<HEX NUM>

!<CMD LINE::>

CONROL-I

CONROL-C

EXIT TO OS-6SD V3. 0 .

SET HIGH MEMORY LIMIT TO <HEX NUM::> .

SET MEMORY OFFSET FOR A3 ASSEMBLY TO <HEX NUM::> .

SEND <I1MO LINE::> TO OS-6S0 V3. e AS A CO~lMANO TO
BE EXECUTED AND THEN RETURN TO ASSEMBLER.

TAB 8 SPACES. ALSO:

CONTROL-U
CONTROL-Y
CONTROL-T
CONTROL-R
CONTROL-E

7 SPACES.
6 SPACES.
5 SPACES.
4 SPACES.
3 SPACES.

ABORT CURRENT OPERATION

EXTENDED MONITOR

'TEXT

@NNNN

A

BN, LLLL

C

DNNNN .. MMMM

EN

EXIT

FNNNN, MM~lM=D[)

SENT "TEXT" TO OS-6SD V3. 0 AS A COMMAND.

OPEN MEMORY LOCATION "NNNN" FOR EXAMINATION .
SUBCOMMANOS :

LF - OPEN NEXT LOCATION.
CR - CLOSE LOCATION.
DO - PLACE "DO" INTO LOCATION .
" - PRINT ASCII VALUE OF LOCATION.
/ - REOPEN LOCATION.
UPARROW - OPEN PREVIOUS LOCATION .

PRINT AC FROM BREAKPOINT.

PLACE BREAKPOINT "N" (1.-8) AT LOCATION, "LLLL" .

CONTINUE FROM LAST BREAKPOINT.

DUMP MEMO RY FROM "NNNN" TO "MMMM" .

ELIMINATE BREAKPOINT "N" .

EXIT TO 05-65D V3. 0 .

FILL MEMORY FROM "NNNN" TO "MMMM"-1. WITH "DO" .

-9-

GNNNN TRANSFER CONTROL TO LOCATION "NNNN"

H tm N n. t·, ~1t.1t-1(0 F' > HE XD ECIMAL CALCULATOR PRINTS RESULT OF
"NNNN"COP>"MMMM" WHERE COP > IS + - • /

I PRINT BREAK INFORMATION FOR LAST 8REAK~OINT

v PRINT S TA CK POINTER FROM BREA KPDTNT

L LOAD MEMOR Y FROM CASS ETTE .

MNNNN=MMMM . LLLL MOVE MEMORY BLOCK "MMMM" TO "LI.LL·'-l TO LOCAT ION
"NNNN" AND UP IN MEMORY

NHEX) NNNN, MMMM SEARCH FOR STRING OF BYTES "HEX" (1-4) BETWEEN

MEt10R',' LO CATION "NNNN" ArW "mmt·'"-· J .

o PRINT/OVERFLOW/ REMAINDER FROM HEX CAI.CULATOR.

P PRINT PROCESSOR STATUS WORD FROM BREAKPOINT .

QNN~m DISAS SEMBLE 23 LINES FROM LOCATION "NNNN"
A LINEFEED CONTINUES DISASSEMBLY FOR 23 MORE

RMMMM=NNNN.LLLL RELOCATE "NNNN" TO "LLLL"-1 TO LOCATION "MMMM".

SMMMM .. NNW~ SAVE MEMORY BLOCK. "MMM~" TO "NNNN"-1 ON CASSETTE.

T PRINT BREAKPOINT TABLE .

'./ VIEW CONTENTS OF CASSETTE.

WTEXT>MMMM,NNNN SEARCH FOR ASCII STRING "TEXT" BETWEEN "MMMM" AN ~

AND "NNNN"-1 .

x
y

PRINT X INDE~ REGISTER FROM LAST BREAK

PRINT Y INDEX REGISTER FROM LAST BREAK.

NOTE : ALL COMMANDS ARE LINE BUFFERED BY 05-65D.
THUS ONLY 18 CHARACTERS PER LINE ARE ALLOWED
AND CONTROL-U AND BACKARROW APPLY .

DISKETTE COPIER

THE DISKETTE COPY UTILITY IS FOUND ON TRACK 1 SECTOR 2 . IT
SHOULD BE LOADED INTO LOCATION 200 WITH A "CA 0200=01. 2" . TO START IT
TYPE. "GO 02e0" . TO SELECT THE COPIER TYPE A "1" . THE COPIER
AUTOMATICALLY FOR MA TS THE DESTINATION DISKETTE BEFORE WRITING ON IT

:-1.0 :c _

TRACK 0 READ/WRITE UTILITY
--

THIS UTILITY PERMITS THE READING OF DATA ON TRACK e ANYWHER5
INTO MEMORY. ALSO THE CAPABLITY IS AVAILABLE TO WRITE ANY BLOCK OP
MEMORY TO TRACK 0 SPECIFYING A LOAD ADDRESS AND PAGE COUNT.

THE TRACK ZERO FORMAT IS AS FOLLOWS :
- 1 MILLISECOND DELAY AFTER THE INDEX HOLE.
- THE LOAD ADDRESS OF THE TRACK IN HIGH-LOW FORM.
- THE PAGE COUNT OF HOW MUCH DATA IS ON TRACK ZERO.

TRACK FORMATTING

THE REMAOCNING TRACKS ARE FORMATTED AS FOLLOWS :
- 1 M~LISECOND DELAY AFTER THE INDEX HOLE.
- A 2 BYTE TRACK START CODE, $43 $57.
- BCD TRACK NUMBER.
- A TRACK TYPE CODE, ALWAYS A $58.

THERE CAN BE ANY MIXTURE OF VARIOUS LENGTH SECTORS HEREAFTER.
THE TOTAL PAGE COUNT CAN NOT EXCEED 12 PAGES IF MORE THAN ONE SECTOR
IS ON ANY GIVEN TRACK. 13 PAGES CAN BE PLACED ON A TRACK IF ONLY ONE
SECTOR RESIDES ON A TRACK. EACH SECTOR IS WRITTEN IN THE FOLLOWING
FORMAT:

- PREVIOUS SECTOR LENGTH (4 IF NONE BEFORE) TIMES
800 MICROSECONDS OF DELAY.

- SECTOR START CODE, $76.
- SECTOR NUMBER IN BINARY.
- SECTOR LENGTH IN BINARY.
- SECTOR DATA.

COMPATABILITY WITH EARLIER OS-65DS
--

THE EARLIER VERSIONS OF OS-65D (IE. EARLIER THAN 3. 0) HAD A
QUIRK OF . OPERATION. WHEN THEY ATTEMPTED TO DO A READ THE HEAD WAS
LOADED AND THE ACIA. INITIALIZED AT THE RISING EDGE OF THE INDEX HOLE.
SINCE THE EARLIER 6~D'S FORMAT INCLUDED NO GAP AFTER THE INDEX ' HOLE,
THE ACIA MAY BE INITIALIZED IN THE MIDDLE OF A BYTE. THIS WOULD SET
THE ACIA OUT OF SYNC WITH THE DATA. IT WOULD THEN TAKE SEVERAL
REVOLUTIONS OF THE DISKETTE BEFORE THE ACIA GOT BACK IN SYNC AND THE
TRACK HEADER FOUND. FOR THIS REASON THERE MAY BE PROBLEMS IN READING
EARLIER VERSION FILES. THE ERROR ENCOUNTERED IS ERROR 9. THIS ERROR
INDICATES THAT THE TRACK HEADER WAS NOT FOUND IN ONE REVOLUTION. SO
THAT EARLIER VERSION FILES CAN BE COPIED OVER TO THE NEW SYSTEM, THE
D9 COMMAND IS AVAILABLE. IT PREVENTS THE ERROR 9 ERROR CHECKING.

-11-

