65D TUTORIAL and -
REFERENCE MANUAL

A_Step by Step Introduction to the
Ohio Scientific OS-65D Operating System

ISOTRON, Inc.

T T R e e e e b et ot s s e o e e e

Blank Page

Blank Page

Blank Page

ATTENTION

This set contains six disks: The five

disk Tutorial Set and one blank disk.

Blank Page

Blank Page

Blank Page

INTRODUCTION . . . « « « « o « « =
CHAPTER 1: Tutorial Disk 1 . .« e e
CHAPTER 2: Tutorial Disk 2« =
A. The BASIC Immediate Mode . . .
B. Entering a BASIC Program . .
CHAPTER 3: Tutorial Disk 3 . . .
CHAPTER 4: Tutorial Disk 4. - -
A. Sequential and Random Files .
B. The PRINT and INPUT Statements
C. The OPEN and CLOSE Statements
D. A Sequential File Example . .
E. The GET and PUT Statements . .
F. A Random File Example
G. An Example Using Two Data Files
CHAPTER 5: Tutorial Disk 5 -
A. Introduction « .« - . -
B. The Workspace . . . e e .
C. Floppy Diskette Formats . e e
D. The Menu
E. The Directory . . - -« - -
F. Copylng Diskettes e e e .
G. Creating, Deleting and Renaming Files
(i) Deleting a File
(ii) Creating a File
(iii) Renaming a File . .
H. The PUT, LOAD and RUN Commands
(i) The PUT Command
(ii) The LOAD Command -
(iii) The RUN Command
I. Entering the BASIC Mode . .
J. Using Data Files
K. Storing Data Files
L. Conclusions

TABLE OF CONTENT

o w

12

12
12
15
15
17
18
21

24

24
24
25
25
26
29
30
31
32
34
36
36
37
38
39

40
43
by

CHAPTER 6:

CHAPTER

CHAPTER

A.
B.
c.
D.
E.
F.

TABLE OF

CONTENTS (Cont'd)

Page #

Overview of 0S=65D. . . . ¢ ¢« v « « o o« o « o 45
Introduction « . ¢ 4 v e e . e . . 45
Memory Allocation . . e e e e e e e e e 47
Kernel Commands . . .« « « « o o o o s s o = 50
Transfer of Control « ¢« « « + « =« 51
Input/Ouput Distribution« . 54
Disk Usage . . .« + ¢« o ¢« o « o o o o o o o = 56
(1) Tracks . « ¢ ¢ ¢ ¢ o o o o o o o o o o = 56
(ii) Sectors .. « ¢ v ¢ « o o« o e o e e e e . 57
(iii) Fundamental Disk Commands « « .« 58
(iv) Source Files . . . ¢ « o « ¢ o o o « o = 59
(v) Data File Handling « « « & 62
Kernel Command Summary - « <& . 83
Utility Programs « e e e e 64
New Features in 0S8-6SD V3.3 ., « .« . 66
Cursor and INPUT prompt « « « =« =« 66
Keyboard Encoder and Video Display 68
Enhanced BASIC e e e o . 69
(i) Upper and Lower Case Interchangeablllty 69
(ii) The BASIC Line Editor e e . 70
(iii) The TRAP Command . . . « « « « « + + . 71
(iv) New PRINT Commands « . . 72
(a) Number Formatting 73

(b) Cursor Location . . . e e e . 74

(c) General Screen Formattlng o e . 75

(d) Printer Control o e e 86

(v) Data File Handling e 92
BASIC Functions Not Present in V3 3 .« o . 98
Extended 65D Utilities . . . 101
Resequencer e e e . 102
Repacker+« « « ¢ « o « « . 106
Buffer Creator e e e e e 109
General String Orlented Sort . . 111
BASIC Disassembler . 112
Data File Copier . 113
Program Listings . 113
(1) Resequencer (RSEQ) 11y
(ii) Repacker (REPACK) 116
(iii) Buffer Creator (BUFFER) B I
(iv) Generalized String Oriented Sort (GSOSRT) 119
(v) BASIC Disassembler (DISASM) .. 121
(vi) Data File Copier (DATRAN) 124

TABLE OF CONTENTS (Cont'd)

Page #
APPENDIX 1: Utility Program Descriptions and Listings . 125

0S65D3 . . & ¢« . ¢ 4 v 4 e e e e e e e e s 127
BEXEC*® ¢ ¢ v v v ¢ v v v v v .. 131
COPIER ¢ ¢ ¢ ¢« ¢ ¢ v « « « « « « 138
CHANGE ¢ ¢« v ¢ v v v v v v v« 14
CREATE ¢ & ¢ v ¢ v v v o « o o « .« 152
DELETE . . . ¢« ¢« ¢« ¢« v v v v v v « v o« « « 157
DIR 4 e e 4 e 4 e e e« e e 4 e e« e+ . 160
RANLST+ ¢+« .. . 18686

RENAME e T
SECDIR e e e e e e e e .. 172
SEQLST . R} £
- TRACE . . B £
ZERO c e 182

ASAMPL 185
AINENB ¢ 188
COLORS ¢ ¢« ¢ v v v v v v v o . 191
MODEM e s+ s e 4 & e s e e+ e e o e + o 194
COMPAR & ¢ v ¢ & v 4w v « & & o« « o 199

APPENDIX 2: DOS Command Summary « « « « o o 202
APPENDIX 3: O0S-65D BASIC Command Summary 204
APPENDIX 4: Editor Command Summary 212

APPENDIX 65: Errop Message Codes 213
APPENDIX 6: POKE and PEEK List 215
APPENDIX 7: ASCII Character Codes 220
APPENDIX 8: V3.3 PRINT Command Summary 221

APPENDIX S8: Extended Utilities Command Summary 224
APPENDIX-10: G L O S SARY . . v v v v v v v v v v « . 2286

INDEX . .« ¢ o o v v i v v v v e e e e s e e e .. 230

Blank Page

Blank Page

Blank Page

Introduction

This manual consists of two parts. Part one (chapters 1
through 5) is a tutorial introduction to the wide range of
features and utilities afforded the user by Ohio Scientific's 0s-
65D operating system. Because it is a tutorial, part one should
be studied thoroughly, following the proper sequence of chapters.
The reader who jumps ahead before mastering the early chapters
risks possible confusion.

Each chapter of the tutorial makes use of one of the five
Tutorial Disks that accompany this manual. The early Tutorial
Disks have been specially designed to make it possible for the
reader to write and use relatively sophisticated programs, that
process disk data files, without first 1learning all of the
complicated details of file manipulation. Hence, mastery of some
of the more difficult technicalities of the operating system can
be delayed until their necessity is properly motivated.

Part two of this manual (beginning with chapter 6) provides
complete information on all of the versions of 0S-65D, including
the new Version 3.3. This material is intended to be a natural
continuation for the beginner who has worked through the part one
tutorial. It can also be used as a stand-alone reference for the
experienced user who is familiar with 0S-65D version 3.2.

It is assumed that all users of this manual have a working
(not detailed!) knowledge of the computer language BASIC. If vyou
do not have this background, please acquire a copy of 0SI's BASIC
and the Personal Computer (standard with some OSI computers) and
read Chapter 2. Any other standard text on introductory BASIC
will also suffice. Tutorial Disk 1 should prove to be a useful
tool to anyone learning BASIC for the first time or practicing
some old skills.

- If you are familiar with BASIC on another computer system,
it is suggested that you read through the 0SI BASIC Reference
Manual for detailed examples of 0OSI BASIC. This is part of the
system documentation for nearly all 0SI computers.

A brief description of the five Tutorial Disks:

Disk 1 This contains a collection of interactive programs., It
is designed to be an easy-to-use, entertaining and
informative introduction to the system.

Disk 2 The user is introduced to the BASIC workspace, enters a
sample program, and learns how to correct typing errors.

Disk 3 This disk contains eight pre-created files for BASIC
Programs., The user learns how to sStore and retrieve BASIC
programs from the disk. File names are introduced.

i

Disk 4 This disk comes with three files for BASIC programs and
four data files. Sample programs 1illustrate sequential
file usage, random file usage, and combinations of the
two. The concept of a "buffer" is introduced.

Disk 5 This disk is a full 0S-65D V3.3 system disk. The
directory is introduced. Full file create, delete and
rename utilities are examined. Disk copying on single and
dual drive machines 1is explained. The 65D operating
system is discussed.

As the above descriptions indicate, the disks are numbered
in order of increasing sophistication. Each disk is used with the
correspondingly numbered chapter in the tutorial.

Users who are thoroughly familiar with 0S-65D V3.2 may want

to proceed directly to Chapter 7 for an overview of the many new
features of version 3.3.

IMPORTANT NOTE TO USERS OF SERIAL SYSTEMS (C-2,C-3 SYSTEMS)

Four of the "games" programs contained on Tutorial Disk 1
are operable only on video systems (Clp, C4P, C8P systems). If
you select any of these programs on a serial system they will
"hang-up" the computer, forcing you to reboot. The Hangman,
Biorhythm and Loan Interest programs will, however, run properly
on a serial system.

Certain new features of the 0S-65D V3.3 operating system do
not work on serial systems. Generally, commands that refer to
color, screen size, or windowing are not operable. A complete
list of the non-working commands is provided in Chapter 7 (see
page 10@). .

If your system includes a Hazeltine 1420 terminal, be sure
that switch 6 is set to the ESC position (on).

IMPORTANT NOTE TO USERS OF C1P SYSTEMS

Your computer system must have a minimum of 24K of memory to
properly run the 0S-65D Tutorial Diske. A ClP with only 28K of
memory will not boot up with Tutorial Disk 5 because its menu
program (BEXEC*) will not fit into the 28K workspace.

It is, however, possible to use other Tutorial Disks with
a 20K ClP. For example, Tutorial Disks 3 and 4 could be used
to boot the system so that the C1P user could use the editor
and other new features of 0S-65D V3.3.

ii

TO START YOUR COMPUTER

Turn on the computer, disk drives and terminals - switches
are generally located on the back of the device cabinet.

Place an 0S-65D disk. in drive A (the drive whose red light
is on or the top drive in dual drive cabinets). Close the
disk drive door.

Depress the BREAK key on ClP and CuP systems (and hold for
a few seconds). Depress the white reset button on C8P and
serial systems.

When the "H/D/M?" ("D/C/W/M?" on ClP systems) message appears,
respond by typing "D" and <RETURN>. 1In a few seconds a menu
should appear on the screen.

To enter the BASIC immediate mode, respond UNLOCK to this menu
in 0S-65D V3.2; select option 9 in 0S-6SD V3.3.

iii

Blank Page

Blank Page

Blank Page

Chapter 1

Tutorial Disk One

This disk contains seven programs which can be run by a user
with no programming knowledge.

The procedure for using Tutorial Disk 1 follows.

A) After the computer, disk drive(s), and monitor have been
connected and turned on (according to the instructions
in your user's manual) depress <BREAK> (or the white
reset button on your computer) and keep it depressed for
about two seconds or until 'H/D/M! (*‘D/C/W/M* on C1lP
systems) appears at the top of the screen. Then insert
Tutorial Disk 1 into the disk drive, (label up and toward
the user) and close the door of the drive. 1If you have a
system with more than one drive, insert the disk into
drive A.The red light on drive A will be 1lit after

. depressing <BREAK> on minifloppy systems; if you have
dual disk drives in a single cabinet, drive A is the top
drive. :

B) Make sure the SHIFT-LOCK (or ALL-CAPS) key is depressed.
C) Depress D (for disk).

After a short delay, the menu below will appear on the
screen.

0S-65D Tutorial disk one

1> Space War

2> Hangman

3> Biorhythm

4> Torpedo

5> Breakout

6> Loan Interest Calculation
7> Life

Depress the number of your selection ?

When the menu is on the screen, make a selection and type
its number (1-7). Selections 1,2,4 and 5 are one and two player
games, Selections 3 and 6 prompt the user for certain information
and then display a report. Finally, selection 7 1is a graphics
demonstration program. It is not available on ClP systems.

As was mentioned in the introduction, selections 1,4 and 5
will run only on video systems (ClP, C4P and C8P). Selection 7
also runs only on video systems; it is particularly impressive on
color video systems. Selections 2, 3 and 6 will run on all O0SI
computer systems, including serial systems. The following is a
brief description of each of these games. :

1> Space wars is a two player game of skill where the ground

forces battle the starship Enterprise in an intergalactic
battle.

2> Hangman is a word guessing game. Using the positions of
letters that you have correctly selected as clues, you must
guess the computer's word before you are "hanged".

3> Biorhythm will plot vyour. emotional, physical and
intellectual cycles for a 3¢-day period. It will display high,
low and “critical® days. The program uses the popular (and
controversial) Biorhythm theory for its calculations.

4> Torpedo is a one player game where you are a commander,
and must destroy all enemy boats that enter your waters.

5> Breakout is a one player game where you try to keep the
ball moving around the screen and knock out as many blocks as
you can to score points.

6> Loan Interest Calculation will display a repayment
schedule and total interest charges for ‘any loan. You select
the principal amount, interest rate, time period, and either
the number of payments or amount of each payment.

7> Life is an animated version of the classic simulation of
pPopulation growth and decay. The small squares in the display
are “"born" when they have the optimal number of *"neighbors".
Too few or too many neighbors causes a square to die and
disappear from the display. The entire population will
eventually reach a stable state or be completely wiped out.
Life was invented by mathematician George Conway. It has been
extensively discussed in Scientific American.

When one of these programs is selected, the computer first
displays a discussion or directions. Take as long as you wish to
read the display and then respond to the computer's prompt for
input from the wuser by making an appropriate entry on the
keyboard. In the case of programs 2, 3 and 6, it will be
necessary to press the RETURN or CR key after typing certain
kinds of information in order to complete the entry. For the
other programs, the RETURN or CR key is never used. You should be
Certain that the SHIFT-LOCK (or ALL-CAPS) key is down while using
the programs on Tutorial Disk 1.

The user may break out of any one of programs 1, 2, 4, 5 or
7 by depressing <ESC> (escape key). It may be necessary to hold
<ESC> down for a second or two before the computer responds. When
it does it will return to the menu. When any of the programs has
finished running (without interruption through the use of <ESC>),
the computer asks if the user wants to run it again. Simply
bPressing the Y key (for yes) or the N key (for no) will rerun the
program or return to the menu.

The user may end the wuse of this disk at any time by
depressing <BREAK> (or the white reset button) and removing the
disk from the disk drive. Any disk in a disk drive should always
be removed before turning off the disk drive.

-

Chapter 2

Tutorial Disk Two

Tutorial Disk 2 allows the user to enter his own BASIC
commands or BASIC programs. There 1is, however, no means for
saving a program when using this disk. If the wuser wants to
enter a program and save it on the disk, he should use Tutorial
Disk 3. We will use the following terminology:

boot-up: The process of initializing the computer and
. loading software from the disk that permits
the user to enter BASIC commands or lines of a

program. Boot-up is accomplished by

depressing <BREAK> on the keyboard (ClP and

C4p systems) or the white reset button on the

computer (C8P and serial systems) until the

'H/D/M?' ('D/C/W/M?' on ClP - systems) message

appears on the screen. Respond by typing D

(for disk) with the SHIFT-LOCK (ALL CAPS) key

down.

workspace: The part of memory in which the user's program
is stored. This is RAM or random access
memory.

prompt: The symbol or message that is displayed when

the computer is waiting for a command to be
entered from the keyboard. 1If the computer is
waiting for a BASIC command or program entry
then the "OK" prompt is displayed. 1If a BASIC
program is running (e.g., the game programs on
Tutorial Disk 1) and an INPUT statement is
encountered then the "?" prompt is displavyed.
Other prompts will be discussed in conjunction
with other disks.

When Tutorial Disk 2 is booted-up, the workspace is cleared
of all previous material and the computer displays the OK prompt.
When other disks are booted-up, the workspace may not be cleared.
At this point the user may enter BASIC commands either without a
line number for immediate execution or with a line number to be
stored in the workspace as part of the wuser's program. (The
former method is called the BASIC Immediate Mode.) We will give a
brief discussion about BASIC in the following sections. For a
more in-depth discussion about BASIC see Dwyer and Critchfield's
book BASIC and The Personal Computer or the 0SI BASIC Reference
Manual.

A) The BASIC Immediate Mode

] When the user enters (types) a BASIC command and the typed
line does not begin with a ine number, then the command Iis
executed immediately. When the OK prompt is displayed each line

3

that 1is entered from the keyboard must be terminated by
depressing <RETURN> (<CR>). Most BASIC commands can be entered
in the immediate mode, that is, without a 1line number. The
exceptions are DEF, INPUT, READ, and DATA. Commands 1like GOTO
that must reference a line number can be entered in the immediate
mode only if there is a program in the workspace to reference.

One way to use the computer in the immediate mode is as a
calculator. This usually involves the BASIC "PRINT" command
which causes the computer to display a result. In OSI's
Microsoft BASIC, a question mark (?) can be used as an
abbreviation for the PRINT command.

Some of the arithmetic symbols used by 0SI's BASIC are:

+ add

- subtract
* multiply
/ divide

(or SHIFT-N) exponentiation
SQR square root
SIN sine of a number

For example, if the OK prompt is on the screen and the user
enters the command

? SQR (2) or PRINT SQR (2)
(followed by <RETURN>)

then the display will be:

OK
? SQR (2)
1.41421356

OK

That. is, the computer will display (or PRINT) the square root of
2. (NOTE: A typing error can be corrected by pressing <RUB-QUT>
or <SHIFT-0>.) If the user enters the command

then the computer will display the result of that calculation, as
follows:

OK
? 3*(61.809-12.929)
146 .64

OK

(Note, the zeros have a slash through them (g) to differentiate
them from the fifteenth letter of the alphabet.)

The user can cause values to be stored in memory. For example,
if the user enters

PI=3.14159
"and then

? PI*(472)

‘then the display will be:

OK
PI=3.14159

OK
? PI*(472)
50.26544

OK .

That is, the computer will print the area of the circle of radius
4. The value stored at PI will be available for later
calculations. So, for example, if the user now enters the
command

? PI*(17.372)

then the display would be:

OK
? PI*(17.372)
940.246472

OK

More than one command can be entered at one time, provided the
commands are separated by colons. For example, the value of the
formula

X4 - 4*X"3 + 3*X + 9
for X=7

can be displayed as follows:

OK
X=7: 2 X"4 - 4*X"3 + 3*X + 9
1859

0K

(Remember that the """ symbol is typed by pressing <SHIFT-N> on
some keyboards.)

The FOR-NEXT pair can be used in the immediate mode, but it must
be on one line. For example, a table of square roots could be

5

obtained as shown below:

OK

FOR X=1 TO 10: ?X,SQR(X): NEXT X
1 1

2 1.41421356
3 1.73205081
4 2

5 2.23606798
6 2.44948974
7 2.64575131
8 2.82842713
9 3

19 3.16227766
OK

The PEEK and POKE commands are frequently used in the immediate
mode. For example, the command :

POKE 56832,0

will cause the C4P and CSP-honitor screen displays to go into the
32x32 mode (32 lines of 32 characters) with color and sound
generators turned off. Entering the command

POKE 56832,1

will return the display to its original 32x64 mode (32 1lines of
64 characters) with sound and color turned off. See your user's
manual for more information on memory location 56832.

B) Entering a BASIC Program

When the OK prompt is on the screen the user may enter lines
of BASIC code to be stored in the workspace for later execution.
Each such line must begin with a line number. Remember, there is
no provision on Tutorial Disk 2 for storing programs. If the
user wants to store a program on a disk then Tutorial Disk 3 may
be used. As a short example, the user might type in: '

18 PRINT"TEST PROGRAM"

20 PRINT

3@ INPUT AS

49 PRINT LEN(AS)

5@ IF AS = "DONE" THEN STOP
60 GOTO 20

If you make a mistake (before you depress <RETURN>) use the
SHIFT-0, SHIFT-"underline" (next to the g key), or RUB-OQUT key to
delete the previous character. (Different keys implement the
delete function on different systems).

If you notice a typing error in a line that has already been
typed, then type the line again with the same line number. The
new version will replace the old. Typing a line number followed
immediately by the depression of the <RETURN> key, will delete

6

the line with that number. To display the program as it
currently is in memory, type the command

LIST

At times you may want to list only part of a program. You may
use the LIST command followed by a 1line number or numbers.
Examples are: ‘

LIST 20 list just line 20

LIST 20-49 list lines 20 through 4¢ inclusive

LIST -49 list from the first line through line 49
LIST 20- list from line 28 to the end of the program

The program, when correctly entered will:

1) print the title "TEST PROGRAM"

2)-ask for information to be typed in at the keyboard

3) count and display the number of characters that
were entered

4) stop if DONE was entered, otherwise go back to
step 2 and repeat the process. -

To run this program type the command
‘RUN

The computer should display
TEST PROGRAM

and then

?

which is a prompt, indicating that the computer 1is waiting for
information from the keyboard and a carriage return (depression
of the <RETURN> key). Anything may be typed at this point except
<BREAK>. If, at any point, an error message 1is displayed, then
the program was not typed in correctly, and the programmer should
LIST it, correct any errors and then RUN the program again. It
the program has no errors and is running, it may be stopped by
responding with DONE to the ? prompt.

Blank Page

Blank Page

Blank Page

Chapter 3

Tutorial Disk Three

Tutorial Disk 3 is similar to Tutorial Disk 2 in that the
user can enter commands in the immediate mode (Chapter 2) and
type in BASIC programs. However, Tutorial Disk 3 also allows for
storing programs on disk.

For purposes of disk storage, a BASIC program or collection
of data records is called a file. Thus we may refer to a program
file or data file. Data files are discussed in detail in Chapter
4.

When the programmer wishes to store a program on disk there
must already be a place (file) on the disk to store it. Tutorial
Disk 3 contains eight precreated files that are ready for
immediate storage of programs. The techniques for creating and
manipulating disk files are discussed in detail in Chapter 5S.
When a program file is brought from disk into the workspace, we
say the file is loaded from the disk. When this happens, the
file on disk remains unchanged while being copied into memory.

The computer reads the disk. When you read a book the
information remains on the pages of the book. Likewise, when the
Computer reads the disk that file remains on disk. After the

file has been loaded into the workspace, the programmer may then
LIST it, RUN it or make changes and then save the updated version
on disk, either in place of the old versions or in another file
so that both versions are on disk simultaneously.

When Tutorial Disk 3 is booted-up, the computer displays the
following menu and waits for the user to type a menu number (as
with Tutorial Disk 1 except now you must also depress <RETURNY>).

1 > LOAD program called "PROG1"
2 > LOAD program called "PROG2"
3 > LOAD program called "PROG3"
4 > LOAD program called "PROG4;
S > LOAD program called "PROGS"
6 > LOAD program called "PROGE"
7 > LOAD program called "PROG7"
8 > LOAD program called "pPROGS"
9 > Rename a program file

Type the number of your selection and depress <RETURN>

The menu gives a list of the eight precreated files and, in
addition, offers a ninth option for renaming files. If the
programmer enters 1 through 8 then the computer will 1load the
specified program into the workspace, ready to LIST, RUN or
modify. 1Initially, each file contains a short filler program.
To replace a filler program with one which you have written, use
the following procedure:

1) Select one of the eight files by typing the number
corresponding. to your choice, then press <RETURN>.

2) Type
NEW<RETURN>

to clear the workspace and erase the filler program
from the workspace (the copy of the program on disk
is unchanged).

3) Enter your program as in section B of Chapter 2.
4) Type
DISK!"PUT PROG1"<RETURN>

If you have already used option 9 to rename PROGI
then you should use the new name instead of PROG1.
You can save your program in any file that is listed
in the menu by using its name in place of PROG1.

Below is a complete example. The example program, when RUN,
displays all 255 graphics characters on the screen. For more
information on graphics see your user's manual. The first line
scrolls the screen display upward, clearing the screen: so that
the output of this program can be viewed without interference
from the previous screen display. The second 1line changes the
SCreen display to the 32x32 mode on a C4P or C8P computer so that
the displayed characters will be larger. When the program has
Stopped ‘running the screen will remain in 32x32 mode. To return
to the standard 32x64 mode the programmer can type

POKE 56832,1

The listing at the top of the next page is exactly as it would

appear on the screen, including the OK prompts. Everything
except the OK prompts was entered by the programmer. Use
<RUB-OUT> to correct any typing errors (see Chapter 2). It is

assumed that the computer has been booted-up and the wuser has
selected option 1.

OK
NEW

OK

90 FOR S=1 TO 25:PRINT:NEXT
100 POKE 56832,0

208 C=0

308 FOR L=@ TO 15

4008 FOR P=@ TO 30 STEP 2

Sd0 POKE 5376@+64*L+P,C

6088 C=C+1

780 NEXT P

802 NEXT L

DISK!“PUT PROGL"

OK

Now that the program is saved on disk, you may want to run
the program by typing RUN.

To run the program on a Clp system, the following changes
are necessary:

366 FOR L=@8 TO 7
4006 FOR P=¢ TO 31 - ‘
50808 POKE 53586+64*L+P+7,C.

The program cannot be modified to run on serial systems because
it uses the memory-mapped screen display features of the O0SI
video systems.

When the menu is on the screen, the user can change the name
of any of the eight files by selecting option 9. When this
option is selected, the computer will ask for the old file. name
(that is the name before any change is made) and then ask for the
new name. The names can be up to six characters 1long, and the
first character must be a letter. Examples:

valid names Invalid names
PROG1 1PROG
TESTIT TEST IT
SAMPLE *FILE

Only the name of the file will be changed; the program stored in
the file will not be affected. When the user stores his own
program in one of the eight files it may be desirable to give it
a more descriptive name. This is, however, completely optional.

Any file that exists on a disk has a specific length, given
as a number of tracks. One disk track can hold slightly more
than 200@¢ bytes of data or 2000 characters of a BASIC program
(3000 bytes of data or characters on eight inch disks). Each of
the precreated files on Tutorial Disk 3 has a length of three

19

tracks. Hence, a longer program cannot be stored on Tutorial
Disk 3. The creation of files of user-specified lengths is
discussed in Chapter 5.

The programmer can easily determine the length, in tracks,
of the program currently in the workspace. The procedure is:

l) Following the OK prompt, type
EXIT<RETURN>

The computer will respond with the length of the
program and then display an A* prompt. The A* prompt
means that the computer is no longer in the BASIC mode
but in the Disk Operating System (DOS) mode. This is
discussed further in Chapter Six.

2) To return to BASIC from DOS type:
A*RETURN BASIC<RETURN> or A*RE BA<RETURNY>

The program that is RUN upon boot-up is called MENU. The name
MENU was used for simplicity. Later you will £find that the
Program called BEXEC* is the program RUN on boot-up for most
diskettes. MENU is the program that prints the menu and
processes your selection. The line

RUN"MENU<RETURN> -

may be put into any program or executed in the immediate mode.
When this command is executed, the program MENU will be 1loaded
into the workspace (hence erasing any other program in the
workspace) and the menu will be displayed.

11

Chapter 4

Tutorial Disk Four

Tutorial Disk 4 contains three filler programs which will be
used to set up the workspace for the three programs PROG1, PROG2,
and PROG3. Included in this chapter are three sample programs to
be entered in these program files, replacing the filler
programs. This disk also has four empty files for storing data
files DATAl, DATA2, DATA3 and DATA4. In addition, it has the
rename capability discussed in Chapter 3 and a program that will
erase data files.

A data file is composed of units called records. A record
contains one or more individual data items. As an analogy, one
might consider a filing cabinet as a data file and a folder in
the cabinet as a record which is filled with data items. A
typical data item would be a number or string of characters such
as a name. '

A data item does not move directly from its memory
(workspace) 1location to disk, but is moved first to an
intermediate location called a buffer. A buffer is a block of
memory (workspace) that has been set aside to handle the
shuffling of data between the workspace and the disk. A
Programmer should think of moving data to and from the disk as a
two-stage process: In order to move data to the disk, it must
first be moved to the buffer and then to the disk. In order to
move data from the disk to the workspace, it must first be moved
to the buffer and then to the workspace. In 0S-65D there are two
buffers available, referred to as buffer$6 and buffer$47 (also
referred to occasionally as device#6 and device#7). This chapter
provides an introduction to the use of these buffers. Additional
details will be provided in Chapter Five, Section J, and in
Chapter six.

A. Sequential and Random Files

There are two types of data files: sequential access files
and random access files. A sequential data file is a file in
which information is stored sequentially, one item right after
another, from the beginning to the end of the file. Sequential
files would be used to store a large numeric array, or to store
information that can be searched sequentially such as names and
phone numbers. The program you will enter as PROGl will access
the file DATAl sequentially.

In many applications sequential files become impractical.
For instance, in an inventory application, one would like to be
able to quickly access an inventory item for reference or change.
This requires the use of a random data file. Random data files
differ from sequential files in that groups of entries are
combined into records. These records can be randomly
(non-sequentially) accessed. For instance, a random data file
could have a hundred records. A pProgram could quickly access any
one of these records by record number. For example, the contents

12

of record 58 could be accessed and then the contents of record 72
could be accessed without looking at any of the 14 records in
between.)

As we shall see later, buffer$6 must be used to implement
random files. Either buffer§6 or buffer#7 (or both) can be used
with sequential files.

Because random files permit more sophisticated access
methods than do sequential files, random files have a more
complicated structure. Each record in a random file has a block
of the computer's memory reserved for it. Unless intentionally
changed, the length of this block is 128 bytes. The record will
take up this much room in the buffer and on the disk regardless
of how much of the record has actually been used to store
meaningful (to the user) information. When the records of a
random file have this characteristic, they are called fixed
length records. 0S-65D does not provide special features ~that

Permit implementation of random files with variable length
records.

A floppy disk is divided 1into concentric circles called
tracks on which the information is stored. A 5" disk has 4¢
tracks and an 8" disk has 77 tracks. A track on an 8" disk has
50% more storage capacity than a track on a 5" disk. Wwhen a
random file is stored on disk the number of records stored on
each track of the disk is fixed in accordance with the record
length. For 128 byte records, 16 records will fit on each track
of a 5" disk and 24 records will fit on each track of an 8" disk.
Additional details on diskette formats will be covered in Chapter
Five, Section C, and in Chapter Six.

Procedures for changing the record block length and
therefore the number of records pPer track will be discussed later
in this chapter. You must observe the record block length
carefully. If you write more characters into a record than its
length allows, you will be writing over, and hence destroying,
material in the next record.

B. The PRINT# and INPUT# Statements

The PRINT# and INPUT# statements move data between the
workspace and the buffers. They function in the same manner as
the usual PRINT and INPUT commands in BASIC with the exception
that they must refer to a specific buffer (either 6 or 7).

The INPUTH# statement reads data from a disk file into the
workspace. It has the general form:

INPUT#buffer number,string and/or numeric variable list
For example,
INPUT#6,BS,K

Elements in the wvariable 1list are separated (delineated) by
commas. This INPUT acts on data from a file as if the data were

13

typed in at the keyboard.

In the above example, B$ is a string variable and K is a
numeric variable. The INPUT statement treats these two types of

variables somewhat differently. When reading numeric values,
embedded spaces are ignored. When a non-space character |is
found, it is assumed to be part of a number. The number

terminates on a colon, comma, or carriage return.

When scanning for string items, leading blanks are ignored.
When a character which is not a leading blank is found, it is
assumed to be part of a string item. 1If this first character is
a double quote (") the item is taken to be a quoted string, and
all characters between the first and second double quotes are
returned literally as the characters in the string value. This
means that a quoted string in a file may contain any characters
except double quotes. If the first character of a string is not a
double quote, then it is assumed to be an unguoted string
constant. The string returned will terminate on a comma,
carriage return, or colon.

The PRINT# statement writes data to a file. It has the
general form: ’

PRINT$ buffer number ,expression list

The expression list can consist of string variables, numeric
variables, and quoted strings, separated by semicolons. For
example,

PRINT#6,AS$;" ,";N

A$ is a string variable, "," is a quoted string and N is a
numeric variable, and each item is separated by a semicolon.

Note the "," element in the example. Because of the way the
INPUT statement scans the record, specific delimiters (a comma or
carriage return as described earlier) must be placed between data
items. When leading blanks are not significant and there are no
Colons or commas in the strings to be written to the file, it is
sufficient with the PRINT statement to insert commas between the
strings. For example:

PRINT#6,XS;",";¥$;",";2$

When leading blanks are significant or there are commas
and/or colons in the strings to be written to the file, the
output strings need to be surrounded by double quotes. The CHRS
function can be used to generate the double quote character from
its ASCII value as in this example:

Q$=CHRS (34)
PRINT#6,Q8;X$;Q8;",";Q%;Y$;0$

. If a record is written as a long list, commas need to be
lnserted between each item. Sometimes it is simpler to write each
ltem with a separate PRINT statement. A FOR-NEXT loop is used to

14

do this in the following example:
FOR I=1 TO 10 :PRINT#6 ,AS$ (I) : NEXT

Execution of the PRINT statement for each item causes the data to
be followed by a carriage return character. There 1is another
advantage to writing each item with a separate PRINT statement.
The BASIC input buffer is 7] characters long. Consequently,
longer lists are truncated on input,

C. The OPEN and CLOSE Statements

For the most part, the transfer of data between buffers and
diskettes takes place automatically. Because there are just two
buffers and potentially many data files, the programmer must make
an association between a particular buffer and a particular data
file. This association is made by the OPEN statement and
dissolved by the CLOSE statement.

Before a program can read or write data to a disk file it
must first OPEN the file. The general form of the OPEN statement
is '

DISK OPEN, buffer number,"file name"
For example:

DISK OPEN,6,"DATA1™

This OPEN statement associates the buffer we refer to as #6, with
the file DATAl, reads the first track of the file into bufferges,
and sets the memory pointers (the counters which point to the
current record) to the start of this buffer (to the first record
of the file).

A file that has been OPENed needs to be CLOSEd. The general
form of the CLOSE Statement is

DISK CLOSE, buffer number
For example:

DISK CLOSE,®6
The CLOSE statement finishes the connection between the buffer
and the file name given in the OPEN for that file. It allows the
buffer to be used again in another OPEN statement with another
data file. To read from a file that has just been written, CLOSE
and re-OPEN the file. This sets the data pointer back to the

beginning of the file. A CLOSE for a sequential file writes the
data that is still resident in the buffer to the disk.

D. A Sequential File Example (Using Tutorial Disk 4)

Boot-up Tutorial disk four and select option 1 to 1load
PROGl. PROGl (as well as PROG2 and PROG3) has been created with a

15

buffer area. Several methods for verifying this will be discussed

in later chapters. Next, type NEW <RETURN> to clear the filler
Program. These first two steps will put a single buffer (#6) in
front of your workspace. Now that you have your buffer and a
clear workspace enter the following program and store it as
PROGl. The procedure should be as follows (Serial system users
should omit lines 28 and 40; see the Note, end of Chapter 7):

OK
NEW

OK

18 REM SEQUENTIAL FILE DEMONSTRATION
20 PRINT! (28) :REM CLEAR SCREEN

38 INPUT"Enter data or List data? (E/L)";C$
48 PRINT! (28) :REM CLEAR SCREEN

5@ IF C$="E" THEN 100

66 IF C$="L" THEN 200

190 REM ROUTINE FOR ENTERING DATA

195 DISK OPEN,6,"DATAL"

116 FOR I=1 TO 3

120 INPUT"Enter a name";NS$

13@ INPUT"Enter the telephone number”;T$
140 PRINT#6,NS :PRINT#6,TS '

158 NEXT I

168 DISK CLOSE,6

170 PRINT"DATA STORED"

180 GOTO 3¢

200 REM ROUTINE FOR LISTING DATA

210 DISK OPEN,6,"DATAl"

220 FOR I=1 TO 3

230 INPUTH#6,NS,TS

248 PRINT NS, TS

2580 NEXT I

268 DISK CLOSE,6

278 GOTO 3¢

DISK!"PUT PROG1"
OK

.After storing the program in PROGI, you should run the
Program and correct any errors that are found and save the final
Copy in PROGl. Note that the first thing the program does 1is to
Clear the screen. The screen clear command, PRINT! (28), on 1lines
20 and 49 is one of the new 0S-65D V3.3 features that are
documented in Chapter 7. It does not function on serial systems.

After the first screen clear the Program prompts you for a
Choice between entering or listing. The first time through, you
should enter "E". The program will then ask for a name. After
entering a person's name, the program will ask vyou for a
telephone number. Next, you will again be asked to enter a name
and so on for three pairs of names and numbers.

Note that the numbers are being stored as string wvariables.
This will allow you to include a space or dash between the first
three and last four digits of the telephone number. Note also

16

that line 14¢ contains two separate print statements. This has
the effect of placing a carriage return character between the
name and number entries. This will be important in Chapter 7 when
an extension of this example program is discussed. For the
present, however, line 14¢ could be replaced by:

142 PRINT#6,NS; TS
This would work equally as well,

When the three pairs of names and numbers have been entered,
the message :

DATA STORED

will be displayed and you will be returned to the enter or list
options. At this point six string variables have been stored in
the data file DATAl (through the use of bufferg6).

Now enter "L". The computer will load the contents of DATAL
into buffer#6, pick up pairs of string variables with the INPUT
Statement in line 23¢, and display these pairs on the screen.
When this is completed, the enter or list message will again be
displayed.

To exit the program, simply press the RETURN key in response

to the enter or list message instead of entering "E" or "L". The
OK prompt will appear. Now run the menu by entering the command:

RUN"MENU"

Since you are now back to the menu, you could now use option 5 to
Clear data file DATAL.

In Chapter 7 a sample program is presented which can be
written by simply adding to the sequential file demonstration

Program just discussed. Therefore, you may want to save this
Program in PROGl for future reference.

E. The GET and PUT Statements (for random files)

The advantage of a random file is that any record may be
read or written at any time. This is accomplished by executing
the DISK GET command before a PRINT or INPUT statement. As will"
be explained later, the DISK PUT command may be used after each
PRINT statement but this is not necessary with 0S-65D Vv3.3.

The GET and PUT commands have the form:

DISK GET, n
DISK PUT

where n is a record number.

When a GET operation is performed, the file pointer is set
to the record number specified by the DISK GET command. Record

17

numbers begin with @. For standard sized records--]128 bytes per
record and 16 (24 on 8" inch systems) records per track--no disk
transfer operation is involved if the record number is 15 (23 on
8" systems) or smaller. Since the entire first track of a data
file is transferred to buffer46 by the DISK OPEN,6,"filename"
command, the data file pointer simply goes to the proper memory
location in the buffer. If, however, the record number is 16 (24
on 8" systems) or larger, a new track must be 1loaded into the
buffer and then the pointer can be set.

Once the pointer has been set to the proper record, a PRINT
Statement or INPUT ststement should follow. A PRINT§6 statement
following the GET command will store information in the bufferge
memory locations corresponding to the selected record. Note that
the record number itself does not exist in the buffer in direct
retrievable form. If the record number will be needed later, it
should be stored in the record along with the other record
contents,

The DISK PUT command transfers the buffer contents onto the
disk. If a program processing random files is to be run on the
earlier 0S-65D V3.2 Disk Operating System, then the DISK PUT
command must follow each PRINT statement or serips of PRINT
Statements. For 0S-65D V3.3, however, this -is not necessary. In
other words, if new information has been PRINTed into the buffer
Prior to the execution of a GET command which involves a record
on-a different disk track from the one currently in the buffer,
then the DISK GET command will automatically store the buffer
contents onto the disk before bringing in the new track. (This is
one of the new features of v3.3.)

When an INPUT#6 statement follows 4 GET command, the
Contents of the record specified by the GET command is
transferred from buffer#6 to the variables in the INPUT
Statement.

More than one INPUT or PRINT statement may access the same
record. For example, both A$ and B$ are written in record 1 by

DISK GET,1
PRINT#6 ,AS
PRINT#6,BS

DISK PUT

F. A Random File Example (using Tutorial Disk 4)

Boot-up Tutorial Disk 4 and select option 2 to load PROG2 in
the same way you did in the first example. Then type NEW
<RETURN> to clear the filler program. As in the first example,
these first two steps are done to acquire a single buffer (#6)
in front of your workspace. But this time buffer$6 will be
used for random file accessing instead of sequential file
accessing (shown in the first example). Now that you have vyour
buffer and a clear workspace enter the following program and

18

Store it as PROG2. The procedure should be as follows (Serial
System users should omit lines 2¢ and 48; see the note at the end
of Chapter 7.):

OK
NEW

OK

16 REM RANDOM FILE DEMONSTRATION .

28 PRINT! (28)

39 INPUT"Enter record or List record? (E/L)";C$
48 PRINT! (28)

5@ IF C$="E" THEN 10@

64 IF C$="L" THEN 300

196 REM ROUTINE FOR ENTERING DATA

110 DISK OPEN,6,"DATA2"

120 FOR R=1 TO 3

130 PRINT"For record number";R;

146 INPUT"enter item name; IS

15¢ INPUT"Enter number of items";N$

160 DISK GET,R)

17@ PRINT#6,R;",";I$;",";N$

184 DISK PUT

190 NEXT R

208 DISK CLOSE,6

219 PRINT"DATA STORED"

220 GOTO 3¢

368 REM ROUTINE FOR LISTING RECORDS

310 INPUT"Enter number of record to be listed™;R
320 DISK OPEN,6,"DATA2"

330 DISK GET,R

340 INPUT#6,RN,IS,NS

350 PRINT RN,IS$, NS)

360 INPUT"List another record? (Y/N)";AS
37@ IF AS$="Y" THEN 310 :

389 DISK CLOSE,6

399 GOTO 30

DISK!"PUT PROG2"

OK

After storing the program in PROG2, you can run the program
and correct any errors that are found and then save the final
copy in PROG2. This program will first clear the screen then
prompt you for a choice of entering or listing. The first time
through, vyou should enter "E". The program will then
automatically begin with record number 1 and ask you to enter the
name of an item. (A program like this could be used for inventory
record-keeping.) Next you will be asked to enter how many of the
item you have. The program will then store this information
(including the record number) in buffer$46 with the line 179 PRINT
Statement and on the disk with the line 18¢g DISK PUT statement.

) You will be asked to enter item names and the number of
ltems three times after which the DISK CLOSE,6 command will be
executed and you again will be given the option of entering or

19

listing.

After you have stored three records of information, respond
to the option message by entering "L". You then can choose record
1, 2 or 3 to be listed. Any other choice will result in an ERR#D
error message for line 349 because the program tries to pick up
information which is not there. (Note: in Chapter 7 you will be
shown how to make profitable use of this type of error detection
with the new V3.3 TRAP command.) :

After you have listed a record, you will be given the choice
of listing another record or going back to the enter or 1list
option. To exit the program, simply press the RETURN key in
response to the enter or list message instead of entering "E" or
"L". The OK prompt will appear. Then run the menu by entering:

RUN"MENU"

At this point you could use option 5 in the menu to <clear data
file DATAZ.

After you have become familiar with the program as shown,
you may wish to modify it to allow more than three records to be
Stored. This can be done easily by replacing line 12¢ with an
INPUT statement which asks for a record number to be stored in
the variable R. Then line 198 will need to be replaced with
Statements which give you the choice of returning to line 12¢ for
an additional record or closing the file. TIf you make this
modification, you will be able to store and retrieve records @
through 31 (@ through 47 on 8" systems) in any order. This 1limit
of 32 (48 on 8" systems) records is imposed because only two
tracks on Tutorial Disk 4 have been reserved for data file DATA2.
In fact, each data file on Tutorial Disk 4 takes up two tracks,

This limitation can be overcome in two ways. Pirst, the size
of the data file can be increased. Methods for doing this will be
discussed in Chapter 5. The second way is to decrease the size of
each record. Suppose 64 bytes (one byte can store one character)
is sufficient to store all of the information, including record
number, associated with one record. Then using the standard
128-byte record size 1is wasteful. If 64-byte records were
specified, DATA2 could hold twice as many records.

To change the standard record size, and therefore the number

of records per track, you can use the POKEs specified in the
table at the top of the next page.

20

BYTES RECORDS VALUE FOR VALUE FOR

PER RECORD PER TRACK POKE 12076 POKE 12842
5" DISK| 8" DISK 5" DISK | 8" DISK

256 8 12 8 8 12

128 16 24 7 16 24

64 32 48 6 32 48

32 64 96 5 64 96

16 128 192 4 128 192

8 255 255 3 255 255

The two POKEs must be done only after the statement that opens
the file. For example,

DISK OPEN,6,"filename"
POKE 12042,32
POKE 12076,6

will change the record size .to 64 bytes and the records per track
to 32 on 5" systems and 48 on 8" systems. Remember that the
record size must be carefully observed. If you try to write more
characters into a record than its size allows, you will be
writing over material in the next record!

As a final illustration of 05-65D V3.3 file handling
efficiency, you may remove line 180. As mentioned earlier, the
DISK PUT command is not needed in V3.3 (but it is in Vv3.2). Even
when many records are being randomly accessed the DISK GET
command alone will keep track of disk transfers and correctly
update each track.

In Chapter 7, a sample Program will be given which can be
written by adding to this random file demonstration program.
Therefore, you may wish to save this Program in PROG2 for future
reference.

G. An Example using Two Data Files

Two data files may be used simultaneously by opening one on
buffer #6 and one on buffer #7. Remember that the first buffer
(#6) can support both random and sequential file accessing, and
the second buffer (4#7) can support only sequential file
accessing. The INPUT and PRINT Statements can now be used with
either buffer, interchangeably. More than two data files can be
used in a program by simply closing and reopening files assigned
Lo one or both of these buffers.

Boot-up Tutorial Disk 4 and select option 3 to load PROG3 in

the same way you did in the pPprevious example. Then type NEW
<RETURN> to clear the filler pProgram. These first two Steps are
done this time to acquire two buffers (#6 and #7) in front of

your workspace. Now that you have vyour buffers and a clear
workspace enter the following program and store it as PROG3.

21

The procedure should be as follows: (Serial system users should
omit lines 2¢ and 24¢.)

OK
NEW

OK

16 REM DEMONSTRATION OF USE OF TWO DATA FILES
11 REM ONE SEQUENTIAL, ONE RANDOM

20 PRINT! (28)

30 DISK OPEN,6,"DATA3"

49 DISK OPEN,7,"DATA4"

5@ K=1

66 FOR I=1 TO 5:REM ENTER CATEGORIES
78 INPUT "Enter a category"™;C$

80 IF C$="NO" THEN 249

99 S=K

198 IF C$="END" THEN 21@:REM NO MORE CATEGORIES
118 FOR J=1 TO 6:REM ENTER ITEMS FOR THIS CATEGORY
12¢ INPUT "Enter item name";IT$ (J)

130 IF ITS(J)="END" THEN 190

149 DISK GET,K

15@ PRINT#6,ITS (J)

168 DISK PUT

178 K=K+1

18¢ NEXT J

196 PRINT#7,C$;",";S;",";K-1

200 NEXT I

218 PRINT#7,CS$;",";S;",";K-1

220 DISK CLOSE,7

230 DISK OPEN,7,"DATA4"

240 PRINT! (28)

25@ FOR I=1 TO S

268 INPUT#7,AS$,S(I),E(I)

278 IF AS="END" THEN 300

288 PRINT I,AS

290 NEXT I

380 INPUT "Enter the number of the category";N
310 IF N>I-1 OR N<1 THEN 38¢

328 FOR J=S(N) TO E(N)

339 DISK GET,J

340 INPUTH#6,BS

359 PRINT BS

368 NEXT J

378 PRINT: PRINT: GOTO 30@

380 DISK CLOSE,?7

398 DISK CLOSE,6

48@ END ’

DISK!"PUT PROG3"
OK
This third example program creates a fundamental type of
data structure. There are two data files, one containing
CATEGORIES and the other containing ITEMS. The data 1is created
by entering a category followed by items in that category. For
example, the data file might be a master grocery list. A sample

22

category might be "FRUIT" with items "APPLES", “"PEARS",
"ORANGES", etc. The Categories are stored sequentially in DATA4
and the items in the random access file DATA3. The last item in
each category and the last category entered must be "END". The
first time the Program is run the categories and items must be
entered. Thereafter, respond to the first appearance of "Enter a
category?” by NO. A menu will then be displayed listing each of
the categories. wWhen a category is chosen the items in that
category are displayed. This occurs because the beginning and
ending record numbers of the items in a category are stored along
with the name of the category. '

The program has been written to accommodate five categories
of six items each because of the size of the file DATA3 (on 5"
Systems only 32 standard size records can be stored in DATA3).
The items are stored in the random file one after the other as
the first portion of the Program is executed. No provision is
made for adding or subtracting items from the categories without
fe-running the entire first portion of the program.

. To exit the program either enter a category number outside
the range or simply press <RETURN> without entering a number.

As with the previous examples, the data files can be erased
by returning to the Tutorial Disk 4 menu and choosing option 5.
Note: This example will not be referred to in Chapter 7; hence,
it is not necessary to save it for future reference.

23

Chapter 5
Tutorial Disk Five

A. Introduction

Tutorial Disks 1 through 4 are designed to introduce you to
the use of the 0S-65D operating system. Tutorial Disk 5 |is
intended to be used as the "system disk" or working disk with
version 3.3 of 0S-65D. This chapter describes the use of this
disk.

When Tutorial Disks 3 and 4 are booted up, the menu displays
a listing of the names of the files provided for storing programs
and data files. Each 0S-65D diskette maintains a special
directory file which.stores the names and locations of all the
files present on the diskette. On Disk 3, when you select one of
the menu options 1 through 8, the computer searches through this
directory file for the location of the file requested before it
loads the program.

On Disks 3 and 4 you were not concerned with where programs
were actually stored on the diskette. There were files present
which you could use as needed to store vyour programs. Although
this approach simplifies your initial use of the 0S-65D system,
it does not make efficient use of the storage capacity of the
floppy diskettes. Tutorial Disk 5 provides several features which
allow you to make more efficient use of the space available on
your diskettes. Before we proceed with a discussion of these
features, we need to briefly consider the concept of a workspace
and the organization of floppy diskettes.

B. The Workspace

.When you use the 0S-6SD version 3.3 disk operating system
with your Ohio Scientific computer, approximately 14K (1 K = 1624
bytes or characters) of memory are occupied by the operating
System. The remainder of your computer's memory is available as a
workspace. This workspace is the region available to you when you
load and run programs.

The most common way to enter a program into the workspace is
to enter it through the keyboard. Recall that this was the
procedure you used in Chapters 3 and 4 when you entered and
tested several sample programs.

It is important to realize that any program stored in the
workspace is lost each time the computer is turned off or the
break key (or reset button) is depressed. Since some programs
involve hundreds of lines of code it is obviously desirable to
have some method of permanently storing programs. There are two

24

common forms of external storage used with microcomputers:
cassettes and floppy diskettes. Although cassette based systems
are relatively inexpensive, storing and retrieving programs from
cassettes tends to be slow and inconvenient. 0S-65D is a diskette
based operating system which allows fast and convenient storage
and retrieval of programs. In the following section we will
briefly describe the organization of a floppy diskette.

C. Floppy Diskette Formats
Floppy diskettes are divided into concentric circles called

tracks. Each track can be further divided into smaller parts
called sectors.

Diskette Size Tracks per diskette Track Range
8" diskette 77 g - 76
minifloppy 49 g - 39

Storage capacity is often described in terms of pages with
each page consisting of 256 bytes or characters. Each track of an
8" diskette has a capacity of 12 Pages. On the smaller minifloppy
each track has a capacity of 8 Pages. Thus, using the preceding
table, we see that an 8" diskette can store over 200,600
characters (approximately 3¢0@¢ characters per track) and a
minifloppy diskette can store over 80,000 characters
(approximately 2¢0¢ characters per track).

Not all of the diskette is available to store user programs.
As we shall see in Appendix 1, part of the diskette 1is occupied
by the operating system and utility programs. In particular,
track ¢ is used to store information which must be present when
the system is booted up.

Under the 0S-65D disk operating system, all program files
are stored on consecutive tracks and occupy a whole number of
tracks (e.g., you cannot have a program file which occupies 1-1/2
tracks).)

The 0S-65D operating system provides two commands for
Storing and retrieving programs from diskette: the DISK!"PUT and
the DISK!"LOAD commands. You have already wused the DISK!"pPUT
command on Disks 3 and 4 to store programs in named files. A
complete description of these two commands is givan in section H
of this chapter. 1t is possible to load and store programs by
track number. The command DISK!"puT 27" will, for example, store
the program currently in the workspace beginning at track 27 and
Continuing for as many tracks as are necessary to hold the
Complete program. The major disadvantage of using track numbers
s that it requires the user to remember exactly what is on each
track.

D. The Menu
Boot up your system using Tutorial Disk 5. The following

25

menu will be displayed on the screen.

0S-65D Tutorial disk five

Directory

Create a new file

Change a file name

Delete file name from diskette
Create blank data diskette

Create data diskette with files
Create buffer space for data files
Single or dual disk drive copier
Enter 05-65D system

WA s W
VVVVVVYVYVYV

Type the number of your selection and depress RETURN?

The 0S-65D operating system maintains a directory which
keeps a record of the names and track locations of all files on
each diskette. The first option in this menu, which is discussed
in the next section, displays a listing of this directory. -

The next menu option discussed will be option 8 which allows
diskettes to be copied on either single or dual disk drive
Systems. You will be shown how to use this option to make a copy
of Tutorial Disk 5 for everyday use. The original copy of disk §
provided with version 3.3 of 0S-65D is write-protected to protect
its contents from accidental alteration. Options 2, 3 and 4 in
the menu make it possible to delete files, change the names of
existing files or add new files to the disk. As an application
of these options you will be shown how to create a streamlined
version of disk S with room for user written programs.

Option 9 terminates the menu and places the computer in the
BASIC mode. This allows the user to enter his own programs.
Finally, options 5, 6 and 7 are designed to simplify the use of
data files,

E. The Directory

Option 1 provides a listing of all files currently present
on the diskette together with their track locations. Boot up and
enter 1 (followed by <CR> of course) in response to the menu
prompt. You will be prompted by the message:

Directory utility
Directory of which drive?

Type A,B,C or D and depress RETURN <A>?

The letters A/B/C/D denote different disk drives. TIf your
computer has a single disk drive, it is called drive A. Oon a
dual disk drive system, the top drive is designated as drive A
and the bottom drive is designated as drive B. Drives C and D are
applicable only for dual-sided dual disk drive systems. The <a>
in the last prompt line means drive A will be selected by default

26

i1f you press <CR> without specifying A, B, C or D. If you enter
B, C or D the appropriate disk drive will be selected for the
directory listing. If you have a single disk drive system, vyou
can simply respond to all such questions by press <CR>. If you
select a drive that does not exist on your system (e.g., drive B
on a single disk drive system), an error message will be printed
and the program will terminate. You will then have to type
RUN®BEXEC*" to return to the menu. (Note: although it need not
concern you at this time, the DOS Kernel prompt will be changed
to the incorrectly selected drive; see Chapter 6 for details.)

If you want the output to appear on the console screen, just
depress <CR> (note that <No> specifies the default response to be
No). Otherwise, enter "Y" for output to the printer.

The following is the listing that will result with the 5"
and 8" 0S-65D diskette number 5. The ouput is essentially the
Same except for the track numbers.

5" Disk 8" Disk

-- Directory -- -- Directory --
File name Track range File name Track range
0S65D3 g - 13 0S65D3 g - 8
BEXEC* 14 - 16 BEXEC* 9 - 11
COPIER 17 - 18 COPIER 13 - 14
CHANGE 19 - 20 CHANGE 15 - 15
CREATE 21 - 22 CREATE 16 - 17
DELETE 23 - 23 DELETE 18 - 18
DIR 24 - 24 DIR 19 - 19
RANLST 25 - 26 RANLST 20 - 21
RENAME 27 - 27 RENAME 22 - 22
SECDIR 28 - 28 SECDIR 23 - 23
SEQLST 29 - 3¢9 SEQLST 24 - 25
TRACE 31 - 31 TRACE 26 - 26
2ERO 32 - 33 ZERO 27 - 28
ASAMPL 34 - 34 ASAMPL 29 - 29
ATNENB 35 - 35 ATNENB 39 - 3¢9
COLORS 36 - 36 COLORS 31 - 31
MODEM 37 - 38 MODEM 32 - 32
COMPAR 39 - 39 COMPAR 33 - 33

46 Entries free out of 64 <6 Entries free out of 64
Depress RETURN to continue? Depress RETURN to continue?

There are several named files currently listed in the
directory. The file 0S65D3 contains the operating system and the
BASIC interpreter. The file BEXEC* contains a sophisticated
utility program which is automatically loaded into the workspace
and run each time the computer is booted up. It is this program
which generated the initial menu and this directory listing. The

27

display of the directory will remain on the screen until you
depress <CR>, at which time the BEXEC* program will again display
the menu on the screen. In order to enter a new program it |is
necessary to use option 9 to terminate execution of BEXEC*.
Another file in this directory listing is COPIER. This 1is also
part of the operating system and should not be altered in any
way. According to this directory listing, the minifloppy has
no tracks free and the 8 inch disk has track 12 and tracks 34
through 76 free. These tracks can be used to store any new
programs and data files you create. Appendix 1 contains a
complete description of all the program files 1listed in this
directory.

Option 1 can be used to display directory listings for
0S-65D diskettes other than Tutorial Disk 5 itself. As an
example, the following procedure can be used to- obtain a
directory listing for Tutorial Disk 3.

Select option 1 (the directory option) from the menu on
Tutorial Disk 5 (if you just displayed a directory it will be
necessary to press <CR> to return to the menu). When the prompt
lines:

Directory utility
Directory of which drive?

Type A,B,C or D and depress RETURN <A>?

are displayed, replace Tutorial Disk S by Tutorial Disk 3 and
then enter A or simply <CR>. After you specify whether the
listing should appear on the printer, the directory 1listing on
the top of the next page will be generated.

WARNING: You will want to continue using Tutorial Disk 5, so

replace Tutorial Disk 3 by Tutorial Disk S before you depress
<CR> to terminate the display of the directory listing.

28

5" Disk 8" Disk

-~ Directory -- -- Directory --
File name Track range File name Track range
0S65D3 g - 13 0S65D3 g - 8
MENU 14 - 15 MENU 9 - 19
PROG1 16 - 18 PROG1 l6 - 18
PROG2 19 - 21 PROG 2 19 - 21
PROG3 22 - 24 PROG3 22 - 24
PROG4 25 - 27 PROG4 25 - 27
PROGS 28 - 3¢@ PROGS 28 - 30
PROG6 31 - 33 PROG6 31 - 33
PROG7 34 - 36 PROG7 34 - 36
PROGS8 37 - 39 | PROGS8 37 - 39

54 Entries free out of 64 54 Entries free out of 64

If you have used the rename capability on disk number 3, the
neéw names you assigned the files will appear in the above listing
instead of the names PROG1 - PROGS. Recall that each of the
entries PROGl - PROG8 are files which have been precreated for
You to store programs.

If you will look back at the directory listing for Tutorial
Disk S, you will note that there are currently no files present
to store user written programs. Before you begin writing
Programs using Tutorial Disk 5, you need to make a new copy of
Disk 5 with room for user written files.

F. Copying Diskettes

When option 8 in the menu of Tutorial Disk 5 1s selected,
the program named COPIER is 1loaded and run. (this program is
listed in the directory for Tutorial Disk 5 printed above). The
program COPIER is capable of copying diskettes on systems with
single or multiple disk drives. As an exercise in the use of the
Copy option it is recommended that you copy the contents of
Tutorial Disk S onto the blank diskette (the one with the brown
label) provided with your 65D Tutorial Set. In the following
sections this copy of disk 5 will be used to illustrate the other
options in the menu.

When option 8 (the Copy option) is selected from the menu,
two lines will be displayed on the screen:

- Diskette copier -
Copy from which drive (A/B/C/D) ? _

You should respond with the letter designating the drive in
which you will place the diskette you wish to copy FROM. Usually

29

the disk to be copied is placed in drive A, so normally you will
respond by entering A. Obviously, if you have a single drive

System, you must respond by entering A. There is no assumed
default in this situation. If you press <CR> without entering a
letter, the computer will repeat its question. The next 1line

displayed by the program COPIER is
Copy to which drive (A/B/C/D) ? _

You should respond with the letter designating the drive in
which you will place the diskette you wish to copy TO. If you
have a single drive system, again respond by entering A. If you
have a multiple drive system, selecting a different drive for the
TO disk (e.g., B) than for the FROM disk will speed up the copy
pProcess, but this is not absolutely necessary. You will next be
asked:

What is the last track to be copied (Inclusive) <@g-39> ? _

-In this case you want to copy the entire diskette so you
should enter the response 39 (76 on 8" systems). If you were to
respond 15, then only the first 15 tracks would be copied. The
final question before the copy process begins is:

Are you ready to start copying (Y/N) ? _

Before answering this question, you should place the
diskettes you wish to copy FROM and TO in the appropriate drives,
check your previous responses and then enter Y for vyes |if
everything is correct. 1If you are using only one disk drive for
the copy process, do not insert the diskettes yet. You will be
Prompted to insert and remove them at the appropriate times. If
you have made any errors in any of your earlier responses, you
should answer N and the initial prompt will be redisplayed.

Although we are using a blank diskette in this example, it
s possible to copy onto a diskette which has been previously
used. The diskette is initialized as part of the copy process.

AsS the copy process progresses the messages "Reading
--","Initializing --" will be displayed on the screen. A
Sequence of track numbers will also be displayed which shows the
pProgression of the copy process through the tracks. When the copy
bProcess is completed, the message:

Please, put the tutorial disk in drive A and depress <RETURN>
will appear on the screen. After you replace the tutorial disk
and press <CR>, the program BEXEC* from Tutorial Disk 5 will be
reloaded and run and the menu will reappear on the screen.
G. Creating, Deleting and Renaming Files

The menu on Disk S provides options which allow the user to
add file names to or delete file names from the directory.
Another option allows the user to change the names assigned to

files in the directory. These three options are discussed in this

30

section. You should use the copy of Tutorial Disk S with the
brown label which you just made to experiment with these
features. Your original copy of Tutorial Disk § is write
protected to specifically guard against the type of changes you
are about to make.

The order in which the create, delete and rename options are
discussed in this section is a matter of convenience. As
observed earlier, all of the tracks on the minifloppy version of
Tutorial Disk 5 are currently in use. So before you can create
any new files, you probably need to know how to delete some of
the old ones.

(i) Deleting. a file

Deleting a file removes a file name from the directory.
" Option 4 in the menu for Tutorial Disk 5 allows you to delete
files from the directory.

We will illustrate the delete option by deleting several
files from the directory of Tutorial Disk 5. Before you proceed,
make sure that your copy of Tutorial Disk 5 with the brown label
is in drive A. All of the files 1listed in the directory for
Tutorial Disk 5 except for the first three, 0S65D3, BEXEC*, and
COPIER, can be safely deleted without affecting the operation of
the menu. The delete option in the menu does not use the program
in the file DELETE. There is a delete capability built into the
BEXEC* itself. The file DELETE contains an independent wutility
Program which can be used to delete files from the directory.
For users familiar with version 3.2 of 0S-65D, recall that the
BEXEC* in version 3.2 did not itself have a delete capability.
Files could only be deleted under 3.2 by the use of the DELETE
program. The programs in the files CREATE, DELETE, DIR and
RENAME are discussed in detail in Appendix 1. They are holdovers
from version 3.2 of 0S-65D whose functions have been incorporated
into the BEXEC* in version 3.3. These (redundant) programs are
on the version 3.3 disk primarily for the convenience of
experienced version 3.2 programmers. '

The following series of steps will remove the file named
CHANGE from the directory. Select the delete option by entering
4 when the menu asks which option you wish to select. The
following prompt lines will appear on the screen:

Delete utility
Delete a file on which drive?

Type A,B,C or D and depress RETURN <A>?

Since our disk is in drive A we can either enter A or simply
Press <CR> in which case it will assume A as a default. I1f vyou
wish to delete a file name from the directory of a diskette in a
different disk drive, simply enter the appropriate letter in
place of A. Next you will be asked:

31

Type in the name of the file that you want to delete
and depress RETURN (1-6 characters)?

Respond by entering the name CHANGE. 1If you make a typing
error, a message will probably be displayed saying that whatever
name you typed was not found and requesting that you press RETURN
to continue. 1If you type the name correctly there will be a
brief delay after which the menu will be redisplayed. When the
menu is redisplayed, select option 1 to verify that the file
name CHANGE is no longer present in the directory.

If you change your mind after selecting the delete option,
You can return to the menu without deleting a file by pressing
<CR> when asked for the name of the file you wish to delete.

As an exercise in the use of the delete option, delete the
remainder of the files in the directory that are listed after
the file COPIER. When you are done the directory listing should
only include 0S65D3, BEXEC* and COPIER. The resulting stripped
version of Tutorial Disk § is extremely useful for development
purposes. All of the options in the menu can still be used (note
the delete option still worked long after the file DELETE was
gone) and tracks 19-39 (tracks 15-76 on 8" systems) are now
available to store user written programs. In the following this
stripped version of Tutorial Disk 5 will be referred to as the
development diskette.

(ii) Creating a File

Creating a new file places a new file name in the directory
and reserves space on the diskette for a program or data to be
Stored under the new file name. Option 2 in the menu allows vyou
to create new files, We will describe how to add a new file
named PROG1l to the directory of the development diskette.

Boot up with the development diskette and select option 2 by
entering 2. The screen will clear and the following question

will appear:

Create utility
Create a file on which drive?

Type A,B,C or D and depress RETURN <A>?

Enter the response A or simply press <CR>. In general you should
enter the letter corresponding to the drive containing the
diskette upon which you wish to create a new file. After a short
wait you will be asked to enter a name for the new file:

Type in the name of the file you want to create and
depress RETURN (1-6 characters)?

32

Enter the name PROGl1 (a file name <can be up to six
characters in length and must begin with a letter). The computer
will check to verify that the name entered is not already present
in the directory. If you press <CR> without entering a file name,
you will be returned to the menu.

Since we have removed all files after COPIER from the
directory on our development diskette, we know that tracks 19-39
are open. The following sequence of responses will place our
file on tracks 19-23 (15-76 on 8" systems).

Type in the number of tracks in this file
and depress RETURN (1 to 27)2? <1>

Response: S><CR>

(The directory will now be searched. The first block of 5
tracks available will be used. If no block of S5 consecutive
tracks were available then a message would be printed indicating
"no room".)

Do you want to initialize
these tracks (Yes or No) <Yes>?

Response: <CR> or YES <CR>
How many pages per track (1 to 8) <8>?
Response: <CR> or 8 <CR>

(Note: the preceding assumes a minifloppy system. On an 8"
system the track numbers will be different and the default pages
per track will be 12, rather than 8.)

When you have successfully created this file, select option
1 to display an updated directory listing. Your 1listing should
appear as before with the additional entry for the file PROGl1 on
tracks 19-24. Press <CR> to return to the menu.

If you make an error when using the create option such as
duplicating a file name which is already in the directory, an
appropriate error message will -be displayed on the screen and you
will be asked to press <CR> to return to the menu.

The file PROGl which you have just created 1is, of course,
an empty file. There is currently no program stored in it. In
later sections we will discuss the commands used to load and
Store programs from and to diskette.

The major difference between Disks 3 and 4, and Disk S is
that with Disk 5 you are free to create files on an as-needed
basis--assigning any name you wish and, more important, making
them whatever size you wish. Using Disk 3 is a little like buying
clothes for all members of a family at a store which only stocks
cne size. Even though the clothing may fit the "average" person,
most people will find the clothes either too small or too big.
When you use Disk 3, the files provided for program storage will

33

usually either be too big (in which case some diskette storage is
wasted) or two small (in which case your program will not fit
into the space provided).

It is generally a good idea to maintain a scratch file on
all development diskettes which is large enough to accommodate
any program which you are likely to enter into the computer. This
may save you the embarrassment of typing a long program into the
computer only to discover you do not have any place to store it.

Generally, the more memory your computer has, the larger the
scratch file needs to be. The size of the program which can be
entered into the computer 1is determined by the size of the
workspace. The following table indicates the approximate size of
the workspace and the maximum number of diskette tracks required
for a file for the standard configuration of several Ohio
Scentific computers.

Model Standard Memory Workspace Diskette Max imum
Size Size Type # of Tracks
ClPMF 20K 6K Mini 3
C4PMF 24K 12K Mini 6
C4PDF 48K 34K 8" 12
C8PDF 32K 18K 8" 6

As you gain experience with the use of your computer, vyou
will begin to develop a sense of how large a scratch file you
should maintain. A scratch file with a capacity of 18 - 15K is
large enough for most programs.

The S5-track file PROGl which we have just created has a
capacity of 19K for minifloppy systems and 15K for 8" systems.
Next we shall use the rename option of the menu to change the
name of the file PROGl to SCRTCH. It would of course have been
easier to have just created the file with the name SCRTCH but
that approach would have eliminated this chance to use option 3
in the menu. '

C(iii) Renaming a File

Option 3 in the menu for Disk 5 allows you to change the
names of files in the directory. As mentioned above, we will
illustrate this capability by changing the name of the file PROGI
we have just created to SCRTCH.

Select option 3 from the menu by entering 3. vYou will then
be asked:

Rename utility
Rename a file on which drive?

Type A,B,C or D and depress RETURN <A>?

34

Enter A or just press <CR>. In general you should enter the
letter corresponding to the drive containing the disk on which
you wish to change the name of a file. Then you will be asked:

Type in the name of the file that you want to rename
and depress RETURN (1-6 characters)?

: Answer PROGl. If you <change your mind after selecting

option 3 you can return to the menu by pressing <CR> without
entering a file name. After a brief wait the following méssage
will appear asking you to enter the new file name:

Type in the name that will replace "PROG1l " in the directory
and depress RETURN (1-6 characters)?

Enter the new file name SCRTCH. 1If you enter everything
correctly the menu will be redisplayed. If you make a mistake
typing in the old file name, an error message may be displayed
since it probably will not be able to find the name you entered
in the directory. If this happens try again. When you have
changed the file name from PROG1 to SCRTCH successfully, select
option 1 again to display an updated directory listing and verify
your change.

In the next section we will discuss the commands used to
transfer programs back and forth between the workspace and the
diskette.

H. The PUT, LOAD and RUN commands

We will discuss three commands in this section. They are the
PUT, LOAD and RUN commands. IMPORTANT: These commands cannot be
used successfully until option 9 (to be discussed fully in the
next section) or option 7 (to be discussed in section J) has been
selected and the system has responded with the prompt:

QK

This indicates that the system is in the immediate mode for
programming in BASIC. PUT, LOAD, and RUN are not valid responses
to the menu; they can be used only in the immediate mode of
BASIC.

(i) The PUT Command

The PUT command is used to transfer a program from workspace
to diskette. This command can be used in two forms

DISK!"PUT <filename>" or simply DISK!"PU <filename>
and \
DISK!"PUT <track number>" or simply DISK!"PU <track number>

Each of these commands is designed to store onto the disk
the program currenty stored in the workspace. When the PUT
command is used with a file name, the <computer first searches
through the directory to determine the tracks assigned to the
file name and then begins to write the ‘program out to these
tracks (checking to make sure that it does not write beyond the
end of the file). When the PUT command is used with a track
number, the computer begins to write the program out to diskette
beginning with the specified track using as many tracks as
necessary to hold the program.

As an example, suppose the workspace contains a BASIC
program which you wish to store in the file named SCRTCH located
on tracks 19-23 which you created on the development diskette.
The original copy of Tutorial Disk 5 is shipped write-protected
So the DISK!"PUT commands cannot be used with it. As long as the
program will fit within the five tracks 1in the file, the
following commands all have the same effect
DISK!"PUT SCRTCH"

DISK!"PU SCRTCH
DISK!"PUT 19"
DISK!"PU 19

36

I1f the program is too 1long to fit on the five tracks
allocated to the file SCRTCH, then the first two of these
commands will result in the error message:

ERR$D

The last two commands will successfully store the program (using
as many tracks as necessary). Although this might initially seem
desirable, you should realize that there could very well be
another file named TOOBAD stored on tracks 24-27 containing a
program. If the DISK!"™PUT 19" command used more than 5 tracks,
the program originally stored in the file TOOBAD would be
overwritten and therefore lost.

When the PUT, LOAD and RUN commands are used with track
numbers rather than file names, the computer does not consult the
directory at all. Because of problems of the type outlined above,
it is recommended that whenever possible you utilize named files
and use your PUT, LOAD and RUN commands with file names. If vyou
create a sufficiently large scratch file, you should never find
yourself in the situation of not having a named file large enough
to hold the program in the workspace. As a further precaution,
you may want to keep a written record of what is stored on each
track of your development diskette.

(ii) The LOAD Command

The LOAD command is used to transfer a program file from a
diskette into the workspace. This command can be wused 1in two
forms
DISK!"LOAD <filename>" or simply DISK!"LO <filename>
and
DISK! "LOAD <track number>" or simply DISK!"LO <track number>

Each of these commands 1loads a program stored on the-
diskette into the workspace. When the LOAD command is used with a
file name, the computer must search through the directory to
determine the track location of the file.

As an example, if a file named PROG2 is located on tracks
16-18 and contains the program you wish to 1load any of the
following commands will load the progran into the workspace:
DISK!"LOAD PROG2"

DISK!"LO PROG2
DISK!"LOAD 16"
DISK!"LO 16

Note that when a program is loaded by track number, it 1is only
necessary to specify the starting track of the program.

37

Recall that when a file is first created by placing its name
in the directory it is an empty file. The LOAD command should not
be used on an empty file or an error will occur. The next
chapter includes a table listing the common input/output errors
that can occur with disk files. Attempting to load from an empty
file or track will yield an error. Attempting to load a file name
which is not present in the directory (this is usually due to a
typing error) will result in a §C error.

The following example shows how to use the DISK!"LOAD
command to examine a program stored on diskette. Since there are
few programs left on the development diskette, reboot with your
original copy of Tutorial Disk 5. The directory listing for this
disk listed a file named COLORS. You can examine the program
COLORS as follows:

1) Select option 9 in the menu

2) When the OK prompt is displayed, enter
the command DISK!"LOAD COLORS"

3) Now enter the command LIST

The LOAD command brought the program COLORS into the
workspace from the diskette. The LIST command causes the contents
of the workspace to be listed.

Now reboot with your development diskette, select option 9,
and try the LOAD command with the file SCRTCH which you created
in the previous section. Unless you have stored a program in the
file, you should experience an error message.

On disks 3 and 4 the LOAD command was automatically
generated by the BEXEC*. For example, selecting option number 1

on disk 3 was tantamount to issuing the command DISK!"LOAD
PROG1" .

(iii) The RUN Command

'The RUN command can be used in any of the following forms:
RUN
RUN"<filename)"

RUN"<track number>"

When the RUN command is used without a file name or a track
number, it executes whatever program is currently present in the
workspace. Thus, one way of executing a program stored on
diskette is to issue the command

DISK!"LOAD <filename)>" or DISK!"LOAD <track number>"

followed by the command

38

RUN

The first command will 1load the desired file into the
workspace and the second command will execute it.

The other two forms of the RUN command combine both of the
above steps. The command RUN"PROGL" automatically loads the
program stored in the file PROG1l into the workspace and then runs
it.

I. Entering the BASIC Mode

With Disk 5, the program BEXEC* controls the operation of
the computer until the user selects option 9 or 7. When option 9
is selected, the computer enters the BASIC mode. The «control of
the program BEXEC* is terminated and You must type NEW to <clear
the workspace. The screen displays the following message:

The system is now open for modification

OK

You can now enter, list, or run BASIC programs. The commands
discussed previously can be used to LOAD and RUN programs from
diskette or you can enter a program directly through the keyboard
as described in chapters 3 and 4 and store them on diskette using
the PUT command. :

As a simple example, choose option 9 from the menu and then
enter NEW. Try the commands RUN and LIST. You will find that
nothing happens because you have cleared the workspace with the
command NEW. Now load the program BEXEC* back into the workspace
using the command DISK!"LOAD BEXEC*. If you wish you can examine
this program using the LIST command. Since the program BEXEC* is
now present in the workspace, it can be executed by entering the
command RUN. If you try this you will find that the menu is
redisplayed. (You could have accomplished the same thing by just
entering the command RUN"BEXEC*".)

You should now type in a short sample program. Be sure to
enter NEW before doing so. If you fail to enter NEW, BEXEC* will
remain in the workspace and the statements of your sample program
will simply mix with and/or replace statements of BEXEC*,
resulting in a long program that is probably meaningless. A few
sample programs can be found in Chapters 3 and 4 of this manual
or in your user's manual. Once you have entered a program and are
satisfied that it is working correctly, temporarily save it in
the scratch file by using the command DISK!"PUT SCRTCH".

Next we would like to create a file to permanently store
your program. The scratch file is probably much larger than
necessary. The following sequence outlines the necessary steps:

Step 1. Determine how many tracks are needed to store your
program. (The procedure is described in Chapter 3

39

as well as below.)

After you have temporarily stored your program in the file
SCRTCH, issue the command EXIT. The computer will print a message
telling you how many tracks are required to store the program in
the workspace. Make a note of this number and type RE BA to
return to the BASIC mode. If you enter the command LIST after the
OK prompt is displayed you will observe that your program is
still present in the workspace.

Step 2. Create a new file of the required size

Return to the menu either by rebooting or by entering the
command RUN"BEXEC*" and select option 2. This process has, of
Course, loaded BEXEC*, wiping out the copy of your program which
was in the workspace (a matter of no concern to you now because
you have saved a copy of your program in the file SCRTCH). Using
the procedure described in section G of this chapter, create a
new file with the appropriate number of tracks and with whatever
name you desire.

Step 3. Store your program in the new file

Return to the BASIC mode with option 9 and load your program
back into the workspace from the scratch file by entering the
command DISK!"LOAD SCRTCH". Your program can now be stored in the
new file by entering the command DISK!"PUT <filename>" where
<filename> is whatever name you assigned to the new file.

The scratch file now contains an extra copy of the program.
The next time a program is stored in the scratch file it will
write over this particular program, but the copy we placed in the
new file will still be present.

J. Using Data Files

Disk data files provide a convenient means for permanently
storing large amounts of data in a form which can be easily
accessed by the computer. ' Disk data files also provide a means
of storing the output from one program in a form which can be
used as input to another program. Many business applications
involve updating data sets on a monthly basis. 1In these types of
applications it is not feasible to expect all of the data to be
entered through the keyboard each time the program is run.
Similarly, it would not be feasible to include the data in DATA
Statemer ts within the program.

Although a diskette may contain several data files, the
0S-65D operating system only allows two data files to be open
(i.e., in use) at any given time. The reason for this is that
the 0S-65D operating system designates exactly two special buffer
areas, known as buffer$4é6 and buffer#7, for disk input/output and
one of these two buffers must be assigned to each open disk data
file. Recall that these buffers were first introduced in Chapter
4, but at that time you did not have to worry about how they were
implemented.

49

(Note: buffer§6 and buffer$7 are frequently referred to as
device#6 and device#7 in other 0SI manuals.)

These buffers play a crucial role in the input/output
Processes with disk files. Each of these buffers is capable of
storing the contents of one complete track of a data file. When
a data file is opened, the first track of the data file is copied
into the buffer. The INPUT#¢ and PRINT# program statements
introduced in Chapter 4 do their actual input and output from and
to this buffer area, rather than directly from and to the disk.

The following table shows the memory locations of these
buffer areas under version 3.3 of 0S-65D.

Minifloppy system. 8" system
Buffergé6 $3A7E=-$427D $3A7E~$467D
Buffer#7 $427E-$4A7D $467E-$527D

The DISK!"LOAD command described in section H of this
chapter loads the contents of the specified file into memory
beginning at $3A7E (the beginning of workspace). Thus, in
general, part of the program itself will be 1loaded into the
regions designated for buffer$6 and buffer47. This presents no
pProblems as long as the program does not attempt to open and use
any disk data files. If a program does use disk data files and
special arrangements have not been "made when the program was
originally created, it.is possible for part of the program to be
destroyed when a data file is opened and the first track is read
into the appropriate buffer region.

The possible clash between the data file buffer and the
pProgram can be avoided by ensuring that none of the program ends
up in the buffer areas. If your program will use one disk file
you must ensure that none of the program 1is loaded into the
memory region assigned to buffer46. If your program will use two
disk files concurrently, then you must ensure that none of your
program is loaded into the memory region assigned to either
buffer$#6 or bufferg7.

In Chapter 4 you did not have to worry about establishing
space for the buffers because you were using pre-created files
for which this had been done already. 1In the absence of
pre-created files, option 7 in the menu of Tutorial Disk S
provides a convenient method for setting workspace parameters to
ensure that a program which uses disk data files does not
encroach on the buffer areas.

If you plan to write a program which does not use disk
data files at all, select option 7 and respond 8 to the question:

Buffer set utility

Type in the number of file buffers you need
and depress RETURN (g,l, or 2) <@>?

41

The message:

No file buffers are resident
Type in your program and save it on your diskette.

OK

will appear indicating that the computer is in the BASIC mode
waiting for you to enter a program. AS you enter your program,
it will be stored in memory beginning at $3A7E, the start of
workspace. (Note: Another way to set up an empty workspace with
no buffers resident is to select option 9 from the menu and then
type the command NEW.)

If you plan to write a program which uses a single disk data
file, select option 7 and respond 1 to the question:

Buffer set utility

Type in the number of file buffers you need
and depress RETURN (8,1, or 2) <@>?

The message:

A single buffer is now resident
Type in your program and save it on your diskette.

OK

will appear indicating that the computer is in the BASIC mode
waiting for you to enter a program. Since one buffer has been
specified, as you enter your program it will be stored in memory
beginning at $427E ($467E on 8" systems), leaving the region
occupied by buffer$6 open for use by the disk file.

If you plan to write a program which will use two disk data
files, select option 7 and respond 2 to the question:

Buffer set utility

Type in the number of file buffers you need
and depress RETURN (4,1, or 2) <@>?

The message:

Two buffers are now resident
Type in your program and save it on your diskette.

OK

42

will appear indicating that the computer is in the BASIC mode
waiting for you to enter a program. This time since two buffers
have been specified, as you enter your program it will be stored
in memory beginning at $4A7E ($527E on 8" systems) leaving the
region occupied by buffer$6 and buffer#7 open for use by the disk
files.

An alternative method for setting aside data file buffer
areas ' is provided by the special utility program BUFFER. This
method is more general than option 7 described above because it
permits the creation of buffer areas of any size (not just single
tracks). Experienced programmers will find this useful for both
data file use and other purposes. The BUFFER program is contained
on Tutorial Disk Two. Its use is fully documented in Chapter 8.
The utility program CHANGE, discuseed in detail in Appendix 1,
provides yet another method for setting aside room in the
workspace for data buffers.

Once the proper buffer areas have been established the DISK
OPEN, DISK CLOSE, DISK GET, and DISK PUT commands can be used to
actually process data files. The use of these commands has
already been explained in Chapter 4.

K. Storing Data Files

Options 5 and 6 on the Tutorial Disk S menu allow you to
Create a diskette dedicated to storing data files. When either
option 5 or 6 is selected, the following sequence of prompt lines
is displayed: '

Data disk create utility
Be sure the tutorial disk is in drive A
Depress RETURN to continue ?

Remove your tutorial diskette from drive A and
replace it with your blank diskette.

Depress RETURN to continue ?
Your diskette is now ready for data files.

Remove your blank diskette from drive A and
replace it with your tutorial diskette.

Depress RETURN to continue ?

Both option 5 and option 6 initialize the data diskette.
Option 5 leaves the directory empty except for a necessary entry
DIRECT for the directory file. Option 6 creates five empty files
named USER@1 through USER@S which are five tracks long and can be

43

used as data files or program files. If you try Option 6, RUN the
directory to verify the existence of these five files.

Both programs and data can be stored on diskettes created by
options 5 and 6 but boot-up is not possible because there 1is no
system saved on these diskettes. Therefore, you must boot-up with
any diskette containing a system (e.g., Tutorial Disk 5) and then
switch diskettes to load and save programs or data.

L. Conclusions

This completes the tutorial introduction to 0S-65D. The
following chapters provide reference material for all of the
standard and optional features of the various versions of 0S-65D.
Chapter 6 is an overview of the 0S-65D "kernel“"--the layer of
software that interfaces the actual machine operations and the
usual user level of operation that has been discussed in the
previous five chapters.

Chapter 7 provides a detailed look at the new features that
distinguish 0S-65D V3.3 from earlier versions. The style of this
chapter 1is very similar to the earlier tutorial chapters.
Although there is no special Tutorial Disk keyed to this chapter,
the presentation builds upon example programs that were
introduced in Chapter 4 and that the user was advised to store on
Tutorial Disk 4 for future reference.

Chapter 8 contains a description of the sgix programs that
comprise the 0S-65D Extended Utilities Package. These programs
are stored on Tutorial Disk Two. Included are special programs
that make it possible to:

l. Create, delete and check for the presence of
Program beffers;

2. Repack programs by removing REM statements and/or
blank spaces; .

- Resequence programs in a variety of ways;

. Sort data files;

. Copy data files;

- Disassemble machine language programs.

[S) IV N Y W]

The overview of 0S-65D concludes with Appendix 1 which
includes detailed descriptions, including listings, of all of the
utility programs contained on a standard 0S-65D system diskette.

44

Chapter 6

Qverview of 0S-65D

Introduction
The operafing system is the software that controls all
the hardware and software components of the computer. The

hardware that is controlled includes:

‘the terminal (for serial systems)

“the keyboard and monitor (for video systems)
‘the disk drives

‘RAM memory allocation

'the printer

The software that is controlled includes:

‘the I/0 drivers

‘the BASIC interpreter

“the Assembler/Editor

‘the Extended Monitor
‘utilities written in BASIC

Disk storage of programs and data is a major element in
using the computer and much of the operating system's functions
are devoted to disk I/0. For this reason, the operating system

of a computer may be called a "Disk Operating System" or DOS.

The operating system must interface users who prefer to
communicate in clear language to hardware which needs explicit
commands in numerical and symbolic form. To bridge this gap

and still retain flexibility, the operating system was built in

‘@ hierarchal form with four layers:

1. I/0 drivers and distributor
2. 0S Kernel

3. BEXEC*

4. Utilities

45

The I/0 drivers and 0S Kernel are written in machine language.
The 0S Kernel is, however, a self-standing operating system
with its own commands directly usable by the computer operator.
BEXEC* and the utilities are written in BASIC. BEXEC* is the
principal interface between the user and the computer. When
the computer is turned on and booted up with an 0S-65D disk,
the BEXEC* program is in final control, displaying a menu and

awaiting the user's commands.

BASIC was the language chosen for these programs for
several reasons. It encourages use of clear language instruc-
tions and explanations. It has the powerful test and branch
instructions needed for control implementation and it is widely
understood by end users who may want to modify some features of

the operating system to meet local needs.

For most users, the most visible parts of the operating
System will be BEXEC* and the DISK!"cmd" commands in BASIC.
But the Kernel is the power behind the throne, so this chapter
is organized around the features present in the Kernel and
how they are used to. control various systems in the computer.
In many cases we will refer the reader to other 0SI manuals

for details.

If you are a new user of OSI computers, you should refer
to the earlier Tutorial chapters and the appropriate Introductory
Manual for a description of start up procedures using a 0S-65D

disk. The manuals are:

be

ClP and ClP MF Introductory Manual

C4P MF Introductory Manual

C4P DF Introductory Manual

C8P DF Introductory Manual

Professional Computers Set Up and Operations Manual

The above manuals may describe a menu from BEXEC* that is some-
what different from that displayed by your computer. If so,

refer to the supplementary documentation for your version of

0S-65D.

Memory Allocation

The software used on -an 0SI computer may be divided into
three general categories: System routines (including I/0 drivers),
Transient Language Processors (BASIC, Assembler, etc.), and
Application programs (both user written and utilities for 0SI).
Each category is stored in a specific place, so a memory map
helps clarify the possible cooperation and conflict in and be-

tween the various categories.

HEX ADDRESS
(8" V3.3 SYSTEM)

TOP OF MEMORY

WORK SPACE
3A7E
3A7D
SYSTEM SOFTWARE
2300
22FF
TRANSIENT PROCESSOR
200
SYSTEM STACK 1FF
and PAGE ZERO
g

Figure 1: Idealized Memory Map

47

This map is called "Idealized" because various details (such
as the addresses at which boundaries occur) will differ de-
pending on the model of computer and version of software used.
Figure 2 gives a more detailed memory map for the various

cases.

Let us study the Idealized map. Once locaded, the Systems
software will remain essentially intact. The other two major
areas, Transient Processors and Workspace, are more often

changed.

The most common resident in the Transient Processor ﬁemory
is the BASIC inferprefer which must be present if BEXEC* or
indeed any program written in” BASIC is to be run. Another
important resident (replacing BASIC) may be the Assembler/Editor
and the Extended Monitor, which fit simultaneously into the
Transient Processor memory, with control being given to one or
the other. (The Assembler/Editor and Extended Monitor are not
furnished with some versions of 0S-65D, in which case they may

be purchased together from 0SI as an optional package).

The workspace may be utilized in several ways. Most
commonly, one writes source code in BASIC or assembly language
which goes into a source file starting at the lowest address
in workspace and expanding upward. In the case of assembler
source code one may compile it into machine language code,
placed at some higher point in workspace. Refer to fhe

Assembler/Editor and Extended Monitor Reference Manual for

g

HEX
Top of Memory

527E

4ATE

497E
467E

427E
3D7E

3A7E

327E
317E

2E79

2A4B

265C

2309

209
199

HEX

Figure 2:

SYSTEM MEMORY MAPS

DECIMAL

v3.2 5" V3.2 8" v3.3 5" V3.3 8"
T - T T Top of Memory
Maximum of 5 pages for V3.3 editor or
— _qu;qga}irfilgg;g_;__pgfﬁer Creator or Resequencer
et L, ot
—_— -~y -7 pona} pomnty
21118
Buffer #7
(if used)
| 19978
7 18814
- fpmw = — =< = ==1 Buffer #7 18046
- (if used) [|TTTTTT~~7 T
’:‘i‘gfj:eﬁ; Buffer #6 17022
BN ittty (1f used) B
Buffer #6
Buffer #7
d (1f used) L] (1f used) 15742
14974
Buffer #6
Buffer #6 (1f used)
(1f used)
Excensions 12926
’ B
- PAGE @#/1 Swapper, | 12670
Directory, Workspace File Header Information 11897
0S-65D DOS Kermel
16827
i L | §
0S-65D Diskette Drivers
: 9829
0S-65D 1/0 Routines
. X , 8960
Transient Processor Area for
BASIC or Assembler or
Other Language Processor
1 1 + 512
, 6502 STACK . 1256
N 65@2 PAGE ZERO .)]
DECIMAL

(Dark Line Indicates Normal Start of Workspace)

49

details on how to save the machine language code to disk and

to read it back in at the start of workspace for execution.

If your BASIC program will use data files, then you need
to create one or two data buffers (called buffer #6 and
buffer #7) between workspace and the memory holding the
operating systeh, offsetting the start of workspace to a
higher address. You can accomplish the creation of these
buffers and other changes in the workspace allocations with
the help of the CHANGE utility. Likewise, the highest por-
tion of workspace memory may be given to a buffer for in-
direct files (see the BASIC Reference Manual). Certain
transient utilities, if loaded, are lbcated in the highest
memory above workspace. These include the V3.3 Editor and

the Resequencer and Buffer Creator programs (see Chapter 8).

Kernel Commands

The Kernel commands can be divided into three groups:

Control: passes control to various language processors
such as BASIC or Assembler.

I/0 Distributor: sets flags to enable/disable peripheral
' equipment. Defines addresses of the '"memory"
I/0 driver.

" Disk: Reads and writes to disks.

The next three sections will discuss these major areas of
activity for the Kernel and the specific commands used to
accomplish its tasks. But first the general format for all

Kernel commands must be specified.

50

General Command Format:

- Commands may be up to 17 characters long.

- Words in commands may be abbreviated to two
characters because all other characters beyond
two and up to the blank are ignored. For ex-
ample, "RESTART BASIC" can be written "RE BA".

- File names must start with a character "A"
through "Z" and can be no more than six
characters long.

- Arguments in the command must be punctuated
as shown, must not contain spaces and must
have a digit everywhere a letter symbol is
shown. The digits are decimal by TT (track
number) and S (sector number). The digits

are hexadecimal for N,M (in addresses or I/0
device masks) and P (number of pages).

The Kernel commands may be called from BASIC using the
format DISK!"cmd" and from the Assembler/Editor or Extended
Monitor by using the format !cmd. In each case, cmd stands
for a Kernel command obeying the format laid out in the
previous paragraph. Any command that doesn't obey these

syntax rules will fail and an error'message will be issued:
ERR #7

This means "SYNTAX ERROR IN COMMAND LINE".

Transfer of Control

Figure 3 diagrams the paths for passing control from one
software system to another. Notice that the Kernel is a central
position in this diagram, the more so since some of the paths
that seem to bypass the Kernel, say between the Assembler/Editor
and the Extended Monitor, actually are using commands "borrowed"

from the Kernel. Any command preceded by a "!" mark (except

BOOTUP

(H/D/M ?)
D l M
ROM
M
ONTTOR \ MACHINE
- LANGUAGE
4 PROGRAMS
BEXEC* RE MO 2547G (note 3)
UNLOCK (V3.2)
OPTION 8 (V3.3) l H
EIT 0S KERNEL
P~ .
(prompt is "A#*")
e —
M (note 1)
RE BA (note 4) RE AS (note 4) =
BA (notes 1 § 2) EX AS (note 1)
Y
Y 'RE EM Y
ASSEMBLER/ =1 EXTENDED
BASTIC e
A EDITOR MONTTOR
(prampt is "OK") (notes 1 & 2) (prampt is ".") |-t (prompt is ":™)

N

UTILITY
PROGRAMS

USER
BASIC
PROGRAMS

Figure 3 Transfer of Control

MACHINE
LANGUAGE
PROGRAMS

those found in a PRINT! command) is actually a Kernel command
issued from another program. One returns to the Kernel from
any other language by the EXIT command (which can be shortened
to EX if you are not in BASIC). One leaves the Kernel and re-
starts a language processor (if it is resident in memory) by the
command RE XX where XX is BA, AS, EM or MO for BASIC, Assembler/
Editor, Extended Monitor or Monitor in ROM, respectively. "RE"
stands for "RESTART". Note that the Kernel is always resident
when the operating system has been loaded, but the transient
language processors and/or BEXEC* may need to be loaded from
disk. The following notes pertain to Figure 3. They should be
carefully read as they concern initialization of BASIC and

recovery after pushing the BREAK key.

Note 1: T}}ese commands will load the specified language processor from
disk. The resident language processor will be overwritten.

Note 2: After BASIC is read from disk through the 0S Kernel
command BA (or !BA) the BASIC commands NEW and LIST
are disabled. Execute BEXEC* to unlock these commands.
(Remember, loading and executing BEXEC* will destroy
any other source code you have in the work area. Put
any useful source programs on disk before loading
BEXEC*.

Note 3: You can enter the ROM monitor from the Kernel and then
return to the Kernel by loading the address $2547 in
the monitor address display and depressing G (for "GOM).
But you cannot warm start the computer after depressing
the BREAK key by the path M to the monitor then $2547G
to the Kernel because the act of BREAK leaves some
memory locations needed by the operating system with
indeterminent contents. The only possible entry to
the operating system after BREAK is the cold start
made by chcosing "D" from the "H/D/M?" menu. This
initializes the system and locads and runs BEXEC* which
means the contents of the workspace present at the
time the BREAK key was depressed are overwritten.

Note 4: These commands can be used only if the specified language

processor 1is resident. For example, i1f vou EXIT from
BASIC, the command RE AS will not work; AS must be used.

53

E. 1Input/Output Distributor
The computer's major I/0 devices are enabled/disabled by
a distribution system. This system is described in your system
manual (e.g., Appendix Q of the C4P or C8P Users Manual). The

devices are:

BASIC
Flag Setting |[Device Device
#

Bit | Hex | POKE . Input Output

- | %on)] 9 Null Null

4] f1 1 1 Serial Port Serial Port

1 g2 2 2 Keyboard on 548 Board Video on S48 Board

2 oy Yy 3 UART on 430 Board UART on 438 Board

3 78 8 y Null Parallel Port on CA-S8 Board

y 19 16) Memory A Memory

S 28 32 6 Disk Buffer #6 1 Disk Buffer #6

6 ug 64 7 Disk Buffer #7 Disk Buffer #7

7 89 | 128 8 Serial Ports on CA-18X Board | Serial Ports on CA-18X Board
There are two ways of referring to a given device by numbers. BASIC

refers to them by the BASIC device numbers 1 to 9 in such commands as

PRINT #6, etc.

The machine keeps track of the enable status of each device by

flags:

I/0 Distributor Input Flag $2321 (8993 decimal)
Output Flag $2322 (8994)

Each device is assigned one bit in the flag as listed in the table
above. The first three columns contain the same flag information in
three different formats: the bit position number in the Distributicn
Flag, the resulting value of the flag byte expressed in hex notation
and finally, the same expressed in decimal notation (suitable for
POKEing from BASIC). More than one bit may be set in a flag at the

same time. For example, one could enable output to the serial port

S4

and to disk buffer #6 simultaneously by setting bits 8 and 5 in

the output flag. It then would appear as:

8610 981 in binary
$21 in hex and
33 in decimal.

Notice the value 33 is obtained by adding the individual flag

values:

$01 + $20 = $21 hex or
1 + 32 = 33 decimal.

This flag setting could be accomplished by:

or

I0 ,21 (in the DOS mode)

POKE 8994,33 .
DISK!"TIO ,21" (in the BASIC mode)

Description of I/0 Devices

We identify each device by its BASIC reference number:

9.

The Null Device: The null device permits writing programs
without having to worry about the characteristics of physical
devices. You may read or writeé to the null device with no
effect occurring unless the program expects "handshaking"
signals, in which case the computer may hang. For example:
INPUT #9,A$ will cause a hang.

The Serial Port: This port is configured in various ways on
the different models of computers. It may drive a serial
printer, a terminal, a tape cassette, or modem.

The Keyboard and Video on the 548 Board: The standard input
and output of video systems.

The UART on the 438 Board: This is a serial port on some
clder systems.

The Parallel Port: This is a centronics type parallel port
on the CA-9 board.

The Memory: Memory can also be treated as an I/0 device.

There are twc pcinters which specify the current location
in memory for input or output respectively as device 5:

55

Input pointer $238A (9098 decimal) 1lo byte
: 238B (9099 decimal) hi byte

Output pointer $2391 (9185 decimal) 1lo byte
2392 (9186 decimal) hi byte

To use device 5 as an input, set the contents of the input
pointer to the first address desired. Then after each input

of a byte, the pointer will be automatically incremented.

For output, the output pointer should be treated similarly:
initialized and then automatic incrementation will occur as
data is read out. The pointers may be conveniently initialized
by using the Kernel command:

MEM NNNN,MMMM NNNN
MMMM

input pointer in hex
output pointer in hex.

6. The Data Buffer #6: This buffer can be created by using
One of several utility programs. See Chapters 4, S and 8 for details.

7. The Data Buffer #7: See above.

8. The CA-18X Serial Ports: See literature supplied with this
device.

F. Disk Usage
(i) Tracks

A brand new blank disk has no information in magnetic
form on it. The first step in using such a disk is to for-
mat it by executing the INIT command. The result is a disk
with "tracks": rings of magnetic code. The tracks are
numbered from 8 to 39 on 5" disks and # to 76 on 8" disks.
Each track begins with a track header containing information

about the track.

Track number zero has a unique header which is read
by a routine in ROM called by choosing "D" from the menu

"H/D/M?". This track header star<®s one millisecond after

ii.

detection of the index hole in the disk. The header
has three bytes:
Load address hi byte

Load address lo byte
number of pages on track zero.

The remaining tracks also have the one millisecond delay

and then have a 4 byte header:

$u3

$57
track number as two digits in BCD (Binary Coded Decimal)

$58

Sectors

For bookkeeping purposes, tracks are divided into one
or more sectors. Each sector has a 3 byte header and a 2
byte trailer and in between has an integer number of pages

of data (1 page = 256 bytes):

header: $76
sector number in binary
sector length (pages) in binary

trailer: $u7
$53

On a 5" disk, the maximum number of pages per track is 8,

so you could have one sector with eight pages of data in

it (plus 5 bytes for header and trailer). If you have

more than one sector on a track, you can store at most

seven pages of data, because the extra bytes required for
sector headers and trailers "eat into" the last page of
data. On an 8" disk, you can have one sector with 12 pages,
or several sectors whose page lengths add up to 11 or less

pages.

57

iii.

Fundamental Disk Commands

The Kernel contains nine commands which implement

disk I/O0 using the track and sector formats just described.

(There are other commands for disk I/0 of source and data

files using named and unnamed files. These will be de-

scribed in part (iv) and (v) of this section. The funda-

mental commands are:

SELECT X

HOME

INIT

INIT TT

DIR TT

D9

SAVE TT,S=NNNN/P

Select disk drive X where X=A, B, C or D

Move the current drive's head to track o
and reset track count to zero

Initialize whole disk. Erases all
information on the disk

Initializes track TT. (Each T is a
digit 8 to 9.)

Prints sector directory for track TT.
Gives each sector number and its length
in pages

Used on 8" systems to disable error 9.
Required to read some files from V1.5
and V2.8 of 0S-65D

Reads P pages starting at NNNN in
memory and writes them to sector S
of track TT

Note: This command finds track TT and on it the sector
with number S-1. Then it writes P pages on the
disk, calling it sector S. If there was already
a sector S written on track TT, it will be over-

written.

If this previous sector S was shorter

than P pages, then SAVE will continue writing on
into sector S+l1. No error message will be issued
to warn you of this.

CALL NNNN=TT,S

EXAM NNNN=TT

Load contents of track TT, sector S
into memory starting at NNNN. Does
not write track or sector headers or
trailers into memory

Examines track TT by loading the entire

contents, including headers and trailers
into memory starting at NNNN

58

iv.

EXAM is a diagnostic tool, allowing examination of
headers, etc., as well as the contents of a track,
so NNNN is often chosen as video memory. Warning:
Occasionally some extra characters will appear be-
fore the track and/or sector headers. These
characters are often SFF and are not really on

the disk. They are due to disk I/0 hardware

being not yet in sync as the read starts. This

is a property of the EXAM command that is not
shared by the other read/write commands, and re-
sults from a different use of timing loops by

the EXAM command. The headers and the data in

the file are properly read.

Source Files

When you write a BASIC or assembly language program,
the resulting lines of text are called "source code". For
source code in assembly language, the assembler will
translate the source program into "object code" which is
in a form to directly instruct the microprocessor. Al-
though source code can be saved to a disk by using the
commands presented in the previous section, these files
are so common that some special commands arc provided in

the Kernel for loading and saving them.

Source code is stored starting at the beginning of

workspace, immediately following a 5 byte header:

source file header: start address (lo byte)
start address (hi byte)
end address (lo byte)
end address (hi byte)
number of tracks required

For example, if the source file used neither buffer #6 nor
buffer #7 and the system was a 5" V2.2 system, then the
source file header would be in locations $3279 through

$327D, then the actual source file would start in $327E.

(see figure 2)

N
(0]

The format for saving source files on-disk is a
special case of the general "sectors" format given in
the previous section. No choice is allowed in the
number of sectors or their length. Each track has one
sector that is eight pages long (12 pages for 8" disks).
Some number of whole tracks is used to save each source
code file. The simplest case saves by track number using

these commands:

PUT TT puts source file on disk, starting at track TT
LOAD TT loads source file from TT into workspace

XQT TT loads source file from TT into workspace and
transfers control to its first byte, treated
as machine language object code

In each case, the smallest number of whole tracks that will
hold the source file will be used. This information is
obtained from byte 5 of the source code header and printed
for you if you enter the Kernel from BASIC (using the EXIT
command) or from the Assembler/Editor (using the EX command).
You mﬁst be careful to choose TT at a spot where sufficient
unused tracks exist on the disk, as PU TT will overwrite
anything that is there, giving no error messages if named
or unnamed files are present. (A major reason for doing
file handling from such utilities as CREATE is to provide

protection of named files through checking the DIRECTORY.)

The Kernel can use file names when referring to scurce

code files:

60

PUT FILNAM puts source code file from workspace onto
disk under the name FILNAM

LOAD FILNAM 1loads file FILNAM to workspace

XQT FILNAM loads FTILNAM as object code to workspace
and passes control to it

Again, an integer number of whole tracks on the disk are
loaded by PU FILNAM to workspace. The use of a file name
to designate the tracks to be loaded to memory or put on
disk is a convenience and provides some safeguards. Two

error messages involve named files specifically:

ERROR #C: CAN'T FIND THAT NAME IN DIRECTORY
ERROR #D: READ/WRITE ATTEMPTED PAST END OF NAMED FILE!

Foresight is required, however. The file must be CREATEd
before it is used the first time. It is recommended that
a large file (perhaps called SCRACH) be kept on a disk to
receive source files when you have forgotten to create a

file beforehand.

Files can be created using one of the CREATE utilities

provided in 0S-65D. The utility puts the file name in a
DIRECTORY kept on track 12 (track 8 for 8" disk), and

reserves a specified number of tracks for it.

Sectors 1 and 2 on track 12 hold the directory. Each

entry requires 8 bytes in this format:

file name (six characters)
first track of file (in BCD)
last track of file (in BCD)

61

The DIRECTORY can hold more entries (64 for a 5" disk)
than the disk can hold files (38 maximum for a S" disk,

at one track per file and excluding tracks # and 12).

The CREATE utility in V3.2 initializes the tracks
(thereby erasing them) but the créate choice (no. 2) in
the V3.3 menu allows you to leave the tracks as-is, so
you can name a file you earlier saved by track number

using the PU TT command.
Data File Handling

There is one further type of file read and write _
supported by 0S-65D. It handles data files. It is not
a part of the Kernel, but rather is in BASIC. We mention

it here for completeness. The two commands

DISK OPEN,BN,"FILNAM" BN=6 or 7

DISK CLOSE, BN

are used with data buffers_#s and #7. These buffers must
be created beforehand by carving some territory out of
workspace using one of the CHANGE utilities. These
commands, along with PRINT #BN,exp and

INPUT #BN,exp

service sequential files. Twc more commands

DISK GET,RN and (RN=record number)
DISK PUT

allow use of random files.

82 -

Data files are outlined in the BASIC Reference Manual
and extensively discussed, with examples, in Chapters 4

and S of this manual.

Kernel Command Summary

To enter Kernel:

Command
From BASIC EXIT
From Assembler/Editor EX
From Extended Monitor EX
From Monitor in ROM 2547G

To leave Kernel:

Restart Disk Read and Start#*
To BASIC ' RE BA : BA
To Assembler/Editor RE AS AS
To Extended Monitor RE EM EM
To Monitor in ROM RE MO -
To Machine Language GO NNNN

(*Must be used carefully; see notes 1 and 2 on page 53)

Input/Output Distributor Commands

IO NN,MM NN = mask for Input device flag
MM = mask for Output device flag

IO NN :

I0 ,MM

MEM NNNN,MMMM Memory (device #5, flag 00010000)

NNNN = input pointer, MMMM = output pointer

Disk Commands

SELECT X Select disk drives A, B, C, D

HOME Moves current drive's head to track @
INIT Initializes whole disk

INIT TT Initializes track TT

DIR TT Sectors and length (pages) of track TT

D9

SAVE TT,S=NNNN/P
CALL NNNN=TT,S
EXAM NNNN=TT

Lo TT

PU TT

XQ TT
LO FILNAM

PU FILNAM
XQ FILNAM

Disable error #¢ (8" disks)

Save to track TT, sector S, P pages from NNNN

Load to NNNN, sector S of track TT

Dump to NNNN all of track TT including headers

Load file starting at track TT to workspace

Put file in workspace on disk starting at
track TT

Load object file starting at track TT to
workspace, execute

Load file FILNAM to workspace

Put file FILNAM on disk

Load object code FILNAM to workspace, execute

63

Error Messages from the Kernel

1 - CAN'T READ SECTOR (PARITY ERROR).

2 - CAN'T WRITE SECTOR (REREAD ERROR).

3 - TRACK ZERO IS WRITE PROTECTED AGAINST THAT OPERATION.
4 - DISKETTE IS WRITE PROTECTED.

S - SEEK ERROR (TRACK HEADER DOESN'T MATCH TRACK).

6 - DRIVE NOT READY.

7 - SYNTAX ERROR IN COMMAND LINE.

8 - BAD TRACK NUMBER.
8§ - CAN'T FIND TRACK HEADER WITHIN ONE REV OF DISKETTE.

- CAN'T FIND SECTOR BEFORE ONE REQUESTED.

A

B - BAD SECTOR LENGTH VALUE.

C - CAN'T FIND THAT NAME IN DIRECTORY.
D

- READ/WRITE ATTEMPTED PAST END OF NAMED FILE!

Utility Programs

A variety of different utility programs are available to the
0S-65D user. Appendix I contains detailed descriptions and listings
for all of the utility programs that appear on a standard 0S-65
diskette. Many of these utilities have been discussed previously
in Chapter §. Recall that Tutorial Disk 5 (the V3.3 system disk)
incorporates a variety of utility program functions into its

BEXEC* program.

A powerful BASIC program line editor is standard in 0S-65D V3.3
Its use is described in the next chapter, which also describes

the other special features of V3.3.

64

Finally, a collection of utilities called the 0S-65D
Extended Utilities is discussed in Chapter 8. These programs
can be used to make changes in program files (create buffers,
resequence, remove blank spaces and REM statements). There are
also utilities for sorting and copying data files and disassembling
machine code programs. The Extended Utilities are stored on

Tutorial Disk 2.

85

Blank Page

Blank Page

Blank Page

Chapter 7

New Features in 0S-65D V3.3

This chapter presents the new features of V3.3 that extend
V3.2. The previous chapter is an outline of features common to
the current versions of 0S-65D and should be read first by persons

not yet familiar with 0S-65D.

Although there are many new features in 0S-65D V3.3, it is
upward and downward compatible with V3.2 for BASIC programs and
data files which do not incorporate the special commands unique
to V3.3. Even though the Qorkspace in V3;§ haé been moved to
$3A7E from $327E in V3.2, the V3.3 operating system automatically
makes the necessary adjustments whenever a file is loaded or saved.
The only problems that may arise involve machine language programs.
If a machine language program is to be fransferred, the code will
nut be loaded to the same addresses in workspace with V3.3 as it

was with V3.2. Thus, relocation is required.

A. Cursor and IN?UT prompt
When the system is booted up with V3.3, the appearance
of a flashing square cursor on the screen announces that you
are in V3.3. Earlier versions of 0S-65D used a non-flashing

underline for the cursor.

Both the form of the cursor and the flashing feature are

controllable by POKE commands. The command
POKE 13826,nn

where nn is the decimal value for one of the standard OSI

66

graphics characters will change the cursor into that character.
In particular, POKEing 32 into 13926 will replace the cursor
with a blank and thereby eliminate it. Memory location 13743

controls the cursor flashing. This feature can be turned on

or off by using one of the two commands listed below:

POKE 13743,44 Disables flashing
POKE 13743,32 Enables flashing

non
:

When an INPUT statement is used in a program the
prompt indicates that the computer is waiting for input. If

you wish to change this prompt, the command
POKE 2797,nn

can be used. As was the case for the cursor, nn is a decimal
number corresponding to one of the graphics characters. The

question mark is specified by nn = 63.

Keyboard Encoder and Video Display

A new routine has been written for input from the keyboard
and output to the video display. Keyboard and video on a memory
mapped video system now emulate a Hazeltine 1u?2f video terminal.
The OSI polled keyboard acts like a normal typewriter when used
with V3.3. The SHIFT LOCK key acts as a "caps only" key. That
is, the SHIFT LOCK key may be raised and the keyboard used as a
normal typewriter keyboard. Depressing REPEAT and any other
key causes repetition of the key functions. Depressing RUB OUT
erases the last character typed in and moves the cursor one space
to the left. Simultaneously depressing RUB OUT and REPEAT erases

rapidly to the left.

The operative codes of the I/0 driver have been altered
to allow better control of the screen features of 0SI computers.
There are codes to control character size, print window size,
cursor position, screen clearing, color formatting, screen
information transfer to workspace memory, and output to a
printer. These codes can be placed in the PRINT statements

of BASIC programs and will be described fully later.

In addition to program control of the computer output,
some direct keyboard control of the screen display is now
possible. By holding down the ESC key and depressing one of
the number keys, the display'can be altered. The changes

which are produced are listed below:

(ESC) 1 Clears screen; homes cursor to upper left;
produces "wide character" display

(32x32 on C4P and C8P machines; 24x24 on C1P)

(ESC) 2 Clear screen; homes cursor; produzes '"narrow
character" display

(32x64 on C4P and C8P machines; 12x48 on C1P)
(ESC) 3 Homes cursor to upper left

(ESC) U4 Clears to end of screen (memory of workspace
is not altered)

(ESC) 5 Moves cursor up one iine

(ESC) 8 Moves cursor down one line

(ESC) 7 Inserts line (lower lines scroll down)

(ESC) 8 Clears line (memory of workspace is not altered)
(ESC) 9 Turns color off

(ESC) 12 Turns color on#

(NOTE: These commands do not work on serial systems; see the
"Note to Serial System Users" at the end of this chapter.)

68

*The color control is for text sent to the screen by way
of the keyboard for PRINT statements. It does not affect
graphics characters placed on the screen by way of POKE commands.
Furthermore, before the color feature can be turned on for the
first time after turning on your computer, the wide character
or narrow screen format must be specified. This can be done
either by depressing ESC and 1 or 2, or by entering one of the
two screen formatting PRINT commands by way of immediate mode
or a program. These PRINT commands will be described later.

IMPORTANT: These keyboard commands rearrange the screen
display but have no effect on a BASIC program in workspace.
In particular, clearing a listed program line with (ESC) 8
does not remove it from the BASIC program! Note that (ESC) 1
and (ESC) 2 are convenient screen clear commands from the

keyboard.

At the end of this chapter is an overlay which may be cut
out and placed along the top row of keys on the keybocard for

your reference.

Enhanced BASIC

A number of changes have been made in BASIC to improve
its flexibility and ease of use. These include upper and lower
case interchangeébility, line editing, a TRAP command, numerous
new PRINT commands for screen formatting and printer control,
. and new file handling features.
i) Upper and lower case interchangeability
First, it is important to point out that V3.3 does
not distinguish between upper and lower case text. Programs
may be entered and edited in lower case. Variable names
and all commands may be in lower case. String comparison
commands will not distinguish between lower and upper case.

For example, the statement

IF Y$ = "Y" THEN 128

will be evaluated true if ¥Y$ = "y" or "¥Y".

ii) The BASIC line editor

Version 3.3 contains a line editor which functions
both for a line being typed in the immediate mode and
for lines of a written program. You can edit the current
line of text or you can call up by number any line from a
stored BASIC program for editing. The cursor can be moved
to any point in the line using the cursor control commands
listed at the end of this section. A character can be
inserted at the l§cation of the cursor (to the ieft of the
character flashing alternately with the cursor) by simply
typing the character. RUB OUT will erase the character
under the cursor and close the line from the right. RUB

OUT with REPEAT "eats up" the line quickly.

If you decide you do not want to keep the edited
form of the program line, you can escape from the altered
line with the (SHIFT)P command, leaving thé original line
in workspace. Depressing RETURN writes the entire edited

line into workspace, no matter where the cursor was located.

As stated earlier, the above features are applicable
to any line you are typing in the immediate or program
writing mode of BASIC. if you wish to recall for editing
line number nn of a BASIC program in workspace, enter
EDITnn or !nn. The line will be displayed on the screen

with the cursor at the right end. After editing the line

and storing it (by depressing RETURN), you can call the
same line back for re-editing by simply entering !!. Or
you can call the next line in the program by entering !
(without a line number). A complete list of editing
commands is given below:

(CTRL)H Moves cursor one space to the left
(non-destructively)

(CTRL)P Moves cursor one space to the right
(non-destructively)

(CTRL)F Moves cursor to the front of the line ‘
(CTRL)R Moves cursor to the rear of the line
(CTRL)I Moves the cursor: (non-destructively)
forward to the next tab position
(i.e., positions 1, 8, 15, 22, 29,
36, 43, 50, 57, B4, 71)

(CTRL)T Retypes the line currently being edited
(in its present edited form)

(SHIFT)P Clears screen of line currently being
edited leaving the line in workspace
as it was before calling it to be edited

(RUBOUT) Deletes the character flashing with the
cursor. Line closes up from the right.

EDITnn or !nn Calls line number nn for editing
EDIT or ! Calls next line in program for editing

EDIT! or !! Recalls last edited line for re-editing

iii) The TRAP command
An entirely new feature has been added to BASIC in V3.3.
This feature, callea TRAP, works much like "ON ERROR GOTO"
in some other BASIC interpreters. As the name suggests,
TRAP allows a BASIC program to retain control when an error
in BASIC or DOS (Disk Operating System) occurs. To enable

the TRAP feature, the command "TRAPnn" is used where nn is

71

a BASIC program statement number. If an error is
encountered after the TRAP mode is enabled, the program
will jump to the specified line number nn. This feature
allows your program to make decisions on the basis of
errors encountered while continuing to run. The TRAP

mode is disabled by the command TRAPO.

iv) New PRINT commands
Many new PRINT commands have been added to V3.3

BASIC which allow you to easily manipulate the screen
display. The format of a displayed number can be specified.
With one command, the cursor can be moved to any locaticn
on the screen (the "print at" feature). A wide character
or narrow character screen format can be chosen. A display
window on the screen can be specifieé. Single stepping of
the cursor up and down as well as right and left is now
possible. Line inserting and selective clearing of the
screen can be done easily. Color manipulation with PRINT
commands makes color displays easy to program. Cursor
location and a character at the cursor location can be

determined and used later in the program.

Additional PRINT statements will produce auto-
paging on your printer and in the case of memory mapped
video systems (but not serial systems) transfer the

screen display to the printed page.

These new control features open up to you a whole

new world of programming ease and flexibility.

~J
(28]

Of course, the PRINT commands available in. earlier
versions of 0S-65D are still present (see the 0SI BASIC
Reference Manual for a description of these). As was
the case Qith the original commands (which include
TAB(X), SPC(X), POS(X), and #M where M is a device
number), several commands can be strung together in one
PRINT statement. Examples of these combinations will be

given as the commands are explained.

(a) Number Formatting

It is now possible to choose the format (number

‘'of digits and location of decimal point) for a number

to be printed. The command is exemplified by PRINT

USING "#.#". The character # represents a digit to be

printed. A maximum of 11 '#' characters can be used

if no decimal point is included. The maximum is 148

if a decimal point is included. No more than one

decimal point can be used. 0Only a single format may

be given with each PRINT USING statement. Example:

PRINT USING "###.##" 97.321, -1, 1p6d8

will show on the screen:
97.32 -1.00 #*% %%
The "##%% #%" gutput indicates that the number was

too large to fit the specified format.

The 'USING' designation may be combined with
the '§' and '!' extensions described below, but

must appear only once immediately after the word

(b)

PRINT and then will apply to the printing of all

numerical values in that statement.

Cursor Location ("print at")

The statement 'PRINT &(X,Y)' is the "print at"
feature in V3.3 BASIC. It positions the cursor at
X,Y on the screen. If a window smaller than the
whole screen has been defined, the cursor goes to
position x,y in the window. (Window definition
will be explained later.) The origin of the X,Y
coordinate system is the upper left corner of the
screen or window. The X axis is horizontal and the
Y axis is vertical, positive downward. After the
cursor has been moved, the next character printed

will be at the x,y position of the cursor.

WARNING: TIf a PRINT statement does not end
with a semicolon, then a carriage return and line
feed (CRLF) will automatically be performed. The
CRLF action moves the cursor one line down and to
the far left of the screen (or window). Usually
yvou will not want this to happen because the next
character printed would then appear at the left
instead of the location x,y which you specified.
Consequently, you should get in the habit of

ending PRINT statements with a ";".

T4

(c)

SECOND WARNING: Another cdndition can cause a
surprise CRLF. If many "PRINT S;" (S is a set of
expressions and/or commands) statements are used in
succession, the line buffer (132 characters long) may
fill up and a CRLF will be performed. The line buffer
can be emptied either by a PRINT statement not ending
in a semicolon or a comma (the comma specifies next zone
on the same line) or by putting the exﬁression CHR$(13);
at the end of a PRINT statement. The first means of
emptying the line buffer will produce a CRLF. The
second technique will perform bnly a carriage return
(cursor moved to the front of the line). 1In either

case, you may need to reposition the cursor.

General Screen Formatting

The video screen display can be controlled using
any one or a combination of 25 commands as a part of
a PRINT statement. Nineteen of the commands have the
general form of PRINT! (XXX) where XXX is a set of one,
two or three numbers or variables. Five of the commands
have the form PRINT CHRS$(nn) where nn is a decimal
ASCII code. The one exception to these two forms is

the PRINT &§(X,Y) command described previously.

0f these 25 commands, three select the display
size, 18 control the cursor location, one inserts a
line, four clear part or all of the screen, five
control color, and two will pick up information from

the screen.

78

Display size PRINT commands

0f the three display size PRINT commands, two
affect the entire screen and one sets a window. For
total screen display, you'can choose between a narrow
character or wide character display. The narrow char-
acter display is a 32 line by 64 character format on
the C4P and C8P while being 12 lines by 48 characters
on the ClP. The wide character display is a 32x32
format on the C4P and C8P while being 24x24 on the
ClP. Changing from one format to the other will clear
the screen. For either format, a window can be set
within which subsequent displays will be confined.
Printing and clearing can be done within the window
without affecting a display outside the window. How-
ever, the dispiay outside the window cannot be selec-

tively changed or cleared through use of PRINT commands.

The screen formatting PRINT commands are listed

below:

PRINT! (28) Selects "wide letter" display -
(32%32 on CuUP and C8P, 12%24 on C1P),
clears the screen, and homes the cursor
to upper left screen corner.

PRINT!(21) Selects "narrow letter": display

(32x64 on C4P and C8P, 28xu48 on C1lP),
clears the screen, and homes the cursor
to upper left screen corner.

PRINT!(22,w,h) Selects print window w characters wide
and h characters high. Upper left
window corner is at current cursor
position; screen is not cleared.

The ability to define a window makes for versatile
formatting of text-on-text or text-on-graphics. How-
ever, there are certain conditions which must be kept
in mind. There can be only one window defined at any
given time. Once the window is defined, the cursor
must remain within it, and so new text can only be
written within the window. Text or graphics that were
outside the window when it was formed will remain dis-
played. One may add text or change the graphics on
the screen outside the window only by use of direct
POKEs to the screen memory. The window may be redefined
but only to a smaller windoQ which must be entirely
enclosed wifhin the original window. Finally, one can
escape the confines‘of the window only be executing
either of the comma;ds PRINT! (28) or PRINT!(21) which
will clear the screen and refurn the display to full

screen size.

The !(22,w,h) window setting command is commonly
used in the same PRINT statement with the &(X,Y) cursor
positioning command which is used to determine the
upper left corner of the window. If, however, the
window setting command is in a separate PRINT statement,
a ";" must follow the cursor positioning command. That
is

189 PRINT £(5,5)!(22,208,180);
and

108 PRINT &£(5,%5);
‘118 PRINT !(22,28,18);

77

will have the same effect in setting a 18 line by 28
character window whose upper left corner is on the
sixth line down and the sixth space from the left of
the screen (x,y begin at 0,0). Note that a ";" is
used after the window setting command in order to
leave the cursor in the upper left corner of the

window.

Cursor location PRINT commands

0f the 18 cursor control PRINT commands, five
will single-step the cgrsbr to a new location, two
will multistép the cursor, two allow the program to
designate any location within the window, and one
homes the cursor (returns it to the upper left corner
of the window). The single step commands will move
the cursor up and down as well as left and right. The
The multistep commands translate the cursor only
horizontally. In no case will characters on the screen
be cleared when the cursor is moved by one of these

commands.

The following is a list of the cursor control

PRINT commands:

Single Step

PRINT CHR$(18) Back one space
PRINT CHR$(16) Forward one space
PRINT! (12) Up one space
PRINT!(11) Down one space
PRINT CHR$(18) Down one space

78

Multistep

PRINT CHR$(13) Back to front of line
(carriage return)

PRINT CHRS$(14) TForward to next eight space tab set
(seven space for left-most field)

Anywhere

PRINT!(17,X,Y) Relocate to X,Y

(8,0 at upper left corner)
PRINT &(X,Y) Relocate to X,Y

(6,8 at upper left corner)

Home

PRINT! (18) Relocates to 0,0
(upper left corner)

Note that PRINT!(11) and PRINT CHR$(18) are identical
commands and that PRINT!(17,X,Y) and RPINT &§(X,Y) are
also identical commands.

As indicated earlier, the commands listed above
can be used tOgethér in one PRINT statement as well as

in separate statements. For example, the statement
PRINT!(12)CHRS$(16);

will move the cursor up one space then forward one
space. Again, the ";" at the end of the statement

prevents a CRLF from occurring.

Insert and clear PRINT commands

One PRINT command allows you to insert a line on
the screen with a subsequent automatic moving down of
the lower lines. The line will be inserted at the Y
position of the cursor and begin at the location of

the cursor.

The line insert command is listed below:

PRINT!(26) Inserts line at cursor positionj
lower lines scroll down

Four commands allow clearing of characters on the
screen. It is important to remember that only the
screen is affected by these commands. Workspace memory
locations are not altered. Two of the commands affect
only the line where the cursor is located when the
command is executed, one clears a portion of the screen,

and one clears the entire screen.

The clear PRINT commands are listed below:

Line

PRINT!(15) Clears from cursor to end of line
PRINT!(19) Clears entire line
(lower lines move up)

Screen

PRINT! (24) Clears from cursor to end (lower right)
of window

PRINT!(28) Clears entire screen and homes cursor
in window

Note that the first three commands leave the cursor
where it is (provided that the command is ended with
a ";") while the last one returns the cursor to its
home position. The home p051tlon is the upper left
corner of the screen if the entire screen is being
used, or is the upper left corner of the defined
window. Note also that the first three commands
affect only the window display region. Text display-
ed outside the window will not be cleared. However,
PRINT!(28) clears the entire screen.

Color formatting PRINT commands

Sixteen different colors may be displayed by C1P,

C4P and C8P computers. Each color is identified by a

80

4 bit number (the color value) which (in decimal form)

identifies the color in BASIC programs. The colors

are:
Color Decimal Value
Yellow]
Inverted Yellow 1l
Red 2
Inverted Red 3
Green 4
Inverted Green 5
Olive Green 6
Inverted QOlive Green 7
Blue 8
Inverted Blue 9
Purple 18
Inverted Purple 11
Sky .Blue 12
Inverted Sky Blue 13
Black 14
Inverted Black (white) 15

Notice that the colors are named in pairs. Bit
zero of the binary.form of the color value is one if
a color has the word "inverted" in its name. This
pairing of colors in an important concepf in character
display and in use of the color formatting PRINT com-

mands.

Each character is made up of dots (pixels) in an
8x8 dot matrix "cell”". The dots which produce the
character are in one of the 16 colors, called the
foreground color, while the rest of the dots in the
cell are in another color, called the background color.
fou cannot pick the foreground and background colors
independently from the list of 16 colors. The fore-

ground color and the background color must be inverses

81

of each other. When a color number is chosen, the
background appears in the color corresponding to

that number while the foreground appears in the
inverse color. For example, of color 2 is specified,
fhe background will be red while the foreground will
be in the color called inverted red. If color 3 is
specified, the background will be inverted red while
the foreground will be red. If you have a color
monitor, run the program COLORS on Tutorial Disk §

to observe these color combinations.

There are two types of color commands. One type
specifies what color will be used henceforth as back=-
ground color for characters displayed on the screen
through the use of subsequent PRINT statements or
keyboard entry (but not POKEs). Three commands are
of this type. The other type affects all previously
printed text of a specific color by either changing
the color or clearing all text of that specific color.
Two commands are of this type. These are powerful
tools for generating and updating displays that can
catch the attention of the viewer and transmit in a

flash, through color coding, important information.

The five color formatting PRINT commands

follow:

32

Color select

PRINT! (1) Selects color B as the cell
, background
PRINT!(25) Selects the normal black/white

display mode
(i.e., black selected as the cell
background)
PRINT!(31,n) Selects color n as the cell back-
ground

Color change

PRINT!(2,n,m) Changes cell color. All cells on
the screen of background color m
are changed to background color n.
PRINT!(29,n) Clears cells of background color n.
All cells on the screen of background
color n are changed to black back-
ground and the character is replaced
with a blank

WARNING: The color formatting PRINT commands will
not function until @ screen format has been specified.
A program which uses color formatting must begin with
PRINT!(21) or PRINT!(28) in order to run properly

right after your computer has been turned on.

Cursor sensing PRINT commands

0S-65D V3.3 allows you to determine the position
of the cursor while a program is running then use
that information as a part of the program. Further-
more, you can pick up the character on which the
cursor 1s located and store that character as a

string variable.

The commands which allow this type of manipula-

tion follows.

[ee]
[¢%)

18
29
39
ug
50
60
70
80
99
1990
110
128

PRINT! (S) Sends information for current cursor
position X,Y to string variable in
following INPUT statement. Information
is in the form of two characters for
which (X+65), (¥Y+65) is the ASCII code.
Line feed follows the INPUT statement
used with PRINT!(5)

PRINT!(33) Sends character at cursor position to
string variable in following INPUT
statement. Line feed follows the
INPUT statement used with PRINT! (33)

The cursor position sensing is done by way of ASCII
characters which are recognized by the BASIC interpreter.
Consequently, the ASC(X$) function is needed to obtain
the_numérical values of X and Y. For example, the
program shown below will determine the position of the

cursor after it has printed a line of text.

REM CURSOR POSITION

PRINT!(28)!(17,14,18);:REM CLEAR SCREEN AND POSITION CURSOR
PRINT"CURSOR POSITION SENSING TEST.";

PRINT! (5):REM PICK UP CURSOR POSITION INFORMATION

INPUT P$:REM STORE INFORMATION IN P$

PRINT:PRINT"ASCII CHARACTERS FOR X+65 AND Y+65 ARE ";P$

X = ASC(P$) - 65:REM CONVERT ASCII CHARACTER TO X VALUE
PRINT:PRINT"THE VALUE OF X AT END OF TEXT LINE IS";X

Y$ = RIGHTS$(PS$,1)
Y = ASC(Y$) - 65:REM CONVERT ASCII CHARACTER TO Y VALUE

PRINT"THE VALUE OF Y FOR THE TEXT LINE IS";Y
END

As written, the program will store "hK" in P$ and
translate these letters into an X position of 39 and a
Y position of 18. If you were to change the 18,10 in
line 20, and/or change the message of line 3P, a dif-
ferent pair of characters wculd be stored in P$ and a

different set of X,Y values would be determined.

8y

19
20
30
up
50
68
7C
89
S0
120
119

WARNING: There is a limitation to the use of
PRINT!(S). The X values of 26, 38, and 58 through
63 cannot be picked up. This is because this PRINT
command does not recognize the ASCII characters
corresponding to these values plus 65. An alternate
technique which works for all X and Y values is the
PEEKing of address 13823 for X and 13824 for Y.

That is, replacing lines 48 through 78 with
4@ X=PEEK(13823)

and lines 18 and 184 with
90 Y=PEEK(13824)

will result in the same values of X and Y being

determined.

-

A similar limitation holds for the character
pick up command. Certain characters will not be
recognized by CHR$, PRINT!, énd other BASIC commands
and functions. ASCII codes # through 6, 8 through 12,
14 through 31, 93, 94, 95, 125, 126, and 127 will not
be ppoperly recognized. For those characters that
are recognized properly, the following program is

useful:

REM CHARACTER PICK-UP

PRINT! (28)&(18,18);:REM CLEAR SCREEN AND POSITICON CURSOR
PRINT"ABCDEFGHIJKLMNOPQRSTUVWXYZ"

PRINT:INPUT"ENTER A NUMBER 1 THROUGH 26";N
PRINT!(17,9+N,18);:REM SET CURSOR ON LETTER CHOSEN BY N
FOR T = 1 TO 5@800:NEXT:REM DELAY TO OBSERVE CURSOR LOCATION
PRINT!(33):REM PICK UP LETTER

INPUT CHS:REM STORE LETTER IN CHS

PRINTS(8,5);

PRINT"THE LETTER PICKED UP IS ";CHS

END

85

Note that the above program uses PRINTE&(X,Y)
instead of PRINT!(17,X,Y). As stated earlier, these

commands are completely interchangeable.

(d) Printer Control
The 0S-65D printer drivers will now perform
auto-paging by recognizing a "top-of-form" command.
To initialize this feature, execute this command in

the immediate mode (printer on):
PRINTHM, ! (67 ,FL)

where M is the printer device number (1 for seriai
printers) and FL is the forﬁ length (number of lines
per page). .For a form 11 inches long and a printér
set at six lines per inch, FL=66. Immediately upon
receiving the top of form command, the printer will
advance the appropriate number of "between form"
lines (defined below) and stop. Then position your
form in the printer so the top of the.form is under
the print head. You are now ready to use the system.
As you run your programs, the system will count lines
and automatically advance to the next page when the
bottom of the form is reached. The number of lines
it inserts between the hottom of one page and the top
of the next (the "between form" lines) is FL/18,
truncated to an integer. So in our example where
FL=66, there are six lines between pages (three line

top and bottom margins on each page).

86

Normally, of course, a printout will end in
the middle of a page. To begin a new printout at

the top of a page, use the command
PRINT#M,CHRS$(12)

This command sends enough line feeds to position

the printer at the top of the next page.

If you have a memory mapped video system (not
serial with a video terminal) and an Epson MX-849
printer, you can send text and 16 medium resolution
(64x128) graphics characters to the printer. The
BASIC command is PRINT#1,!(88). This command will
print what is on the screen (ob in the window) and
will put a black boarder around it. However, only
standard text and 1% medium resolution graphics
characters are recognized by the printer. The
standard text includes the keyboard characters and
0SI character graphics 33 through 126. The 16 graphics
characters are nurbers 32, 154, 157, 165, 166, 167,
168, and 178 from the OSI graphics character set and
their inverses. An inverse is formed by POKEing the
corresponding color cell with an inverse color number.
For black and white displays, the inverse color num-
ber to use is 15. Note that color does not need to
be turned on for the character inverse to be formed.

A sample program which will print the 16 graphics

characters on an Epson MX-88 printer follows:

87

19
20
4o
50
60
70
88

108
119
120
200
218

REM EXAMPLE OF GRAPHICS CHARACTERS PRINTING
PRINT!(28):REM CLEAR SCREEN

PRINT&(@,18)"TEST OF PRINTER AND GRAPHICS"&(f,1u4);

GS = 54272:REM START OF GRAPHIC CHARACTER PRINT

IS = 54274 + U096:REM START OF INVERSE CHARACTER PRINT
FOR G = @ TO 28 STEP 4

READ GC:REM READ CHARACTER NUMBER FROM DATA

POKE GS+G,GC:REM DISPLAY CHARACTER
POKE IS+G,15:POKE GS+G+2,GC:REM DISPLAY CHARACTER INVERSE

NEXT

PRINT"TEST IS COMPLETED
PRINT#1,!(808):REM SEND SCREEN TO PRINTER
DATA32,154,157,165,166,167,168,178

END

When the print routine does not recognize a
character on the screen, the following translation
between screen character and printed character is
made. If the correspondingvcolor cell does not have
the inverse bit (bitf#) set (i.e., if the color num-
ber is even) then a blank is printed. If the
corresponding color cell does have the inverse
bit set (i.e., if the color number is odd) then a

solid black square is printed.

Now that the full range of new PRINT commands
has been described, the examination of a few programs
will help to illustrate their use. The programs
shown below combine many of the commands in one
PRINT statement as well as illustrate the ease and

flexibility of programming with the PRINT commands.

The first program listed below is designed to
run on a color monitor, but will be illustrative of

programming capabilities on a black and white monitor.

88

19
20
30
ug
5P
60
70
8n
99
190
119

This program can be terminated only by using CTRL-C.

(Note: Serial system users should consult the NOTE

at the end of this chapter.)

REM ##*% "PRINT AT" DEMO. **#
PRINT!(28)!(21):REM CLEAR SCREEN:ENABLE COLOR
M$ = "HELLO, I'M HERE NOW!"

Y = RND(1)*23:REM GENERATE Y POSITION
X = RND(1)*42:REM GENERATE X POSITION
C = INT(RND(1)¥15):REM GENERATE COLOR NUMBER

POKE 2873,96:POKE 13826,32:REM DISABLE CTRL C:BLANK CURSOR
PRINTE(X,Y) ! (31,CI)MSCHRS(13)!1(18);3

FOR T

1 TO 3B8P:NEXT:REM TIME DELAY

POKE 138#26,171:POKE 2873,173:REM REST. CURS.:ENABLE CTRL C

GOTO 390

Note that the pfogram above illustrates the "print at"”
capability of V3.3. It also shows the ease with which
color can be included. An additional feature of this
program is the removal of the cursor (by replacing

the square with a blank cell) while the program I'uns.
If, however, a program in which the cursor hés been
removed is interrupted before the cursor is replaced,
the cursor will remain invisible. Consequently,

CTRL-C is disabled while the cursor is blanked out.

The second program listed below shows the ease
with which displays can be sorted into disTtinct parts.
+ is designed for a black and white monitor. It
illustrates also a use of the character pickup
feature. (Note: Serial systems users should consult

the NOTE at the end of this chapter.)

o
(Yo

519

REM NUMBER SORT DEMONSTRATION

POKE 13826,32:REM BLANK CURSOR
PRINT!(28)!'(28)&(4,8)"UNDER 5@4"!(31,15)€(20,8)"OVER 58"
PRINTS(9,6)"Random Number Sort Demonstration"

READ P$(1),P$(2):REM READ MESSAGES FROM DATA

FORI =1 TO 19

Y = 18
N = RND(1)*149
IF N <=5¢ THEN X = 4:C = 14:G0TO 1440

X = 28:C = 15

GOSUB 288

PRINT USING"##.##"&(X,Y)!(31,C)N
GOSUB 348 --

NEXT

PRINT!(31,14)!'(18):REM SET BLK BKGD, HOME CURSOR
POKE 13026,171:REM REPLACE CURSOR

END

REM SUBROUTINE TO SELECT Y VALUE

PRINTE& (X+3,Y)!1(33) =

INPUT CHS$

IF CHS = "." THEN Y = Y+1:GOTO 2ﬂ0’

RETURN

REM SUBROUTINE TO FLASH MESSAGE

FORM =1 TO 5

IF C = 14 THEN C = 15:D = 1:GOTO 3ud
C 14

D 2

PRINTE&(2,28)!(31,C)PS(D)

FOR T = 1 TO SAB:NEXT T

NEXT M

RETURN

DATA"NOTE RANDOM NUMBER SELECTION"
DATA"note random number selection"

30

Note that the subroutine beginning at line 2088

checks to see whether the last decimal point is in
either the left or right (low number or high num-
ber) column of listed numbers. When the decimal
point is found to not be present, the number is
printed. Of course, the program would fun in an
instant if line 120 (the call of the message flash-
ing subroutine) were removed. It is included to
illustrate the ease with which attention getting

displays can be programmed.

Line insert and line clear capabilities are
illustrated in the program below. (Note: Serial
system users should consult the NOTE at the end of

this chapter.)

18 REM LINE INSERT DEMONSTRATION

20 PRINT!(28)!(21);:REM CLEAR SCREEN, HOME CURSOR, SET FORMAT
30 ml$ = "Original line"

49 m2$ = "of text is here."

S¢ FOR L = 1 TO 28

60 PRINTm1S$;L;m2$

78 NEXT

80 PRINT&(#,21)"Enter line to be inserted (1 - 61 char.)."
3¢ INPUT LS
189 PRINT!(12)!(19)!(12>!'(139);:REM CLEAR MESSAGE LINES
114 INPUT"Enter number of line where insert is to go.";N
120 PRINT!(12)!(19)8(B,N-1)1(26)LSE(D,21);
139 END

Lines 30 through 72 produce text on the screen.
Lines 88 through 118 ask you to enter a line of text
and then a location for it to be inserted. But be-
fore the insert location is asked for, the first

message and your entered text are cleared. Line 128

O
(o)

v)

clears the message, inserts the text you have
entered, then moves the cursor to the lower left
of the screen so that the OK prompt will appear

there when the program ends.

Data file handling

The BASIC data file handling of V3.3 has also been
modified. TFirst, execution speed has been iﬁproved for
the DISK GET command and the DISK PUT command is no longer
necessary. Second, a DISK FIND command has been added to
allow rapid searching for-a string of characters within a

BASIC data file. The syntax for the command is:
DISK FIND, string
Examples of the FIND command are

DISK FIND, "HARRY"
and

DISK FIND, ABS

The command works most smoothly with sequential data
files. The search begins at the current file pointer lo-
cation. If you wish to place the pointer at the beginning
of the file, you must execute DISK OPEN,n,"filename" prior
to the DISK FIND command. (n is buffer number 6 or 7.)

If the string is located in the data file, the pointer will
be left at the end of the field in which the string was
found. If the string is not found, a disk error #D will
be reported. The TRAP command mentioned earlier is useful
for recovering from the error without exiting the BASIC

program.

92

Spo
919

Use of the FIND command with random access files
is possible if the programmer has been careful in filling
interrecord gaps with nulls, spaces or carriage returns.
That is, a 128 byte record which at one point had data
189 bytes long and then was re-written with 58 byte data
will still contain 50 bytes of the old data. The FIND
command may find this old data instead, but the information
returned by way of the following INPUT statement will be
the new data. If spaces are used for padding, they should
precede the data. If carriage returns are used, they
should come after the data. Nulls (character for ASCII

code #) can be used either before or after the data.

Since the FIND command will usually terminate with
the file pointer set inside a record, a BASIC subroutine
has been included which will calculate the number of the
record in which the FIND command terminated. The sub-

routine is listed below.

REM Record cdlculation subroutine for DISK FIND
DEF FN dec(bed) = (bed AND 15) + (INT(bcd/16)%10)

g28 -

930
Sug
950
360
378
9819

ab=PEEK(12842) * (FN dec(PEEK(9684)) - FN dec(PEEK(9£82)))
re=(PEEK(9133)-PEEK(8999))*256 + PEEK(9132)-PEEK(8998)-1
rn=ab + INT(re/2”PEEK(12876))

REM rn is the desired record number
RETURN

On a random access data file, the DISK FIND command
should be followed by GOSUB 98p:DISK GET,RN where RN is
the desired record number. Then the DISK GET command can
be used to set the file pointer to the beginning of the

record that contained the search string.

93

The program on the following page is an example of
the use of the DISK FIND command for a sequential file.
It is intended for use with Tutorial Disk % and, if you
saved the sequential file demonstration program given in

Chapter 4, it can be entered by adding to that program.

Boot up your computer with Tutorial Disk 4, then
choose option 1. If the earlier example was saved, you
will now have about half of the DISK FIND demonstration
program in the workspace. Complete the program by changing
line 38 then adding lines 78, 213, 255, and 308 thfough
538. If you didlnot save the earlier example, énter NEW
then type in the entire program. When completed, the

program should be saved in PROGI1.

Note that the program now includes the TRAP feature
which is used in both the listing routine and the finding
routine. Care has been taken to disable the TRAP feature
after each intentional use so that an error #D message
occurring some other place in the program will indicate

an actual error.

When you have stored three sets of names and numbers,
choose the "Find a name" option. Next, enter one of the
names you have stored. The program will find that name,
then pickup the corresponding number (the next item in
the sequential file). The number must be separated from
the name by a carriage return (i.e., entered intc the

bv a separate PRINT statement as done in line 1up).

qu

DO REM SEQUENTIAL FILE DISH FIMND DEMOMSTRATIOH
S FRINT &
0 INFUT"Enter data, List data. or Fimd a name
40 FERINT!
o IF O THEM 100
HG O IF Cs THEM 200
O IF CF o THEM Z00
0 REM ROUTIME FOR EMTERIMG DATAH
PISK OFEN,&."DATAL"
FOR I =1 78 =
INFUT"Enter a name":MN%
IMFUT"Ernter the helepﬁmne number " T
FRINTHRS, M FRINT#6, TS
MEXT I
CISK CLOSE.S
FRINT"DATA STORED."
GOTO =0

REM ROUTINE FOR LISTING DATA
DISE OFEN,&,"DATAL"

TRAFR 400

FOR I =1 7O =

INFUTHS. NS, TS

FRINT MN$,T$

MEXZT I

TRAF O

DISKE CLOSE, &

G070 =0

REM ROUTINE FOR FINDING DATA
INFUT"Enter the name to be found"j;Ns
DISE OFEMN,&."DATALM

TRAF SO0

GISE FIND,N%

TRAF O

INFUT #&,T$

FRINT M$,TS

INFUT"Centinue search (Y, /p) ";AS
IF A = "¥" THEM IT0

DIk CLOSE.&

GO0TAO =0

REPM LIST RQUTINE TRAF MESSAGE
FRIMT"THE DATA FILE IS EMFTY."
TR&F D

5OTO TO

FEM FIMD ROUTIME TRAF MESGAGE
FRINT"THAT EMTRY WGS NOT FOURND. "
Tr&EF D

GOTO TO

w0
o

PRINT statement on line 368 prints the name you have
entered and the corresponding number. If the name is

not found, the message in line 518 will be displayed.

Note that you can find the name by entering any
sequential segment of the spelling of the name. The
screen display, however, will give the partial spelling,
as you entered it, not the name as it is stored in the
the file. In a sequential file, the pointer cannot back
up to allow retrieval of the item found. This could give
a problem if, for example, two people with the same last
name but differenf first names were on the list. A search
for the last name would return the telephone number for
the first person with that name on the file but would not
return the first name. A continuation of the search would
give only a second number. If you had temporarily for-
gotten the first name, you could not get the correct
number without starting from the beginning of the se-
quential file and listing the entries up through the two
names. The next example shows how the FIND command can
be used with random files in order to return the entire
record in which the found item resides.

The program shown next can be formed by adding to
the random file demonstration program in Chapter 4. Boot
up your computer with Tutorial Disk 4, then choose option
2 (or simply choose option 2 from the menu if you are al-

ready booted up with disk 4). If the earlier example was

96

= UM FILE Cloh FIND DEMOMETRATICN

MFUT"Enter record. List record, or Find item (Eq/L0F7"iCs
PRINMT! (28

IF C¢ = "E

[F Cs = "L

IF Cg = "F°

RE; DT

=
T
bt}
-4
T b4

o

Far

FRINT"For record number";FR;
INFUT"enter item name';Is$
INFUT"Enter number of items":ig

DISE GET.R
FRINTHO Ry ", "3 I ", " NS

LISK PUT

MEXT R

DISEKE CLOSE. S :

FRINT"DATA STORED"

GaTg=G

REM ROUTINE FOR LISTING RECORLS
INFUT"Enter number for record to be listed";FR
DISK OFEN.&, "DATAD"

TRAF 700

DISE GET.R

IMFUTHS. RN, I8, NS

TRAF O

FRINT RM,I$.N$

INFUT"List another record {(Y/N)'";A%
IF A% = "¥Y" THEN Z10

DISK CLOSE, S

GOTO =o

REM ROUTINE FOFR FINDING ITEMS
INFUT"Enter the item to be found":1%
LISk OFEM.&,."DATAZ"

TRAF 80G:DISK FIND,I$: TRAFG

GOSUR 200

CIGE GET,.RM

INFUT#U.RN IRE, Mg

FRINT RN, RS, NE

DISKE CLOSE.&

GOTO =

REM LIST ROUTINE TRAF MESSABES

IF R © 4 AnND R+ O THEM FRINT"FILE IS ERASED.":G0TQ 730
FRINT"OMLY RECORDS 1, 2. AND I ARE IN THE FILE."

TRAF

EATA T

REM FIND ROUTIME TRAF MESSAGE

FRINT"THAT ITEM IS NOT IN THE FILE.

TRAF O

GOTOIT

-

REM Record calculaticon subroutine far DISH FIn
DEF FM decibcd? = ibcd &MHD 15) + (INTibed. 1a) %
Ab=FEEM (120421 ¥ (FM dec (FEEFH (00411 —~ FN dec
re= {FEER (P10 ~FEEL (8999) 4258 + TEER (@1I2).
roFal + INT e /20 FEER (1207 &)

REM o i3 the desired record number

1T T Hf,lr\‘!

FRED Al

saved, you will now have nearly half of the random file
DISK FIND demonstration program in workspace. Complete
the program by changing line 38 then adding lines 780,
325, 345, and 569 through 98#. If you did not save the
earlier example, enter NEW then type in the entire pro-
gram. When completed, be sure to save the program in

PROG2.

Before running the program, choose option 5 from
the Tutorial Disk 4 menu to erase data file DATA2. If
you do not do this, you may get some surprises when using

the FIND option (because of data left in a record from

previous use).

Now choose option 2 from the menu and run the
demonstration program. After storing data, try finding
an item. You can use all or a sequential portion of the
letters in the item name. The FIND routine will return
the entire record as it is stored in the file. As in
the earier DISK FIND demonstration program, the TRAP

feature will return a message if the item is not found.

BASIC Functions not present in 0S-65D V3.3

There are a few BASIC functions in 0S-65D V3.2 that are no

longer present in V3.3. The first two of these functions are

NULL

TRAP.

and WAIT. These keywords have been replaced by EDIT and

The third function that has been disabled is ATN (arctan).

However, since this keyword has not been reused, it is possible
to revive this function if it is crucial to your applications.
The cost of reviving ATN is the loss of the PRINT extensions
just described. If you wish to use ATN, run the program

calied 'ATNENB' contained on disk 5 of the tutorial set. A
menu will be printed giving you a choice between the ATN func-
tion or the PRINT extensions. After you select which feature
you want, the program will automatically reconfigure your

system to support either ATN or the PRINT extensions.

89

*% Note to Users of Serial Systems **%

0S-65D V3.3 is only partially compatible with serial
If you are using a Hazeltine 1420 terminal, be

systems.

sure switch 6 is set to the ESC position.

that refer to color, screen size, or windowing are not

operable on serial systems.

1)

2)

3)

4)

Specifically,

The commands that use the ESC key are not

operable.

The destructive backspace key is instead
of <SHIFT/0> or <RUB OUT> and the line delete
is <@> instead of <SHIFT/P>.

The PRINT command !(26) inserts a line but not

at the cursor position.
at the left margin.

The line always starts

The following PRINT commands should not be used:

(L)
1(2,n,m)
1(S)
1(29)

1(21)

1(22,w,1)
1(25)
1(28)
1(29,n)
1(31,n)
1(33)

Color 2 select

Color change

Cursor position sensing
Wide character select
Narrow character select
Window select

Color black/white select
Screen clear

Seléctive color clear
Color n select
Character pick up

100

Certain features

OVERLAY CUTOUT

For Screen Display Commands

Users of Video Systems may find the overlay on
this page helpful for remembering the ESC key
screen display commands. It should be cut out
and placed above the top row of keys so that
the "WIDE CHAR" is just above the "1" key.

COLOR

COLOR
OFF

E WIDE JINARROwWl HOME § CLEAR t ‘ INSERT | DELETE
SC CHAR CHAR JCURSOR] TO END LINE LINE

Chapter 8

Extended 65D Utilities

When Tutorial Disk Two is booted up no menu is displayed.
Instead, the system is uniocked for programming in BASIC's immediate
mode (the "OK" prompt appears). What is not readily apparent is that
this disk also contains a package of powerful 65D utility programs.

With these programs, a 65D user can:

1. Change the numbering of statements within a
program in a variety of ways. This makes it
possible, for example, to add a statement
between two statements that presently are -
numbered consecutively.

2. Reduce the storage space required by a
program by removing REM statements and/or
blanks.

3. Check the size of buffers present before
a program. Buffers can also be added and
deleted in a very flexible fashion.

L. Sort data files, including MDMS master files.

5. Generate an assembly language listing for
machine code programs.

6. Copy data files.

These utility programs can process program and data files created under
any version of 0S-65D. However, several of the utility programs must
be run on a system booted under 65D V3.2. For this reason, Tutorial
Disk Two boots under 65D V3.2 This means that programming done after
booting the system with Tutorial Disk Two cannot use the new features
of 65D V3.3 that are available when the system is booted with Tutorial

Disks three, four, or five.

is:

The directory listing for Tutorial Disk Two, C4P §" system

-= Directory --—

File name Track range
0S&SDT 0O -8
BEXECX ? -9
REFACH 10 - 13
RSER 14 - 16
DISASM 17 - 2G
GSOSRT 21 - 2C
DATRAN 24 - 26
RUFFER 27 - 29
D—ASM 9 - 29

S5 Entries free out of &4

(track ranges for 8" systems will be somewhat different).

Disk Two is write-protected to reduce the possibility of

accidentally destroying these files.

Detailed explanations and examples for the Extended 65D Utility

programs follow. Listings for all of the programs appear at the end of

this chapter.

A.

Résequencer

The resequencer is stored in the file RSEQ. To use this pro-
gram, boot the system with Tutorial Disk Two and type RUN"RSEQ.
Then type "E" or "ENABLE" in response to the enable/disable
question. This replaces the keyword "NULL" with the word "RSEQ"
and places code to implement the RSEQ command at the top of memory.

RSEQ cannot be run on a system bcoted under 3.3 because the 3.3

102

Editor uses the top of memory. With RSEQ enabled, any 65D

program can be loaded into the workspace (don't reboot - simply

insert the disk containing the PROGram and type DISK!"LO PROG")

and resequenced in a variety of ways.

The syntax for the RSEQ command is as follcws:

NLN

OLN

INC

"

RSEQ<CR>

RSEQ NLN<CR>

RSEQ NLN,OLN<CR>
RSEQ NLN,OLN,INC<CR>

RSEQ NLN,,INC<CR>

RSEQ ,,INC<CR>

If a non-existent

error will appear with

new line number B<=NLN<6ugpg
0old line number B<=0LN<su4p@doQ

increment between line numbers B<INC<256

resequence starting with the line
number 18 at the first line and
renumber the lines in increments
of ten. :

resequence using NLN as the first
line number and renumber the lines
that follow by increments of ten.

resequence starting at line OLN
with line number NLN and renumber
the lines that follow by increments
of ten.

resequence starting at line OLN with
the line number NLN and renumber the
lines that follow by increments of
INC.

resequence starting with the first
line as NLN and renumber the lines
that follow by increments of INC.

resequence starting with the first

line and renumber the lines that
follow by increments of INC.

line is referred to, an undefined statement

the o0ld line number, the new line number

and the line being resequenced. After the resequence is complete,

the next available line number in the sequence will be output

between square brackets.

103

The resequencer will prevent the buffer creator from being

enabled when it is enabled. The resequencer can be disabled by

running "RSEQ" and typing "D" or "DISABLE" to the enable/disable

question.

Examples: Consider the following program:

AN
PN

10 REM TEST PROSEAN
29 RER

I3 ARINTORRINTUTHIZ IS THE TEST =RICAEm 8In
=5

Sa REM:REN

B3 i = o+ L -

TAOON ¥ OGOTO 189, I00. 38 LET

59 FRINTFRINTFRINTHFRINT"THIS zhp
0 END

133 PRINTIPRINTUAT STRTEMENT L109%: GOTO &9

n
FRINTPRINT™ST '*PT:MEV’ *qE": G0TS
PRINT PRINTAT STATEMENRT Zoa®: G073

oy
Do)

—
P

The command RSEQ will resequence the entire program by line

number increments of 1@, starting with a line number of 18.

result is:

XWJH'FTS
4] C"In’ el

10u

The

Notice that the line numbers referred to in line 78 are
correctly changed. However, statement numbers that appear in

PRINT strings (enclosed in quotes) do not change.

The command RSEQ S8f also resequences the entire program
with increments of 18, but starts with a line number of 588 for

the first line. The result is:

588 REM TEST PROGRAM

518 REM

S20 PRINT:FRINT“THIS IS THE TEST PROGRAM":REM
S3@% =9

548 REM:REM

S5 X =X+ 1

950 ON X GOTO 999, 608, 618: LET X = 109
576 PRINT:PRINT:PRINTX:PRINT"THIS IS5 THE
558 END

599 PRINT:FRINT“AT STATEMENT 186*: GOTC 556
608 PRINT:PRINT"AT STATEMENT 286": GOTO S50
610 PRINT:PRINT"AT STATEMENT 388“: GOTO 550

Finally, the command RSEQ 99,568,120 resequences with

increments of 1##, starting with a line number of 99 at old

line 5A#. The result is:

18 ®EM TEST PRGGRAM

=9 FEM

20 PRINTPRINT"THIS IS THE TEST FROGRAM": REM
R % =g

23 EEM:REN

133 » A+ 1

293 % ¥ GCTC S33. 633, P99 LET ¥ = 1098
I3 PEINT PRINT FRINTY:PRINT"THIS I35 THE =ND®
333 BN

332 PRINT-FPRINTAT STRTEMENT 39% GOTO 453
B3 FRINT FRINT"AT STRTEMSNT 209" GGTO 139
TRE OFRINT PRINT'AT STRTEMENT 209" GOTO 199

1Nne

Repacker

The REPACK Utility allows users of 0S-65D to pack their
programs into the smallest possible amount of space. This is
done by removing REM stétements and/or blank spaces. Before
REPACKing, the program must be saved in an 0S-65D named file.
Once this has been done, reboot with Tutorial Disk Two and

type RUN"REPACK. Insert the disk which contains the program
you wish to REPACK into Drive A and enter the program's file
name. Now enter the method of REPACKing (remove blanks, REM's
or both). Enter 1, 2, or 3. When the operations are completed,
a message will appear reporting the number of bytes remerd from

the program.

Note that this program can be run only with the system

booted under 0S-65D V3.2 (Tutorial Disk Two).

Examples: Consider the following program:

18 REM TEST EROGRAM
20 FEM

28 PRINT:FRINT'THIS IS5 THE TEST PROGRRM" FEM
43 ¥ =

S@ REM:REM

G X =X +1

7O OON ¥ GOTO 499, 69, 208 LET ¥ = 4500

88 PRINT:PRINT FRINTX FRINT"THIS I35 THE Sho
53 END '
189 FRINT:PRINT'ST STATEMENT 136" GOTO £a
200 FRINT:PRINT"AT STATEMENT 2047: GOTh AR
IO FRINT FRINTYAT STATEMENT 200 0TS 29

106

Running REPACK results in the following screen display:

0K
RUN"REFRCK

FILENAME? TEST

.l

EFACK BY REMIVING:
E

12 BLANK SFRCES

2> REM STATEMENTS

32 BOTH BLANK SPACES AND REMS
ENTER YOUR CHOICET 2

49 BYTES RECCYERED.

CK

Then LISTing the program produces the following:

19 REM

26 REM

38 PRINTFRINT'THIS IS THE TEST eeonmsn”
48 X=9

S8 REM

83 W=+l
T8 ONXGOTOL86. 209, 389 LSTX=1900

3 PRINT FRINTPRINTH:FRINT"THIS [THE £np-
32 ZND

199 FRINT:FRINT'AT STATEMENT <00 G0TOSH

S99 PRINTIFRINTYAT STATEMENT Z09¢-5oToég

398 FRINT FRINT'RT STATIMENT Io9 goTiss

107

Notice that 4@ bytes are saved in the second program.

This is done in the following way:

line # bytes saved
10 13 (13 character REMark)
3g 2 (":" and keyword "REM")
ug 2 (2 spaces)
50 L (4 character REMark)
60 y (4 spaces)
78 9 (9 spaces)
190 2 (2 spaces)
200 2 (2 spaces)
389 2 (2 spaces)
Total: 4B

Note that no lines are removed, even if they contain only

the keyword "REM".

108

Buffer Creator

The Buffer Creator also utilizes the top of memory. Hence,
it cannot be run on a system booted under 65D V3.3, or a system
with the RSEQ command enabled. The program is stored in the

file BUFTER.

To use it, boot the system with Tutorial Disk Two (65D V3.2)
and type RUN"BUFFER. Respond "E" or "ENABLE" to the enable/disable
question. The keyword "NULL" will be replaced with the word "BYTE"
and code will be placed at the top of memory that allows use of
the BYTE command. Then load the program for which you wish to
create (or delete) buffers and use the BYTE command according to

the following syntax:

p=<NB<64 00D

BYTE NB<CR>- moves source leaving NB free bytes in between
the operating system and the source.

" BYTE<CR> ~ reports the start of the buffer, the starting
byte of your program and the number of bytes
between the source and the operating system.

Examples: Consider a program with no buffer, i.e., it starts
at the beginning of the workspace. The command
BYTE will produce the following listing:

~
N
P

CECIMAL HER

LI P I e

= fh

1 =44

LU i X
IR
ot
¢ Ny Mm v

¥
[N

1NnQq

The command BYTE 6144 would be appropriate for saving two
single-track (3872 byte) buffers for, say, data file use with

this program on an 8" system. The following listing is produced:

oK
SYTE 5144

DECIMRL HESADECINMAL
BLFFER STERETS 12878 3ZLTE
FROGRAM STRETS 13l I33TE
BUFFER SIZE Elad FLEO0
0k

On a 5" system, BYTE 4996 would create two single-track buffers.

To remove buffers from a program, simply enter the command
BYTE B8 (the command BYTE is not the same as BYTE #; BYTE simply

reports information. It does not alter existing buffers in any
way).

With the BYTE NB command, all locations in the buffer are
set to zero; therefore, anything of value in the buffer area
should be saved before executing the command. After buffers are

created they can be saved on disk by saving the program.

When BYTE is enabled, the RSEQ command cannot also be
enabled. To disable BYTE, simply type RUN"BUFFER and respond

"D" or "DISABLE".

General String Oriented Sort

GSOSRT is a general purpose sorting program that may be
utilized on virtually any data file under 0S-65D. The program
allows for multiple fields in either sequential or random format

and has special conditions to accommodate MDMS Master Files.

To use GSOSRT on a MDMS master enter the master file name
(the "#" extension is optional) and type a "Y" or "YES" to the
question "IS THIS A MDMS MASTERFILE?". The program will then
list the fields that are present in the file. Select, by number,
the field you want the file to be sorted by. The program will
then list your responses up to this point and request the user's
final confirmation. A response of "Y" or "YES" will initiate

the sort. Any other response will abort the pProgram.

To use GSOSRT with a non-MDMS type file, first specify
whether the file is sequential or random. TIf a random file is
specified, the user must additionally specify the number of
bytes per record. Default record size is 128 bytes under
0S-65D. The program will then ask for the number of fields
per record, and the number of the field the sort is to be done
on, i.e., an entry of 2 means sort on the second field. All
information the user has entered will then be displayed and a

request for confirmation will be made, as above.

After GSOSRT has completed the sort, the user is asked
whether the file should be stored in ascending or descending
order. After the user specifies his choice, the entire file
1s repacked in the requested order. When done, the statement

"OPERATIONS COMPLETE" appears and the program will terminate.

.—.J
4
[

This program can be run with the system booted under any

version of 65D.

BASIC Disassembler

The BASIC Disassembler is a machine code disassembler written
in BASIC. The program breaks down the machine code at specified
intervals to an assembler format. It will print out the addresses
in octal and hexadecimal, the machine code that was found at these
addresses, the 6582 assembler op-code, the operand which corresponds
to the op-code, and special notes (for JMPs and JSRs). The program
does not provide labels for branches, jumps, or other op-codes

which could use labels.

The program is started by running the program DISASM. Then
eriter the addresses in decimal for the beginning and end of the
disassembly. After the disassembly has been completed,

"END OF DISASSEMBLY" will be displayed followed by the "OK"
prompt of BASIC. This program can be run with the system booted

under any version of 68D.

112

Data File Copier

The DISK!"LO__ " and DISK!"PU___ " commands provide the
capability for transferring a program from one file to another.
The utility program sorted in the file DATRAN provides a convenient

method for copying data between two files.

To use this utility, type RUN"DATRAN and then enter an input
file name, the device it is located on, an output file name, and
the device it is located on (A, B, C, D). The input file is then
copied onto the output file. Should the length (in tracks) of
the input file exceed the length of the output filg, the program
will issue a warning and the user may at that point terminate
the program or choose to continue and fill the output file as
far as possible. This program assumes standard format data files,
i.e., 8-page tracks on-mini%éloppies and 12-page tracks on 8"

floppies.

This program may be run only with the system booted under

versiop 3.2 of 0S-65D (use with.Tutorial Disk Two).

Program Listings

The last section of this chapter contains source listings for

the six program files in the Extended 65D Utilities Package.

113

Blank Page

Blank Page

Blank Page

1ee REM e
110 REM : RSEQ® V3.0

120 REM e

139 :

1409 :

150 REM (C) 1980 by Ohio scientific

1460 REM All Rights Reserved

ige :

i90 :

200 :

500 REM See if the EDITor is already on line

S10 :

S20 FOR X = 709 TO 712: NAMES = NAMES + CHR$ (PEEK (X) AND 127): NEXT
930 IF NAME$ = "RSEQ" OR NAME$ = “NULL" THEN 600

540 :

S55@ PRINT CHR$(7): PRINT "The ":; NAMES$; “ Command is enabled, ";
960 PRINT " Please disable it. ": NEW

S70

980 REM Save (C) and disable (C)

S99

600 CC = PEEK (2073): POKE 2073, 094
610 :

620 FOR X = 1 TO 33: PRINT: NEXT
630

640 PP = 80@: IF PEEK (8993) = 2 THEN PP = &4
650 PP = (PP - 20) 7 2

660

670 PRINT TAB(FP); "—-

680 PRINT TAB(FP); ": RSEQ V3.0 :

6990 PRINT TAB(FP); *
790 PRINT: PRINT: PRINT: PRINT

710 :

720 REM Enable or disable RSEQ ?

7309 :

749 PRINT: PRINT "Enable or Disable RSEQ

750 INPUT - - "; QAS

769 IF LEFT$(QAS$, 1) = “E" THEN 1040

779 IF LEFTS(QAS$, 1) = “D" THEN 5S040

780 PRINT: PRINT "Do not understand 7": GOTO 740

790

800

810 :

1009 REM Enable RSEQ if can

lele :

1020 REM See if we have enough memory

1030 :

1949 GOSUB 10020

lo5e

106@ REM Find out which copy to use

1070

1080 BASE = (08 * 14 + 00) + (03 # 16 + 02) # 256

1090 IF SIZE = 49152 THEN OFFSET = 2540: DEST = 48000: GOTO 1i1Se
1109 IF SIZE >= 32768 THEN OFFSET = 1268@: DEST = 31616: GOTO 1150
1119 IF SIZE >= 24%76 THEN OFFSET = 0000: DEST = 23424
1120

113@ REM Change memsiz

1140 :

115@ POKE 132, (DEST - 2) - INT ((DEST - 2) / 256) # 256

1160 POKE 133, INT ((DEST - 2) / 25&)

1170
1180
1190
1200
1210
1220
1236
1249
1250
1260
12709
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1429
1430
1440
1450
1440
1470
1480
1490
1500
S5000
S010
S020
5030
5049
S0Se
960
5070
2080
S099
S100
5110
S12e0
5130
5140
5150
5160
5170
2189
S199
209
35210
S220
5230
S240

S350

FOKE 8960, INT (DEST - 2) / 2356 - 1: X = FRE(X)

PRINT: PRINT “"Working ";

FOR X = © TO 1151

T = PEEK (BASE + OFFSET + X)

FOKE DEST + X, T

PRINT “. ";: IF POS(X) = &0 THEN PRINT CHR$(13);

NEXT
REM FOKE RSEQ dispatch into dispatch table

AL (DEST + 28 —~ 1) - INT ((DEST + 28 - 1) / 2546) # 256
AH INT (DEST + 28 - 1) /7 256
FOKE S46, AL: FOKE S47. AH

REM FOKE reserved word "RSEQ" into reserved word t.able

POKE 709, ASC("R"): FOKE 710, ASC("S")

FPOKE 711, ASC("E"): FOKE 712, ASC("Q") + 128

REM Say RSEQ@ is enabled

FOR X = 1 TO 33: PRINT: NEXT

PRINT "RSEQ command now enabled. ": FRINT

PRINT "“System memory size found to be"; SIZE; “bytes. ": PRINT

REM Restore control C to original status

POKE 2073, CC

NEW

REM Disable RSEQ if on line

REM Find ocut if RSE& is enabled

NAg=""“: FOR X = 709 TO 712: NAS$ = NAS+CHR$ (FEEK (X) AND 127):
IF NAME$ = "RSEQ" THEN S110

FRINT CHR$(7): PRINT "RSEQ not enabled, ";

FRINT " therfore carnot disable it. ": POKE 2073, CC: NEW

REM Restore reserved word "NULL" into reserved word table
POKE 709, ASC("N"): PFOKE 710, ASC("u")

FOKE 711, ASC("L"): FOKE 742, ASC(“L") + 178

%EM FOKE "NULL" commnad dispatch into dispatch table
;OKE 344, 108: FOKE 547, 008

ﬁEM Find out how much memory we have

COSUB 100206

ﬁEM Reset BASIC’s memoiy size

FOKE 132, (SIZE - 1) -~ INT ((SIZE - 1) / 256y # 2546
FOKE 133, INT ((SIZE - 1) / 256)

NEXT

o260
270
5289
52990
5300
5310
S320
5330
5340
S350
S369
5379
53860
5390
5400
5410

REM Restore system memory size

POKE 8960, INT ((SIZE ~ 1) /7 256) - 1: X = FRE (X)

REM Tell them we are done

FOR X = 1 TO 33: PRINT: NEXT

PRINT "RSEQ command now disabled. “: PRINT

PRINT "System memory size found to be"; SIZE;: "bytes. *: FRINT
REM Restore control ¢

POKE 2073, cCC

NEW

5429

5430

5449

10000
10010
10020
10030
10040
100350
10040
10070
10080

REM Find the top of memory

UL1SR = PEEK (S74): UZSR = PEEK (575)

POKE 574, (08 # 146 + 00): POKE S7S., (@03 # 1& + 0O1)

SIZE = USR (SIZE): IF SIZE < O THEN SIZE = SIZE + 45534

FPOKE S74, ULSR: POKE 575, U2SK '

IF SIZE > (15 # 16 + 14) + ((0S # 16 + 15) # 254) THEN RETURN
PRINT CHR$(7): FRINT "Not enough memory., only"i: SIZE;

FRINT "bytes found. ": FOKE 20673, CC: NEW

Blank Page

Blank Page

Blank Page

0 REM REFACK
l .

2
9 DEF FNA(X)=1O#INT(X/16)+X—16#INT(X/146)
10 FPO=18302

20 FORI=1T70S: PRINT: NEXT

30 PRINT"## BASIC PROCRAM REFACK UTILITY ##"
31 PRINT

32 PRINT"## WARNING —-—— USE DRIVE A ONLY ##"
35 DISK!"SE A

49 FORI=1TOS: PRINT: NEXT

S50 INFPUT"FILENAME"; A$: GOSUEL0GO

S1 IFA=OTHENPRINT"FILE NOT FOUND": GOTO91
SS POKEFO, A: GOSUE3J00

70 DISK'!'“GO 4780"

80 FR=FEEK(FPO)+23&6#FEEK(FO+1)

?@ PRINT: FRINTFR"EYTES RECOVERED. "

91 END

100 DR=11897: A=0

105 A$=A%+" “: AS=LEFT$ (A% 6)

110 DISK!“CA 2E79=08, 1": GOSUE200

120 IFASOTHENRETURN

139 DISK!"CA 2E79=08, 2"

200 FORI=1TO32: N$="": FORJ=0TO0S

210 N$=N$+CHR$ (PEEK(DR+(I—-1)%8+J))

220 NEXTJ: IFA$SONSTHENNEXTI: RETURN

230 A=PEEK(DR+(I-1)#8+6): A=FNA(A)

249 RETURN

309 FRINT: FRINT"REFPACK BY REMOVING: "

319 PRINT" 1> BLANK SFACES"

320 FRINT" 2> REM STATEMENTS"

3390 PRINT" 32> BOTH BLANK SFACES AND REMS*"
3490 INPUT“ENTER YOUR CHOICE": A

350 IFA<IORA>3GOTO300

369 FOKEFO+1, A: RETURN

Blank Page

Blank Page

Blank Page

100
110
12@
130
140
150
160
170
ige
190
200
210
220
230
240
259
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
419
420
430
440
450
460
470
480
490
500
S10
520
530
540
S50
560
70
S80
S99
&00
610
620
&30
640
630
660
&70
680

REM IR AR A

REM . BYTEVL

REM A

REM

REM

REM (C) 1980 BY OHIO SCIENTIFIC

REM ALL RIGHTS RESERVED / WRITTEN BY

REM PAUL A. JOVIAK 8/80 AURORA

REM

REM

GOSUB 1410

POKE 20673, 96 : REM CTRL-C OFF

FOR X=1 TO 33: PRINT: NEXT

PRINT ":::iiiirriiiirrsrer @

FRINT ": 0S-46SD BUFFER CREATOR : "

PRINT ":::icosrrrririrrissiriiiiit ™ FOR X=1 70 5 PRINT:
FRINT: PRINT "Enable or Disable BYTE command"
INPUT W— - "; QAS:
IF LEFT$(QA$, 1)="E" GOTO 350

IF LEFT$(QA%, 1)="D" GOTO 1150

PRINT: PRINT “WHAT 7": PRINT: GOTO 230

REM

REM :

REM FIND OUT HOW MUCH MEMORY

REM

MEMSIZ=PEEK (89&0)

REM

REM SET UF FOR TRANSFER

REM

IF MEMSIZ =95 GOTO 41¢

FRINT: PRINT "“Not enough memory, 24K RAM min. ": NEW
IF MEMSIZ=95 GOTO 47¢

IF MEMSIZ <=127 THEN MEMSIZ=127: GOTO 470
MEMSIZ=191

REM

REM POKE SYSTEM MEMORY SIZE

REM

AD=((MEMSIZ-3)#256)-10: REM DECIMAL OF MEM TOF
REM

FOKE 132. AD-INT(AD/256)#256: POKE 133, INT(AD/254)
T=FRE(X): REM FORCE NEW MEM ADDR

REM

REM SET BASE = START OF IMREDDED CODE

REM

IF MEMSIZ=95 THEN EBASE=12488

IF MEMSIZ=127 THEN EASE=1371i2

IF MEMSIZ=191 THEN KASE=14736

REM

REM MOVE BYTE CODE INTO FLACE

REM

FRINT: PRINT "Working *;

FOR X=0© TO 1032: T=FEEK(X+BASE): POKE AD+1+X, T
FRINT “. “;: IF FEEK(22) » 6@ THEN PRINT CHR$(13);
NEXT: FRINT CHR$(13); SPC(61); CHR$(13});

REM

REM DETERMIN DISFATCH ADDR.

REM

IF MEMSIZ=095 THEN DH=0@92

IF MEMSIZ=127 THEN DH=1Z4

NEXT

FPRINT

690
700
710
720
730
740
750
760
779
7809
790
800
1090
1100
1110
1120
1130
1140
1150
11460
1170
1180
1190
iz290
1210
1220
1230
1240
1250
1260
1380
1390
1490
1410
1420
1430
1440

IF MEMSIZ=191 THEN DH=18¢

REM

REM FOKE DISFATCH ADDR INTO FLACE

REM

FOKE 546, 07: FOKE 547, DH

REM

REM POKE RESERVED WORD "EBYTE" INTQ FPLACE

REM

FOKE 709, ASC("B"): FOKE 710, ASC("Y")
FOKE 711, ASC("T"): FOKE 712, ASC("E")+128

REM
FOKE2073, 173 : REM CTRL~C ON

REM

FRINT “BYTE command now enabled. ": NEW

REM :

REM

REM GOTO MACHINE CODE TQ SET MEMSIZ

REM

POKE 574, 1460: FOKE 575, 061

X=USR(X): CLEAR

REM

REM POKE *“NULL'" BACK

REM

FOKE 709, ASC("N"): FOKE 710, ASC("U")

PFOKE 711, ASC("L"): PFOKE 712, ASC("L"“)+128

REM

REM POKE NULL DISFATCH BACK

REM

FOKE 546, 108: FOKE 547, 008

REM

REM

FOKE 2073, 173 : REM CTRL-C ON

FRINT: PRINT "“BYTE command now disabled. ": NEW
FRINT: QAS=CHR$ (FEEK (709

IF QA%="R" THEN FPRINT"RSEQ@ is enabled, can not enable BYTE"“: NEW
IF QAt="E" THEN PRINT"EDIT is enabled. can rnot enable EBYTE": NEW

RETURN

10 REM 08650 V3. 1 GEMNERALIZED SORT UTILITY

15 REM QI/21L/79

20 REM

253 FORI=1TOS: FRINT: NEXT: BRY=3072

30 DEF FNA(X)=NB#X+1

35 PRINT"## 0S-65D V3. 2 GENERALIZED SORT UTILITY ##"
40 FRINT: PRINT ,

45 INFUT"ENTER DATA FILE NAME"; A$: T=LEN(A$): IFTO>OTHENT=ASC (A%)
390 IFT<6SORT>90GOTO4S

5SS FI$=A$: FRINT: PRINT

60 INFUT"IS THIS FILE A MDMS MASTER FILE"“; M$: PRINT
65 Me=LEFT$(M$, 1): IFM$<>"Y"GOTO110

790 FI$=FIs+" “FI$=LEFT$(FI%, S)+"0"

75 DISK OPEN, &, FI$: FOKELZ076, &: FOKEL2042, BY/ 64

80 INFUT#&, A%, NB, NF, PH, EN: IFEN=1G0T049999

85 EN=EN-1:DISK GET, 1

90 FRINT: FRINT"SORT ON WHICH OF THE FOLLOWING FIELDS: *
95 FORI=1TONF: INPUT#6, A%, B$: PRINTI"> " A$: NEXT

100 INFUT“WHICH ONE"; SE: IFSE<1ORSEZNFGOTO100

105 FRINT: GOTOL7S

110 INFUT“IS THIS FILE ‘RANDOM‘ OR ‘SEQUENTIAL‘"; A$
115 DISK OFEN, &, FI%

120 R$="R":IFLEFT$(A$.l)="S"THENR$=“S“:COTOl45

125 INPUT“NUMBER OF EYTES FER RECORD": A

130 IFAC10RA>2S5G0OT012S

135 B=BY/A: IFB<OORB:255G0T012%

137 BL=INT(LOG(A)/LOG(2)+. 1)

149 FOKE 12076, BL: POKE 12042, B

145 INFUT"“NUMBER OF FIELDS FER RECORD"; NF

150 IFNF<1O0RNF>100G0T0145

135 IFNF=1THENSE=1:GOTO170

16@ INFUT"SORT ON WHICH FIELD"; SE

165 IFSE<10RSE>NFGOT0160

170 INFUT"HOW MANY RECORDS TO SORT"; EN: IFEN<1GOTOL70
175 PRINT: FRINT: FRINT"DESCRIPTION CONFIRMATION: “: PRINT
180 A$="NON-MDMS": IFM$="Y" THENA$="MDMS MASTER"

185 FRINT"FILE TYFE"TAE(18)": i A%

190 IFM$="Y"GO0T0210

1935 A$="RANDOM": IFR$="G"THENA$="SEQUENTIAL"

200 FRINT"DATA TYPE"TAE(18)": At

203 IFR$<>"S"THENFRINT"EYTES FER RECORD“TAB(18)“: "; A
210 FRINT“NUMBER OF FIELDS"TAB(1B)“: "NF

215 FRINT"SORT ON FIELD"TAER(18)": “SE

220 FRINT“RECORDS TO SORT"TAE(18)": "EN

225 PRINT: INFUT“IS THIS CORRECT"; Y$

230 IFLEFT$(Y$, 1)="N"THENRUN

233 DIMR(EN), L$(EN), S$(EN, NF)

249 FRINT: FRINT: PRINT“SORTING———"

245 FORI=1TOEN: IFM$="Y"THEN DISK GET, FNA(I): GOTO255
250 IFR$="R"“THEN DISK GET, I-1

235 FORJ=1TONF: INFUT#&, S$(I, J): NEXTJ

260 L$(I)=S$(I, SE): R(I)=I: NEXTI

265 T=0: FORI=1TOEM: IFVAL (L$(I)) <IOTHENT=T+1
270 NEXT:A$="":pg¢=" " IFT<EN/3G0T028S

275 FORI=1TOEN: L (I)=STR$ (INT(VAL(L$(I))#1006)): NEXT
280 A$=n " : B$=“ "

285 SL=0: FORI=1TOEN: A=LEN(L$(I)): IFAZSLTHENSL=A
290 NEXT FORI=1TOENMN C$=L$(I)
273 IFLEN(C$)<SLTHENCS$=A%+C%+E%: GOTO295

300 L$(I)=C%: NEXT

305 FORI=2TOEN: IFL$(I-1)<=L$(I)GOTO330

310 A$=L%(I): J=I: RO=R(I)

315 J=J=-1: IFJCIORL$(J)<=A%GOTO32S

320 Le(J+1)=L$(J): R(J+L)=R(J): GOTO31LS

325 J=J+1:L$(J)=A$: R(J)=RO

330 NEXT: PRINT: PRINT: PRINT"SORT COMPLETE. WOULD YOU LIKE THE"
335 PRINT“DATA TO BE STORED IN ‘ASCENDING‘ OR"

340 INPUT" ‘DESCENDING’ ORDER"; Y$

330 IFR$="S"THENDISKOFEN, 6, FI$

353 FORI=1TOEN: IFM$="Y"THEN DISK GET. FNA(I): GOTO362
360 IFR$="R“THENDISK GET, I-1

362 X=I:IF LEFT®(Y%, 1)="D" THEN X=EN-I+1

365 FORJ=1TONF: PRINT#6&, S$(R(X), J): NEXTJ

370 IFR$="R“ORM$="Y"THEN DISK FUT

3735 NEXTI: IFR$="S“THEN DISK PUT

49999 PRINT: PRINT"OFPERATIONS COMFLETE. ": END

wnR - o

10

30

35

49

=1

89

0

100
110
120
130
140
150
149
170
180
190
200
210
229
230
240
250
260
263
270
280
290
3090
310
315
329
339
340
350
360
365
370
380
399
409
410
4135
420
430
440
459
4460
470
480
499
500
310

S20

EM BASIC DISASSEMERLER (FILE: DISASM)

INPUT"INPUT STARTING DISASSEMBLY ADDRESS IN DECIMAL"; AL

INPUT"INPUT ENDING ADDRESS"; A2
PRINTTAB(10); “OCTAL"; TAEB(18); "HEX";
PRINTTAE(23); “CODE"; TAE(33); "OF"; TAB(40);
PRINT"OFRAND": PRINT
DIMOT$(151), MN$(S6), N$(15)
GOSUB116@: REM INITIALIZE ARRAYS
W=6: BAZ=8: OC%Z=A1: GOSUE1530
OA$=0C*
W=4: BAZ=16: 0C%=A1: GOSUELS30
AD$=0C%
W=2: OC%L=PEEK (A1) : GOSUR1530
GOsSuUB1L@&O
IFFL=1THEN20®
GOsuB239
Al=A1+VAL (NE$%)
IFA1<=A2THENYSQ
GOTO2z20
FPRINTTAB(10); OA%$; TAE(18); AD$; TAB(23); OC$
Al=A1+1:GOTO90Q '
FRINT"“END OF DISASSEMELY":END
W=2
IFTY$<L-"IM" THEN299
OC%4=PEEK (Al+1): GOSUR1530
FRINTTAB(10); OA%; TAB(18); ADS:;
PRINTTAB(23); 01%; 0C%; TAB(33); MN$ (VAL (PT$));
PRINTTAB(40); "#$"; OC%
RETURN
IFTY$<>"Z “THEN340
OCZ=PEEK (Al1+1;. GOSUB1530
PRINTTAB(19)i 0A%; TAR(18); AD$;
PRINTTAB(23); 01%; OC%; TAR(33); MN$ (VAL (PT$));
FRINTTAB(4@); "$"; OC$
RETURN
IFTY$<S"ZX " THEN390
OCYZ=FEEK (Al+1): GOSUR153¢
FRINTTAE (10); OAs; TAB(18); AD%;
FRINTTAB(23); O1%; OC$; TAR(33); MN$ (VAL(PT$));
PRINTTAB(40); "$"; OC%; ", X"
RETURN
IFTY$<>"ZY" THEN449
OC%Z=PEEK (A1+1): GOSUR1530
PRINTTAB(10); OA%; TAR(18); AD$;
PRINTTAB(23); 01%; OC%i TAER(33); MN$ (VAL (PT$)) ;
FRINTTAB(49); “$"; OC$; ", Y"
RETURN
IFTY$<"A "THENS30
OC%Z=PEEK (A1+1): GOSUR1530
FRINTTAB(10); OA%$; TAR(18); AD$; TAB(23); O1%; OC$;
CO$=0C%: OCZ=FPEEK (A1+Z2): GOSUEB1530
FRINTOCS: TAB(33); MN$ (VAL (FT$)); TAB(40); "$"; OC%; CO%;
IFO1$="4C"OR0O1$="6C"THENFRINTTAB(S5S); "% JMP #%":GOTO0S20
IFOL$="20"THENFRINTTAR(SS); "#% JSR #*": COT0S20
FRINT
RETURN

530
540
350
569
S70
580
590
600
610
&20
&30
&40
&50
660
679
&73
&80
699
700
710
720
723
730
740
759
760
765
770
780
790
800
810
820
830
840
850
869
879
889
890
900
9460
P65
973
<80
990
1020
1030
1035
1049
1050
1040
1070
1080
1082
1083
1984
1084
1089
1090

IFTY$C AKX THENSSO

OC7Z=FEEK (Al+1): GOSUB1530
FRINTTAB(10)i: OA%, TAE(18), AD$; TAB(23): 01%; OCS;
CO$=0C%: OCZ=FEEK (Al+2): GOSUB1530

FRINTOCS: TAB(33); MNS(VAL(FPT$)): TAB(40Q); "$'"; OC%; CO%; ", X"
RETURN

IFTY$SC>"AY " THENGSO

OCZ=FEEK (Al1+1): GOSUB1530
FRINTTAB(10); OA%; TAB(18); AD$: TAB(23); Q1%; OC$;
CO0$=0C%: OCZ=PEEK (A1+2): GOSUB1S539

PRINTOCS; TAB(33); MNS (VAL (PT%)); TAB(40); "¢"; OCS; CO%; ", Y"
RETURN

IFTY$CO"IX"THENTEO

OC%Z=PEEK (Al+1): GOSUB1530
FRINTTAB(10)i 0A%; TAR(18); ADS$;
PRINTTAB(23); O1%; OCs; TAB(33), MN$s (VAL (PT$));
PRINTTAB(40); "($"; OC%; ", X)"

RETURN

IFTY$SO"IY"THENTSO

OC%Z=PEEK (A1+1): GOSUB1530
PFRINTTAB(10); 0A%; TAB(18); ADS%:;
PRINTTAB(23): 01%; OCs; TAE(33); MN$ (VAL (PT%$)),
FRINTTAB(40Q): "(%"; OC%; "), Y*

RETURN

IFTY$<>"IP"THEN780
PRINTTAB(10); 0OA%; TAR(18); AD%;
FRINTTAB(23); 01%; TAR(33); MN$ (VAL (FT%))
RETURN

IFTY#$<>"T "THENBLO

OC%Z=FEEK (A1+1): GOSUBLE30
FRINTTAB(10); OAs$; TAB(18); AD%; TAB(23); 01%; OC$;
CO$=0C%: OC%Z=FEEK(A1+2): GOSUR1539

FRINTOCS; TAB(33), MN$ (VAL (PT$)); TAB(40); “($"; OC%; CO%; ") ";
IFOL$="6C"THENFRINTTAR(SS); "#% JMP #x#":GQOT08S0
FPRINT

RETURN

IFTY$<:"R "THEN1O3@

O0CZ=FPEEK (A1+1): GOSUB1530

SS=PEEK (Al1+1)

IF S5<128 THEN OCZL=Al1+2+S5S

IF SS5>=128 THEN OC%=A1+SS-254
FRINTTAE(19)i OA%; TAR(18); ADS;

PRINTTAB(23)i 01%; OC%; TAE(33); MN$ (VAL (PT%));
W=4

GOSUB1530Q

FRINTTAB(4Q); "$"; 0C%$

RETURN

FRINTTAB(10Q); OA%; TAE(18); AD%;
PRINTTAB(23); 01%; TAR(33): MNS (VAL (PT$)); TAE(40Q);
FRINT"A"

RETURN

FL=0: yo=1: J1=151

JEINT((JO+JU1) /72)

OZs=MID$(OTH(J), 1, 2)

IF QC$=0Z$THEN 1090

IF AES(J1-J0)<2THENFL=1: RETURN
IF OC%<COZ$THEN J1i=J

IF OC%>0Z$THEN JoO=J

GOTO 1070

01%=0C%

1100
1110
1120
1130
1140
1170
1180
1190
1193
1200
1210
1229
1230
1249
1250
1240
127e
1280
1290
1300
131e
1320
1330
1340
1350
1360
1370
1389
1399
1400
1410
1420
1439
1440
1459
1460
1470
1480
1490
1500
1510
1526
15235
1530
15460
1570
1580
1590
1600
1610
1629

TY$=MID$E(OTH(J
NB$=MID%(OT+(J
FT$=MID$(OT$(J
RETURN

REM TABLE DATA

Y. 3, 2)
3, 501
), 6, 2)

FORI=1TO151: READOT$(I): NEXTI
FORI=1TO0564: READMNS(X): NEXTI
FORI=0TO1S: READN$(I): NEXTI

RETURN
DATA“@OIPL11",
DATA"“QAAC103",
DATA"16ZX203",
DATA“21IY202",
DATA"“2AAC140",
DATA"“35ZX202",
DATA"4QIFP142",
DATA"4AACL133",
DATA"SS5ZX224",
DATA"6QIP143",
DATA"6AACL141",
DATA"TSZX291",
DATA"B81IX248",
DATA"BCA 350",
DATA"93ZX248",
DATA"AQIM232",
DATA"ABIP1S2",
DATA“BOR 205",
DATA"BE9AY330",
DATA"C1IXZ218",
DATA"CAIP122",
DATA"DSZX218",
DATA"EQIM219",
DATA“E9IM244",
DATA"F1IYZ244",
DATA“FEAX325"
DATA"ADC", "AND

DATA"ERK", "BVC
DATA"DEC", "DEX
DATA"“LDX", "LDY
DATA"ROR", "RTI
DATA"TAX", "TAY
DATA

DATA

REM DECIMAL TO
OC$=U “

Q=INT(OCZL/BA%)
R=0C%-BAZL#Q

"@1IX235", “0SZ 235",
“@DA 335", “OEA 303",
"18IP114", "19AY335",
"24Z 207%, “25Z 202",
“"2CA 307", "2DA 302%,
"36ZX240", "38IP145",
"41IX224", "457 224",
“4CA 328", “4DA 324",
"S6ZX233", "S8IF116",
"61IX201", "65Z 201",
"&CI 328", "6DA 301",
"T76ZX241", “T7BIF14T",
"84Z 250", “85Z 248",
“8DA 348", “BEA 349",
"Q6ZY249", “98IP1S3",
"AL1IX236", "A2IM231",
"AIM230", "AAIP1S1",
"B1IY230", "B4ZX232",
"BAIP1S54", "BCAX332",
"C4Z 220", "CS5Z 218",
"CCA 320", "CDaA 318",
"D&ZX221", "DBIP115",
"E1IX244", “"E4Z 219",
"EAIP134", "ECA 319",
"FSZX244", "F6ZXa25",
", "ASL", "BCC", "BCS",
ll' IIE:VSH, IICLCII' IICLDII‘
", "DEY", "EOR", “INC",
", "LSR", "NOP", "ORA",
H) NRTS"J IISBCII‘ I(SECII'
", PTYA", "TSX", “"TXA",

HEX

OC%=N$(R)+0QC%: OC%=Q
IF Q<@ THEN 1579
IFLENC(OCS$)<W THEN OC%="0"+0C%: GOTO1610

RETURN

"Q&Z 203",
"1oR 210",
"1DAX335",
"26Z 240",
“2EA 340",
*39ayY3e2",
4467 233",
“4EA 333",
"S9AY324",
"&&Z 241%,
"6EA 341",
"79AY30L1",
"8&Z 249",
"9OR 204",
"99AY348",
“A4Z 232",
*ACA 332",
"BIZX230",
“BDAX330",
"C&Z 221",
“CEA 321",
"D9AY218",
“"EJZ 244",
"EDA 344",
"F8IP146",

IIBEQ "’
H CLIH'
(33 INX ll'
"PHA",
"SED Il‘
"TXS“

HOH' "l“' "E"J “3", "4“, “5“1 llb", 007“' QIBII‘ qul
HAII' IIBI(' IICII‘ I|Dll‘ "Ell‘ IIFII

“BIT",
“CLV ll'
“INY™,
"PHP",
“SEI".

“@8IPL37", "O9IM235"
"11TY235", “15ZX235"
"1EAX303", "2eA 329"
"28IP139", “29IM2e2"
"30R 208", “3iIYzez"
"3DAX302", "3EAX340"
"48IP136", "49IM224"
*"SOR 212", "S1IY224"
"SDAX324", “SEAX333"
*48IP138", “"4&9IM201"
"7OR 213", "711Y201"
"TDAX301", "TEAX341"
"88IP123", "8AIP1SS"
"Q1IY248", "94ZX250"
"PAIP1S56", "9DAX348"
"ASZ 230", "A&Z 231"
"ADA 330", "AEA 331"
"B6ZY231", "BB8IPLLT"
"BEAY331", "COIM220"
"CcgIP127", "C9IM218"
"DOR 209", "DiIYzaig"
"'DDAX318", "DEAX321"
"E&Z 223", "EBIFl126"
"EEA 323", "FOR 206"
"FPAY344", "FDAX344"

"B”I"' IIBNEH' NBPL"

"CMP'I‘ IICPXN, ICCPYH

JIMPY, YJSRY, "LDAY

"FLAY™, "FLP", "ROL"

NSTA"‘ "STXII‘ IISTY“

Blank Page

Blank Page

Blank Page

10

20

30

40

60

70

75

80

90

100
110
120
130
135
1490
1590
1460
179
189
199
200
210
215
220
230
249
245
250
260
279
280
299

LUFLEK

REM CENERALIZED FILE TRANSFER UTILITY
REM 10/14/79
P$="/C": S$="317E": DR$="08"
FORI=1TOS: FRINT: NEXT
DEF FNB(X)=10#INT(X/16)+X-16#INT(X/16)
PRINT"## DATA FILE TRANSFER UTILITY ##":FRINT:FRINT
PRINT"PLACE SOURCE DISK IN DESIRED DRIVE":PRINT
INPUT"INPUT FILE NAME"; IN$: T=LEN(INS$): IFT>@THENT=ASC (IN%)
IFT<650RT>90GOTO80

GOSUB1000: D1$=0%: PRINT: PRINT

DISK!“SE "+D$:N1$=IN$: GOSUB2000

IFS=@THENPRINT: FRINT"FILE NOT FOUND. “:GOTQ49999
IB=TO: IE=T9

PRINT“PLECE DESTINATION DISK IN DESIRED DRIVE":PRINT
PRINT: INPUT"OUTPUT FILE NAME"; OUS$: T=LEN(OUS): IFT>@THENT=ASC (OUS)
IFTC6SORT>90GOT0140

GOSUB1000: PRINT: PRINT

IFD$<>D1$THENDISK ! “SE "+D%

N1$=0U$: GOSUB2000: IFS=0G0T0120

IF (IE-IB) > (T9-T@) THENGOSUB3000
OF=IB-T@: PRINT: INPUT“TYPE ‘Y’ WHEN READY"; Y%
FORI=IETOIE

IFD$=D1$THENGOSUES000

IFD$<>DI$THENDISK { “SE "+D1$

T=1: GOSUB4000 :

DISK!"CA "+S$+"="+T$+", 1"

IFD1$=D$ THENGOSUESL106

IFD$<>D1$THENDISK ! "SE "+D$

T=I-0F : GOSUB4000

DISK! "IN “+T$

DISK!“SA “+T$+", 1="+5$+P$

NEXTI

390 PRINT: PRINT"OFERATIONS COMPLETE. ": GOT04999%9
19009 PRINT: INFUT"LOCATED ON WHICH DEVICE (A, B, C,D)":D%
1010 D=LEN(D%): IFD>OTHEND=ASC(D%)

10290 IFD<4&SORD>68GOT010060

1030 D$=CHR$(D): RETURN

2900 Nis=Ni%+" "I NLE=LEFT$(N1%, &)

2010 Z$=DRs$+", 1": GOSUB2040: IFS=1THENRETURN

2020 Z%=DR%+", 2": GOTO 2049

2040 DISK!'"CA 2E79="+I%

2030 S=0: FORI=11897T012145STEFB: N$s=""

2960 FORJ=OTOS: Ne#=N$+CHRS(FEEK (I+J)) : NEXT

2070 IFN$IHFNISTHENNEXTI: RETURN

2080 S=1:TO=FEEK(I+6): T9=PEEK(I+7)

2099 TO=FNE(TO): T9=FNE(T9): RETURN

39900 FPRINT: PRINT: PRINT" << WARNING 232" : FRINT

301

© FRINT"INPUT FILE LENGTH EXCEEDS OUTFUT FILE LENGTH"

3020 PRINT"BY"ABS(T9-TO-IE+IE)"TRACKS. FROGRAM MAY ONLY"

303
304
305
400
401
500
sel
510
S11
499

Q9 PRINT“QUTPUT FILE TO"T9-TO+1"TRACKS. "

© FRINT: INPUT“CONTINUE (Y OR N)“;Y&: IFY$="N"THENEND
O IE=IE+T9-TO: RETURN

@ T$=MIDS(STRE(T), 2): IFT<LOTHENTS$="0"+T$

© RETURN

@ FRINT: FRINT"FLACE SOURCE DISK IN DRIVE “;D$

@ INFUT"ENTER “C’ TO CONTINUE"; X$: RETURN

Q@ FRINT: PRINT: “FLACE DESTINATION DISK IN DRIVE ";D%$
¢ INFUT“ENTER ‘C” TO CONTINUE"“; X$: RETURN

99 FRINT: FRINT: END

Blank Page

Blank Page

Blank Page

Appendix 1 The Utility Programs

(Detailed Information and Listing)

The following pages contain detailed information on all
of the programs found on the 0S-65D V3.3 System Disk (Tutorial
Disk 5). For each program, the information will normally be in
three parts. Part one is a description of the program and its
use. Part two is a fact sheet with the name, size, location and
other notes concerning the program. (A sample fact sheet is on
the next page.) Finally, @art three is a listing (when appropriate)
of the program as it appears on the mini-floppy version of this

disk.

It has already been mentioned that four of these programs
(DIR, CREATE, RENAME and DELETE) are redundant in the sense that
they perform funcfions that are also performed by the BEXEC*
program. These four programs are included on this disk primarily
for the convenience of experienced programmers who may have used

them with earlier versions of 0S~65D.

125

[SAMPLE FACT SHEET|

File nane : As it appears in the directory
File type . Assembler source/BASIC program/Object code
Mini-floppy specifications g" floppy specifications

Location: The track location of the file
Length : The length in tracks of the files
Buffers for: Is there a buffer for

Device 6: YES/NO

Device $7: YES/NO

Other . Number of bytes/pages other than a device #6 or #7 buffer

Mini-floppy to 8" floppy program conversions

The lines in the BASIC program listings which can be changed
to make the mini-floppy listing agree with the programs on the 8"

floppies. .

1286

0S65D3

The entry "0S65D3" in the directory is not an executable
program. It is the object code for the systems on disk (Assembler,
BASIC, ...). These nine tracks, numbered from zero through eight
(fourteen tracks on mini-floppy, numbered from zero through thirteen)
and the entry, "BEXEC*", are the most important pieces of software
on a disk. Do not delete these entries from the directory and never

initialize the tracks where these entries reside.

The next two pages give a complete breakdown of the object

code located on these tracks.

127

Blank Page

Blank Page

Blank Page

z ITY, z 6¢ ALITILN
TH 5 T T 6t @NOVUL/dVdHOD
8 6LVE T Wl ¥0IX1d
.8 hiZE 1 €T i 3dBd - £'EA AS9-S0
1 6.3 h et SAVTNAAO L1d9/Lnd
T w002 £ T SAVINIAO OISVd
T 6,32 4 A ¢ @8ed - xJ0LOAAIq
T 6.4d¢ 1 1 T @3®d - A¥0l0d¥Id
o8ed03s JOJ pesn [T Soedl Jo 350y T 'TI% I 1 MOLINOW QIANALXI
8 govT T 91 YOLINOW QIANALX
8 gpct 1 6 JOLINOW Q3IANILXd /¥dT1dWASSY
8 'TAT) T 8 . 3954 - UITANISSY |
8 T T L T 3d8d - 9319WdSSY
o T S I'TITR h 9 ALITILN @ MOVl
1 9000 £ 9 °8ed 087 - £ EA d59-S0
i T gaze z 9 € 3IBd - £°EA dS9-S0
T 89z T 9 S 3aed - DISVd
8 PovT T g h 1aed - OIsvd |
8 | wger 1 : € 3a®d - JISVd
8 | geove T £ ¢ 3aed - oTsvd
8 'TIT) T z T 3d®d - OISvd
8 9ove 1 T ¢ 3Bd - £ €A A59-50
i TIZ 8 'TIX T 0 T 3ded - €°€A 459-S0
sjudwwoy | SSI4PPY mmmmm Jagsuea) | IR0 o) wea6odgy
09 | y3buay {40 MeEs| |40

%&OPOOQHQ ASTA S

128

'I'k4’) 9 990 1 €€ ALITILN @XOVAL/YVIWOD

11/4 6LVE T 6 #03dxXd4

8 hiee S 8 h 3ded - €°€A dS9-S0

T 6,42 h 8 SAVTIIA0 LIS/1Nd

L T hoQe £ 8 SAVTIIAO JISvd
1 6432 Z 8 ¢ @3ed - XJ0LOIVIq

1 6L3C 1 8 T ®3ed - X¥0LOIAYIQ

* a8eJ03S JOF pesn £ >oeay, Jo 1599 L 9061 1 L € 3IBd - WA/WSY
Z1/9 ggae 1 9 ¢ 1aed - WI/WSY

Y 11/4 gecy 1 S T 1d8d - WI/WSVY
) 11/4 gest 1 f € 3ded - JISvd
11/9 ggap 1 £ I 3ded - JIsvd

f 11/4 puca 1 z 1 3aed - JISvd
| 0000 f T 23pd 0437 - £'g€A S9-S0

1 ¥81e 3 1 € 3dPd ~ £°¢pA AS9-50

vecy S goco 4 T ALITILO ¢ MOVYL

S pove 1 T ¢ 3xed - £°gA dS9-SO

ggce 8 ggce 1 ¢ T 3d®d - £°€A dS9-SO

sjuawwoy | SS34Ppy mmmma Jagsues) | JRWAOSY weub0.g
99 | yabuay | 40 3403S Low__mmm

Ax0302a1(q)stQ

:m

1289

File name : 0S65D3

File type : OBJECT CODE

Mini-floppy specifications 8" floppy specifications
Location: Tracks 0-13 Tracks #-8
Length : 14 Tracks 9 Tracks

Buffers for:

Device §5: NO NO
Device $#7: NO NO
Other : NONE NONE

Mini-floppy to 8" floppy program conversions

»

NOT APPLICABLE

130

BEXEC*

The 0S-65D operating system is intelligent in the sense that
it runs one program on boot up. This special program is called
"BEXEC*" on most disks. (The equivalent program on Tutorial Disks
three and four is called "MENU" for simplicity.) Generally, the
first few lines of this BASIC program, BEXEC*; are used for system
considerations such as memory configurations, I/0 device setup,
etc. The next section of the BEXEC* program displays a disk title,
numbered options and then,a request for your response such as,
"Type the .number of your selection and depress RETURN?". Typing
in "the number of your selection (generally followed by the RETURN
key) will select the program corresponding to your choice. A series
of checks for the legality of your entry along with the processing
of your selection will take place at this time. If an illegal
entry is made, BEXEC* will make a statement referring to the legality

of your entry and redisplay the menu waiting for a legal ﬁesponse.

There are two ways to exit the BEXEC* program into the oper-
ating system (DOS). The first way is to use a password when you
are asked for information. The password will normally be "UNLOCK"

or "PASS" ("PASS" in the case of the Tutorial Disk §5). The second
method is to select the menu selection which will open or exit to
the local operating system. Many disks will not have a menu
selection for exiting in which c:se UNLOCK or PASS must be used.
For others the menu selection is the only way to open the system.
After the exit function has been selected correctly the system
will be unlocked, which means that all available functions will
be enabled and the OK prompt of BASIC will appear on the screen

along with a message stating that the system has been opened.

131

One can always return to the initial menu by typing
RUN"BEXEC*" followed by RETURN. In the case of Tutorial Disks

three and four, one must type RUN"MENU" followed by RETURN.

132

File name : BEXEC=®

File type : BASIC

Mini-floppy specifications 8" floppy specifications
Location: Tracks 1u4-16 Tracks 9-12
Length 3 Tracks 4 Tracks

Buffers for:

Device §5: NO NO
Device #7: NO NO
Other : NONE NONE

Mini-floppy to 8" floppy program'conversions

-5
20
2056
2060
2076
2088
2125
21340
2135
21up
21586
sp2e-
5638
5833
5835
5040
SBsp
6000
6018
7008
7040
20000
20005
20810

POKE 133,122:CLEAR:POKE14172,8:POKE14178,16
X=PEEK(1@958) :POKE8993,X: POKE8994 ,X:DIMAL%(76)
INPUT"and depress RETURN (1 to 76)";T1

IF Tl<1l OR T1>76 THEN 2658

INPUT"and depress RETURN (1 to 68)";N

IF N<1 OR N>68 THEN 2078
GOSUBSA@1d:PG=12:P$="1234567839ABCDEF"

INPUT"How many pages per track (1 to 12) <12>";PG

IF PG=0 THEN PG=12

IF PG<1 OR PG>12 THEN 2125

J$="3ATE" : IFPEEK(8999)=49 THEN J="317E"
GOSUB1#20@8:DISK!"SE A":DISK!"CA 7C@89=987,2"

DISK!"CA 7D#8=67,3":DISK!"CA 7E#B=07,u4":DISK!"CA 7Fp0=07,5"
IF S=6 THEN DISK!"CA 7C80=07,6"

GOSUBS51@8@:DISK"GO 2768":DISK!"SA £8,1=7Co0/1"
DISK!"SA £8,2=7DBB/1" :DISK!"SA 08,3=7EdB/1"

DISK!"SA 68,4=77p@8/1":IF S=6 THEN GOSUB68A0
P§="12":T1=1:T2:5:G0SUB2153

T1=9:T2=28:G0T02153

L=12670:IF PEEK(8999)=58 THEN L=14974
L=L+N#3P972:N=N+1:GOSUBSB010:0NNGOTO7180,7200,7300
NF=p:E$="N":FORK=0 TO 76:AL%(K)=0:NEXT

DISK!"CA 2E79=08,1":GOSUB281P8:DISK!"SA £8,1=2E79/1"
DISK!"CA 2E79=88,2":GOSUB28100:DISK!"SA p8,2=2E79/1"

133

Ll L,IDL!!I\}

SR OKoLsE 12 CLEAR FORELSG1T72 & FOKEL4170, Lé

10 FOKEZBE8, © FOKEBT22, 0

20 X=FEEK (10950): FOKE B993, X: FOKEBS94, X: DIMALZL(T6)
3¢ IFPEEK (57088)=223THENFOKEYS794, 37

40 DEF FNA(X)I=1O0*INT(X/16)+X—16#INT(X/16)

35Q DEF FNE(X)=1&6#INT(X/1@)+X—-10#INT(X/10)

GOsUBZ©QQ0

FRINT: FRINT"0S—-63D0 Tutorial disk five”: PRINT: FRINT
FRINT" 1 > Directory"

FRINT" 2 > Create a new file"

FRINT" 3 > Change a file name"

FRINT" 4 > Delete file from diskette“

PRINT" 5 > Create blank data diskette"

FRINT" & > Create data diskette with files"
FRINT" 7 > Create buffer space for data files"
PRINT" 8 > Single or dual disk drive copier"”
FRINT" 9 > Enter 06-65D system"

FRINT: FRINT
FRINT"Type the number of your selection “;

INFUT"and depress RETURN "; S$: IFS$="FASS"ORS$="9"“THENLOQQO
IFLEN(S%) > 1 THENRUN

S=INT(VAL(S%$)): IFS<10RS>8THENRUN
GOSUBSO10

FRINT" "
ONSGOSUB1000, 2000, 3000, 4000, S000, S000, 7000, 800A
IFF¢="FASS" THEN&OOOO

GOTO0100

FRINT“Directory utility": PRINT: PRINT: FRINT"Directory of";
GOSUB10000: GOSUESER10: GOSURL1O100: GOSUBSGG10

FRINT#DV, " ~— Directory ——":PRINT#DV
FRINT#DV. "File name Track range"
FRINT#DV, M " GOSUB20Q00

FRINT#DV: FRINT#DV, NF; "Entries free aut of &4

FRINT GOT010200

FRINT*Create utility": PRINT: PRINT

FRINT“Create a file on";:GOSUEL10000

GOSUESOO19: PRINT"Type in the name of the file you “;
PRINT*want to create and": PRINT

INFUT"gepress RETURN (1-& Characters) ;A% TFLEN(AS) >DETHEN2G10
TFAs=""THENRUN
IFLEN(AS) C&THENA$S=AS+" “: GOTOZ2020

IFMIDS (A%, 1, 1)<"A"ORMID$ (A%, 1, 1)>"Z"THENZ2Q10
5=3: COSUB20000: ITFE$="Y" THEN40100
IFNF=0THEN40200

CO3UETSE010: FRINT " Type in the number af *;
FRINT "tracks in this file": PRINT

INPUT"and depress RETURN (1 to &8) N
IFNCLORNDGBTHEN2070

FoRTL=0TC7&~-N+1: FORTS=0TON~1

IFALN TL+TS THENZLLO
MNEXTT=
FREINTY PRINT“#% TRACKS AVATLABLE FOR ", As$; * ="
T2=T1i+N~-1 N=@
FEINT OFREINT GOTO212¢
NEXTOTL
FRINT SEINTew NGO ROOM FOR A%, #Ea
ERINT TILIezZo0
SoTA, T LTl want PRINT
Ly v N Vel T € =%

2123
2123
2130
2135
2140
2150
2152
2153
2153
2160
21462
2163
2164
2166
2167
2148
2179
2200
3000
3005
3010
3015
3016
3017
3018
3029
3030
3035
3040
3044
3045
3047
3050
3035
3056
3060
3070
4000
4005
4010
4015
4914
4017
4918
4020
4030
4040
S000
So10
S020

- 5030

5033
5035
S040
5050
S070
S080
5090
S100
3105

IFLEFT$(B%, 11="N"THEN2200
GOSUBS50010: PC=12: P$="123456789AECDEF "

INFUT"How many pages per track (1 to 12) <123 “; PG
IFFG=0THENPG=12

IFPGCLORPGO1L2THEN212S

F$=MID%(P%, FG, 1)

PRINT“Initializing: "
FORI=TAiTOT2: T$=RICGHT$ (STR$(I+100), 2)

PRINT" Track "iT$

DISK!“IN “+T¢

POKE10304, 149: FOKEL1030S, 0: POKELOS5S51, 201: POKE10552, @
POKE10555, 208

DISK!“SA “+T$+", 1=DORO/"+P%

POKE10304, 177: FOKEL1030S, 254: POKELOSSL, 209: POKE10552, 254
POKE1@55S5, 145

NEXT

IFS=6THENRETURN

S$=2: GOT020000

PRINT“Rename utility": PRINT: PRINT

PRINT"“Rename a file on";: GOSUB10000

CO0SUBS0000: PRINT"Type in the name of the file that you";
PRINT" want to rename": PRINT

INPUT"and depress RETURN (1-6 Characters) “;A$
IFLEN(A$)>6THEN3010 :

IFA$=""THENRUN

IFLEN(A$)COTHENAS=AS+" ": GOTO3920

§=3: GOSUB20009: IFE$="N"THEN400QQ

O$=A%: PRINT

COSUBSQ000: FRINT"Type in the name that will replace “;
PRINTCHR$ (34); 0%; CHR$(34)" in the directory”: PRINT
INPUT"and depress RETURN (1-& Characters) “; As
IFLEN(A$)>4THEN3@40

IFLEN(AS) <6THENAS=A%+" ":GCOTO3050

IFLEFT$(AS, 1)<"A"ORLEFT$(A$, 1)>"Z"THEN3040
IFO$=ASTHEN4Q100Q

GOSUE20000: IFE$=“Y"THEN4©100

S=3: GOT020000

PRINT"Delete utility":PRINT: PRINT

PRINT"Delete a file on";:GOSUB10GQ0

GOSUBS0000: PRINT"Type in the name of the file that you";
PRINT" want to delete": PRINT

INPUT"and depress RETURN (1—-& Characters) ";As$
IFLEN(A$)>6THEN4Q1O

IFAS=""THENRUN

IFLEN(A$) C4THENAS=AS+" “: GOT04020

5=5: GOSUB20000: IFE$="N"THEN40G0Q

S=4: GOT020000

PRINT"Data disk create utility":PRINT: PRINT

FRINT"Be sure the tutorial disk is in drive A":PRINT
GOSUB10200: DISK'“SE A": DISK'"“CA 7C00=07, 2"

DISK!“CA 7D00@=07, 3":DISK!"CA TEOO=07, 4": DISK'"CA TFO@=07, 5"
IFS=6THENDISK'"CA 7C00=07, &"

GOSUBS100: DISK! "GO 2748": DISK!“SA 08, 1=7C00/1"

DISK!"SA @8, 2=7D06/1": DISK!"SA 08, 3=7EQQ/L"

DISK!"SA @8, 4=7FQ0/1": IFS=64THENGOSUE&LQQO

GOSUES©010

PRINT“Your diskette is now ready for data files. ": PRINT
PRINT: GOT055065

GOSUES@010

PRINT"Remove your tutorial diskette from drive A and":PRINT

135

5110 FRINT"replace it with your blank diskette “:FRINT: GOT010200
33500 GOSUES©010

5505 FRINT"Remove your blank diskette fraom drive A and": PRINT
5519 FRINT"replace it with your tutarial diskette. “: FRINT: GOTOL10200
6000 F&="12": Ti=1:T2=5: GOSUEB2152

6010 T1=9: T2=28: GOT02153 :

7000 L=12670: IFPEEK (8999)=S8THENL=14974

7003 FRINT“Buffer set utility":PRINT: PRINT

7010 PRINT"Type in the number of file buffers";

7915 PRINT" you need": PRINT

7920 INPUT"and depress RETURN (@, 1, ar 2) <@>"“;N

7030 IFN<OORN>2THENGOSUEBSO010: GOTOT7010

7040 L=L+N#3072: N=N+1: GOSUES0010: ONNGOT07100, 7200, 7300

7100 PRINT"No file buffers are resident. ": GOTO7500

7200 PRINT"A single buffer is now resident. ": GOTO7500

7300 PRINT"Two buffers are now resident. ": GOTO7500

7500 PRINT

73510 PRINT"Type in your program and save it on your diskette. "

7520 GOSUBS9000
7540 POKEL29Q, L+1-INT((L+1)/256)%256: POKEL21, INT((L+1)/256): POKEL, ©: NEW

8000 X=PEEK(8940): POKE133, X: CLEAR: RUN"COPIER

10000 PRINT" which drive 7":FPRINT

10004 INPUT"Type A, E, C or D and depress RETURN <A> “; D%
10005 IFD$=""THEND$="A"

10010 IFD$<"A"ORD$>"D"ORLEN(D$)<>1THENGOSUBS@00Q: COT010004
10020 DISK!"SE "+D%: RETURN)

10106@ PRINT"Do you want to list the directory':PRINT
101035 INPUT"to the printer (Yes or No) <No> ";P$
10110 DV=PEEK(10950)

19112 PD=1: REM: device number for printer
10114 IF DV=1 THENPD=8

19116 IFLEFT$(P%, 1)="Y"THENDV=PD

10120 RETURN

10200 INPUT"Depress RETURN to continue "iP$: RETURN
20000 NF=0:E$="N": FORK=0TO7&: ALZ(K)=0: NEXT

20003 IFS=STHENPRINT: PRINT: PRINT"Please wait. “;

20005 DISK'!'“CA 2E79=08, 1": GOSUB201060

20006 IFS>1ANDSCSTHENDISK'!'"SA 08, 1=2E79/1

20008 IFS>1ANDE$="Y"THENRETURN

20010 DISK!"CA 2E79=08, 2": GOSUB20160

20015 IFS>1ANDS<STHENDISK'!'"SA 08, 2=2E79/1

20020 RETURN

20100 FORI=11897TO121458TEFS8

20110 ONSGOSUBZ20200, 30000, 20300, 20400, 30000

20115 IFNF=1ANDS=2THENGOSUE30300: E$="Y": RETURN

20120 NEXT: RETURN

29200 IFPEEK (I)=3STHENNF=NF+1: RETURN

20210 GOSUE30100

29220 PRINTH#DV. N$; TAB(12); FNA(PEEK(I+&)); TAB(1&); "~";
20230 PRINTH#DV: TAB(17); FNA(PEEK(I+7)): RETURN

29300 GOSUE30100: IFO$<>N$THENRETURN

20310 E$="Y": GOT030200

20400 GOSUE30100: IFA$<C>N$THENRETURN

20410 Es$="Y": AS="######": COSUB30200: POKEI+&, ©@: POKET+7, @: RETURN
30000 IFFEEK (I)=3S5THENNF=NF+1: RETURN

30005 GOSUB30100: IFN$=A$THENES$="Y"

30010 TO=FNA(PEEK(I+&)): T9=FNA(PEEK(I+7))

30020 FORK=TOTOTY: AL%(K)=—1: NEXT: RETURN

39100 N$="'": FORJ=ITOI+S: N$=N$+CHR$(FEEK (J)): NEXT
39110 PRINT" "“;:RETURN

136

30200
30300
40000
49010
40100
40110
40200
S0000
50010
50020
50030
S0e40
S9050
S9000
S9010
59020
69000
60010
60020

FORJ=1TO&: FOKEI+J-1, ASC(MID% (A%, J, 1)) : NEXT: RETURN
GOSUB30200: FOKEI+6, FNE(TL1) : FOKEI+7, FNB(T2): NF=255: RETURN
FRINT: PRINT: FRINT"## "CHR%$(34);A%$; CHR$(34)" was not faund "
FPRINT"in the directory. #*#":PRINT: GOT010200

PRINT: PRINT: PRINT"#% “CHR$(34): A$; CHR$(34)" already exists “;
PRINT"in the directory. ##":PRINT: GOT018200

PRINT: PRINT: PRINT" ## Directory full ##": PRINT: COT010200
ST=11984: FORII=0T034: READSC: POKEST+II, SC: NEXT: RESTORE
IFPEEK (8999) =S8THENPRINTCHRS (27); CHR$ (28) : RETURN
POKEB9S6, 46: X=USR(X): RETURN

DATAL169, 208, 141, 219, 46, 169, 32, 162, 0, 157, 0, 208, 232

DATA208, 250, 172, 219, 46, 200, 140, 219, 46, 192, 232, 240, 10
DATAL92, 216, 208, 23S, 160, 224, 149, 14, 208, 239, 96

POKE744, 76: POKE7S0, 78: POKE2073, 173: POKE2893, 55: POKE2894, 8

POKE2888, 27: X=PEEK (8960) : POKE133, X
RETURN

GOSUBS9000

GOSUBS0000: CLEAR

PRINT“The system is now open for modification. “

137

COPIER

COPIER is a routine which can be used for copying diskettes.
The method you should use depends upon the configurafion of your
system. If your system has only one disk drive, then you can select
the single drive copier automatically by copying from drive A to
drive A. .If your system has a dual disk drive then you can select

the dual drive copier by selecting any other combination of drives.

The first step in using either of the copiers is to select
two disks: the disk you wish to copy FROM and the disk you wish
to copy TO. (Note: It is possible to copy onta a previously used
diskette. The diskette is initialized as part of the copy process.)
Once you have selected the two diskettes to be used, carefully

follow the set of instructions given below. Type
RUN"COPIER"

The following instructions will be displayed on the screen
(each instruction will be displayed after you have entered an

answer to the previocus one):

- Diskette copier -

Copy from which drive (A/B/C/D) ? _

Copy to which drive (A/B/C/D) ? _

What is the last track to be copied (Inclusive) <g-39> 2 _

Are you ready to start copying (Y/N) ? _

The only difference between the single drive copier and the dual
drive copier is that the single drive copiler prompts you to insert

the master and blank diskette during the copy operation.

138

A sequence of numbers will be displayed which shows the
progression of the copy process through the tracks. When the
copy process is completed, you will be asked to replace the
0S-65D disk 5 in the disk drive. When you confirm that you

have done so, the menu will again be displayed on the screen.

139

File name : COPIER

File type : BASIC

Mini-floppy specifications 8" floppy specifications
Location: Track 17 ‘ Track 13
Lenéth : 2 Tracks 2 Tracks

Buffers for:

Device $6: NO ' NO
Device $7: NO NO

Other : 11 PAGE OBJECT FILE 12 PAGE OBJECT FILE

Mini-floppy to 8" floppy program conversions

NOT APPLICABLE

140

CHANGE

The changes in system parameters that can be effected by

running CHANGE are:

Workspace Limits
1. For creating buffers for disk input and output.

2. For leaving room for special programs such as machine
language subroutines.

The "workspace" is that RAM area where the assembler and
BASIC source programs'reside. It is used to hold these source
programs and various tables, lists, etc., that are used during
assembly or BASIC program‘interpretation, The workspace normally
begins at 14974 (hex 3A7E) for full size'floppy disk systems and
mini-floppy disk systems under 0S-65D V3.3. Under other versions
of 0S-65D, the workspace normally begins at 12678 (hex 317E) for
full size floppy disk systems and at 12926 (hex 327E) for mini-

floppy disk systems.

The end of the workspace is normally the end of the main
memory (that memory which starts at address zero and is contiguous
up to some higher address). For 24K systems that means $SFFF
(24575); 32K systems are $7FFF (32767); and, 48K cohfigurations
have the end of workspace at $BFFF (49151). See the next page

for a diagramatic summary of the workspace.

Some instances where it may be necessary to change the work-
space limits are:

1. When the program to be entered will use disk data files,
that is, when PRINT#6, PRINT#7, INPUT#6 or INPUT#7 are
used in the program. In this case, it is necessary to
reserve space in the low part of memory to be used as
disk I/0 buffers. For example, if a PRINT#6 statement is
executed then the data is sent to the buffer in memory,

14l

0S-65D V3.3 The Workspace

$SFFF (2u4575)
$7FFF (32767)
$BFFF (49151)

24K systems
32K systems
LU8K systems

128 pages
192 pages

96 pages}

Normal end of
workspace

Defined by use of CHANGE -+ b e e -

Changed end of
workspace

Source code,
tables, lists, etc.
Storage used by
BASIC

Changed start of
workspace

Defined by use of CHANGE ' —b e c— e ———

Additional room
(if present)

8"=48527E (21118 dec) or S5"=S$SUATE (198070 deC) — |l e e e

Second Buffer
(if present)
(#7)

8"=$8UBTE (18046 dec) or 5"=$427E (17022 deC) —e fmemceccccccccc e cae o

First Buffer#*
(if present)
(#6)

Normal start of
workspace

8" and 5" = $3A7E (14974 dec) >

* 8" buffer size 3872 ($C@B) bytes or 12 pages

(equivalent to one disk track)

s" buffer size 20848 ($8P0) bytes or 8 pages

(equivalent to one disk track)

(Compare to the diagram in Chapter 6)

1u?2

not directly to the disk. The data is not put on the

disk until the execution of a DISK PUT at which time the
entire buffer area is written onto the disk. The user
should note that CHANGE cannot be used tc put a buffer

on a program that already exists on disk or in memory.

The user should alsoc note that a more convenient method

to create a buffer for a new program is to load a program
with the correct number of buffers from the disk (assuming
the user has such a program) and then type NEW.

If the user wishes to write a BASIC program that calls a
machine language subroutine, then space may be reserved
for the subroutine using CHANGE. The user should note
that the high part of memory may not be safe for this
purpose (without using CHANGE) even if the BASIC program
in the workspace is very short. The reason is that when

a BASIC program is running, string variables are stored

at the end of the workspace. CHANGE may be used to leave
space at the beginning of the workspace, or to set the

end of the workspace before the physical end of memory so
as to leave a part of memory unaffected by the BASIC pro-
gram. Putting machine language subroutines at the beginning
of the workspace may be the more convenient place because
anything in the part of memory between the start of the
user's workspace and the beginning of the BASIC program is
saved along with the BASIC program when a

DISK!"PUT..."

is executed, but the code above the adjusted end of memory

is not. A machine language program should not be put between
the start of the user's workspace and the beginning of the
BASIC program if the BASIC program uses disk data files
because the machine language program will be overwritten
during disk access from file I/O.

The computer uses five memory locations to store the workspace

limit parameters.

1.

. The number of pages in memory is stored at 8968 (=$2390)

in the DOS kernel. This is a one byte parameter. For
example, at boot up a value is automatically placed 'in

this location reflecting the actual memory size. The
second series of questions (after terminal width questions)
asked by CHANGE allow the user to change this parameter.
The value stored at this location is used except when the
DOS commands

BASIC

or
ASSM

or
EM

are entered in response to the A*prompt.

lu3

2. BASIC stores the address for the end of the workspace on
page 8, memory locations 132 (=$84) and 133 (=$85). The
low half or low byte of this address is stored at 132
and the high half or high byte at 133. For example, on
a 24K computer the end of memory would be $S5FFF, so the
contents of the low byte 132 would be $FF (255).and the
contents of 133 would be $SF (95). When the DOS command

BASIC

is entered in response to the A* prompt, the value at
8968 is used to compute a value to be stored at 132

and 133. When the value stored at these locations is
changed by CHANGE, the effect on BASIC will be immediate.
For example, this value is used when BASIC makes an "out

of memory" check.

3. Memory locations 121 (=$79) and 122 (=$7A) contain the
address of the beginning of BASIC programs in the work-
space. The low byte of this address is stored at 121
and the high byte at 122. When the system boots up,
the contents are generally $7E (126) and $3A (S8) in 121
and 122, respectively. When this value is changed by
CHANGE, the byte at the beginning of workspace is POKEd
with.4d.

Important: See page 147 for a wérning on the use of the work-
space after is has been modified by CHANGE.

The following directions,exblain how to change systems
parameters using the CHANGE progfam.

The program output and your inputs are shown below. Any
unacceptable response will result in an error message and/or a
repeat of the request for input. Enter RUN"CHANGE". You will see:

CHANGE PARAMETER UTILITY
CHANGE BASIC'S WORKSPACE LIMITS (Y/N)?

Enter YES or NO. If you enter NO, the program terminates.

If you enter YES, the program requests the following:

HOW MANY 12 (8 for mini-floppy) PAGE BUFFERS DO
YOU WANT BEFORE THE WORKSPACE (#, 1, or 2)?

Enter 8, 1, or 2 to reserve that many track buffers at the
beginning of the workspace. Note that device 6 memory buffer I/0

uses the first buffer while device 7 uses the second buffer. If

Lut g-12-4"

the answer is YES then a new value is POKEd to 132 and 133.
If no buffers are specified, the program asks: .
WANT TO LEAVE ANY ROOM BEFORE THE WORKSPACE (Y/N)?
Enter YES or NO. If you enter NO, the program outputs the
address of the start of the BASIC workspace as shown below. IF
YES is enteréd, proceed to the "HOW MANY BYTES?" question below.

An answer of YES will change the value at 132 and 133.

If one or more buffers was specified, the program continues
with:
WANT TO LEAVE ANY ADDITIONAL ROOM (Y/N)?
Enter YES or NO. If you enter YES, the-following question
is asked:
HOW MANY BYTES?

Enter the number of additional bytes to be allocated before

the start of the workspacet

The program then outputs the new address for the start of
the workspace and the total number of bytes reserved for buffers,

etc.

THE BASIC WORKSPACE WILL BE SET TO START AT aaaaa
LEAVING bbbb BYTES FREE IN FRONT OF THE WORKSPACE

IS THAT ALRIGHT (Y/N)?

Enter YES or NO. If you enter NO, the program requests that
you specify an exact lower limit address for the workspace.
NEW LOWER LIMIT?

Enter a lower limit address. The program then confirms this

value by outputting:
bbbb BYTES WILL BE FREE BEFORE THE WORKSPACE

The program then continues with:

lus

YOU HAVE xx K OF RAM
DO YOU WANT TO LEAVE ANY ROOM AT THE TOP (Y/N)?

Enter YES or NO. A YES answer will cause values to be POKEd

to 121 and 122. 1If you enter YES, the following question is asked:
HOW MANY BYTES?

Enter the number of bytes to be allocated between the top of

the workspace and the end of main memory.

The program then outputs:
i

THE BASIC WORKSPACE WILL BE SET TO END AT ccccc
LEAVING dddd BYTES FREE AFTER THE WORKSPACE

IS THAT ALRIGHT (Y/N)?

Enter YES or NO. If you enter NO, the program requests that

you specify an exact number limit address for the workspace.
NEW UPPER LIMIT?

Enter an upper limit address. The program then confirms‘this

value by outputting:
eeee BYTES WILL BE FREE AFTER THE WORKSPACE

Note that the reservation of space after the workspace is
not recorded on disk with a program when it is saved in a file.
The allocation is only recorded as a RAM resident change to the
BASIC interpreter and remains in effect until explicitly changed
again, or BASIC is reloaded by typing EAS in the DOS command mode.
Later, running a program that results in an "Out of Memory" (OM)
error may be the result of a workspace that has been unnecessarily

left reduced.

146

Program output continues with:
YOU WILL HAVE fffff BYTES FREE IN THE WORKSPACE
IS THAT ALRIGHT (Y/N)?

Enter YES or NO. If NO is entered, the Change Parameter
Utility Program restarts from the beginning. Otherwise, the
requested changes are made, the workspace contents are cleared

and the program terminates.

¢ WARNING: If you enter a DISK!"LOAD filename" command after
running CHANGE the workspace parameters are not those selected

by CHANGE, but rather those associated with "filename".

Therefore, if you are not ready to enter a new program in
your CHANGE modified workspace, you should enter a short dummy
program, perhaps with a few REM statements specifying the special
workspace parameters. Then save this with a DISK!"PUT filename"
-command. Later, this file can be LOADed and the special workspace
Parameters will be automatically set. Thén you_can'enter a new
program or merge in an old program via indirect files (see the
BASIC Reference Manual, Chapter 12) without alterning the work-

space specififcations.

For a discussion on how to use a machine language subroutine

in your CHANGEd workspace, see Appendix 11.

147 8- 18- 8(

CHANGE - Logical Flowchart

RUN

CHANGE PARAMETER UTILITY

CHANGE BASIC'S WORKSPACE LIMITS (Y/N) ?

N
‘oK

HOW MANY o PAGE BUFFERS DO YOU WANT
BEFORE THE WORKSPACE (#, 1, or 2) ?

e e

1 or 2t
o7 WANT TO LEAVE ANY ADDITIONAL
ROOM (Y/N) ? .
Y
y
WANT TO LEAVE ANY ROOM BEFORE | Y
THE WORKSPACE (Y/N) ? |
Ny . HOW MANY BYTES?
- £

IS THAT ALRIGET (Y/N) ?

THE BASIC WORKSPACE WILL BE SET TO START AT ooxxx
LEAVING o BYTES FREE IN FRONT OF THE WORKSPACE

N
NEW LOWER LIMIT ?

o BYTES WILL BE FREE BEFORE THE WORKSPACE

X

Y

YOU HAVE yy K OF RAM

DO YOU WANT TO LEAVE ANY ROOM AT THE TOP (Y/N) ?

9!

NY HOW MANY BYTES ?

x

LEAVING o BYTES FREE AFTER THE WORKSPACE
IS THAT ALRIGHT (Y/N) ?

THE BASTIC WORKSPACE WILL BE SET TO END AT mooxx

N

NEW UPPER LIMIT?

n BYTES WILL BE FREE AFTER THE WORKSPACE

%

IS THAT ALRIGHT (Y/M) 7

YOU WILL HAVE xxxxx BYTES FREE IN THE WORKSPACE

N

lus

¥
0K

File name : CHANGE

File type : BASIC

Mini-floppy specifications 8" floppy specifications
Location: " Tracks 19-2¢0 Track 15
Length : 2 Tracks 1 Track

Buffers for:

Device $5: NO NO
Device $7: NO NO
Other : NONE NONE

Mini-floppy to 8" floppy program conversions

25 XZ=1u4974:IF PEEK(8999)=uQ THEN XZ=12678
48 PRINT "HOW MANY 12 PAGE BUFFERS DO YOU WANT"
60 L=XZ+B*3072:REM L=$317E PLUS B#*$C8D

lug

i1 FR
i R
20 R
25 X
30 P
36 P
37 P
40 P
41 I
45 P
SO I
&0 L
70 I
80 I
90 I
100
110
120
130
149
150
160
170
180
190
200
204
206
2ie
220
230
240
250
260
279
280
299
300
310
312
314
320
330
349
350
360
370
38¢
390
1000
lo10
lo2e
1030
1040
1050
1060
lo7e
10890

CHANGE

INTCHR$(27): CHR$(28);

EM CHANGE PARAMETER UTILITY UNDER 0S-65D VERSION 3. 0

EM #*Ri 1/5/79

Z=14974: IFPEEK (8999)=49THENXZ=12679

RINT : PRINT "“CHANGE FARAMETER UTILITY" : PRINT

RINT : INPUT "CHANGE EASIC’S WORKSPACE LIMITS (Y/N) “; A%
RINT: IF A$<>“Y" THEN END

RINT"HOW MANY 12 PAGE BUFFERS DO YOU WANT *

NFUT"“BEFORE THE WORKSFACE (@, 1, aor 2) “;B

RINT

FBC<OORB>20RBCOINT (B) THENPRINTYANSWER @, 1, OR 2": PRINT: GOTO40
=XZ+B#3072 : REM L=$317E FLUS B¥$C00

F B<>@ THEN 130

NPUT "“WANT TO LEAVE ANY ROOM BEFORE THE WORKSPACE (Y/N) "“; As
F MID$(AS, 1, 1)<O"Y" THEN 1i7e@

PRINT: INPUT “HOW MANY BRYTES "; B

L=L+B

GOTO 170

INPUT “WANT TO LEAVE ANY ADDITIONAL ROOM (Y/N) “; A%
IF MID$(AS, 1, 1)<>"Y" THEN 170
FPRINT: INPUT “HOW MANY BYTES “; B
L=L+B
PRINT: PRINT “THE BASIC WORKSPACE WILL BE SET TO START AT";L
PRINT “LEAVING"; L-XZ; "BYTES FREE IN FRONT OF THE WORKSFACE"
INPUT “IS THAT ALRIGHT (Y/N) "“;A$
IF MID$(A%, 1, 1)="Y" THEN 210
PRINT: INFUT “NEW LOWER LIMIT “;L:PRINT:IF L<{XZ THEN 204
PRINT L-XZ; "BEYTES WILL BE FREE BEFORE THE WORKSPACE"
MP=PEEK (8960)
PRINT: PRINT “YOU HAVE"; (MP+1)/4; “K OF RAM"“:PRINT
U=(MP+1)#254
INPUT “DO YOU WANT TO LEAVE ANY ROOM AT THE TOP (Y/N) “; A%
IF MID$(A%, 1, 1)<>"Y" THEN 280

FRINT: INPUT “HOW MANY BYTES "“; E

=U-B

PRINT: PRINT “THE BASIC WORKSPACE WILL BE SET TO END AT"; U
PRINT “LEAVING"; (MP+1)#256~U; "BYTES FREE AFTER THE WORKSPACE"
INFUT “IS THAT ALRIGHT (Y/N) “;As

FRINT: IF MID$(A%$, 1, 1)="Y" THEN 320
INPUT“NEW UPPER LIMIT"; U: PRINT: IFU>491S20RU<L+3THENS312

PRINT (MP+1)#256-U; "BYTES WILL BE FREE AFTER THE WORKSPACE"
FRINT: FRINT"YOU WILL HAVE"; U-L+1; “"BYTES FREE IN THE WORKSPACE"
INFUT “IS THAT ALRIGHT (Y/N) “;As$

IF MID$(AS, 1, 1)<>"Y" THEN RUN

REM

REM NOW DO THE ADJUSTMENTS

REM

POKE132, U-INT(U/256)#256: POKEL133, INT(U/256)
POKELEG:L+1—INT((L+1)/256)*256:POKE121.INT((L+1)/256):POKEL:OINEN
REM

REM

PRINT “THE TERMINAL WIDTH IS SET FOR"; PEEK(23)

INPUT “DO YOU WANT TO CHANGE IT (Y/N)"; As

IF AS<O"Y" THEN 1100

INPUT "“NEW VALUE"; WD

IF WD<14 OR WD>255 THEN FRINT "BAD VALUE" : GOTO 1030

FOKE 23. WD

NC=INT(WD/14)#14: REM #R1

150

1090 FOKE 24, NC
1100 FRINT : PRINT "BASIC & THE ASSEMBLER USE"; (PEEK(8960)+1)/4;

1110 PRINT"K OF MEMORY (TOTAL) ("i FEEK(8960)+1; "PAGES)": REM*R1
1120 INPUT “WOULD YOU LIKE TO CHANGE THIS (Y/N)"; A$

1130 IF A$<O"Y" THEN 1170
1140 INPUT “HOW MANY FAGES SHOULD THEY USE (MIN: 52) “; KK

1150 IF KK<S2 GOTO 1146: REM *Ri
1152 IF KK>192 THEN PRINT"ABSOLUTE MAX IS 192":GOTO 1140: REM*R1

1154 DD=FPEEK (KK#256~1): POKE KK#256-1, 256-DD

1156 ND=PEEK (KK#256~1): POKE KK#256-1, DD: IF ND=2546-DD GOTO 1140

1158 PRINT "THIS COMPUTER DOESN’T HAVE"i KK; "PAGES OF MEMORY": GOTO 114@
1160 POKE 8960, KK-1: REM #R1

1176 END

151

CREATE

This utility program is used to create new named files. Note
that a file must have been created with this program before it can
be referenced by any of the file commands. To create a file, type:

RUN "CREATE"

The program output and the kind of input you may enter in

response are as shown below. Any unacceptable response will result

in an error message and/or a repeat of the request for input.

FILE CREATION UTILITY
PASSWORD?

Enter PASS.

The program continues with an explanation of its operation:
CREATES AN ENTRY IN DIRECTORY FOR A NEW FILE AND
INITIALIZES THE TRACKS THAT THE NEW FILE WILL
RESIDE ON. THE TRACKS WILL CONTAIN NULLS WITH
A RETURN AT THE END OF THE TRACK.

FILE NAME?
Enter-a one to six character file name that is not a duplicate of an
existing file name. It must start with a letter.
FIRST TRACK OF FILE?
Enter the number of the first tr#ck the file is to reside on. Note
that a file always begins on a track boundary and resides on.a whole

number of tracks.

NUMBER OF TRACKS IN FILE?
Enter the number of tracks on which the file is to reside. All tracks
assigned to a file must not have been previously assigned. It is often
useful to run a directory of the disketfe prior to running the create
utility so that the free tracks on the diskette can be identified.

The program then continues with:

12 (8 for mini-floppy) PAGES PER TRACK. IS THIS 0OK?

152

Type YES if the specified number of pages per track is acceptable;

otherwise, type NO. If you type NO, the following question is asked:
' HOW MANY PAGES PER TRACK THEN?

Enter the number of pages of storage you want each track to contain.
Any number up to the default number of pages is acceptable. For full
size diskettes this is twelve pages and for mini-diskettes it is eight
pages per track.

The file will now be created and its name and track location will
be entered into the directory. Each of the tracks of the file will

be initialized to nulls with a return character at the end of each

track.

153

File name : CREATE

File type : BASIC

Mini-floppy specifications 8" floppy specifications
Location: Track 21 , Track 16
Length 2 Tracks 2 Tracks

Buffers for:

Device #6: YES _ YES
Device $7: NO NO .
Other : 18 BYTE OBJECT FILE 18 BYTE OBJECT FILE

Mini-floppy to 8" floppy Program conversions

238 DATA 160,0,162,12,152,153,126,58,2680,208,250
499 DIM AL%(76)

S50 FORI=0TO76:AL%(1)=D:NEXT

518 DISK!"CA 2E79=08,2":GOSUBl18008

520 DISK!"CA 2E79=08,1":GOSUBla00D

5780 IF FL=1 THEN DISK!"SA ﬂ8,l=2E79/;":END

580 DISK!"CA 2E79=08,1":GOSUB27060

598 IF FL=1 THEN DISK!"SA @82=2E79/1":END
20098 IF TP<8 OR TB>76 THEN 28088

20110 IF NT<1 OR NT+T8>77 THEN 20108

20178 PG=12

20188 INPUT"12 PAGES PER TRACK. IS THIS OK";B$
20285 IF PG<l OR PG>12 GOTO020200

20218 IF PG<>12 THEN ?:?"DEFAULTS SET FOR 12 PAGES"

154

CREATE

1 PRINTCHR$(27); CHR$(28);

iee
110
129
130
140
150
160
17e
l8e
190
200
230
249
250
260
280
320
330
335
337
340
350
360
370
380
390
400
410
429
430
440
459
460
490
S09
510
520
S30
540
S60
S70
S80
S99
690

REM 2E7E AQ00 ZERO LDY #0

REM 2E89 A20C LDX #12

REM 2E82 98 TYA

REM 2E83 997E31 ONE STA $317&, Y OR $3A7E, Y
REM 2E86 C8 INY

REM 2EB7 DOFA ENE ONE

REM 2E89 EE8SS2E INC ONE+2

REM 2EBC CA DEX

REM 2EBD DOF4 BNE ONE

REM 2EBF 60 RTS

REM

DATA 160, 0, 162, 12, 152, 153, 126, 58, 200, 208, 250

DATA 238, 133, 44, 202, 208, 244, 96
FORI=11902T011919: READD: POKET, D: NEXT

IFPEEK (8999)=49THENPOKE11909, 49
POKEB955:126=POKE8956,46:X=USR(X):POKEB955.212:POKEB956;84
FRINT: PFRINT"FILE CREATION UTILITY":PRINT

PN=11897

INPUT"PASSWORD"; A$: IFA$<> "PASS “ THENEND

FRINT

DEF FNA(X)=16#INT(X/10)+X~10#INT(X/10)

DEF FNB(X)=L1@*#INT(X/16)+X~16%#INT(X/16)

DATA 1.2,3,4,5,6,7.8,9,A,B,C

PRINT “CREATES AN ENTRY IN DIRECTORY FOR A NEW FILE"
PRINT “AND INITIALIZES THE TRACKS THAT THE NEW FILE WILL"
FRINT “RESIDE ON. THE TRACKS WILL CONTAIN NULLS WITH aA¢
FRINT “RETURN AT THE END OF THE TRACK. "

PRINT

INPUT“FILE NAME"; As

IF LEN(A$)>6 THEN 416

IF LEN(A$)<6 THEN As$=A%+" "“:GCOTO 440
IFMID$(A$.l;l)<“A"ORNID$(A$.1:1)>"Z"THEN420

REM CHECK ALLOCATION + WATCH FOR NEW NAME

DIM AL%Z(76)

FORI=0TO7&: ALY (I)=0: NEXT

DISK!"“CA 2E79=08, 2“: GOSUB10000

DISK!"“CA 2E79=08, 1“: GOSUE10000

REM

REM FIND FREE ENTRY IN DIRECTORY

GOSUB 20000

IF FLL=1 THEN DISK!"SA 68, 1=2E7%9/1": END

DISK!“CA 2E79=08, 2": GOSUE20000

IF FL=1 THEN DISK'"“SA 08, 2=2E79/1": END

PRINT“## DIRECTORY FULL ##“:END

10000 REM

10010 REM SUBROUTINE USED EY ALLOCATION CHECKER
10030 FOR I=PN+& TO PN+254 STEF 8

10040 IF PEEK(I-6)=35 THEN 10100

10050 C$=““:FORK=1T06:C$=C$+CHR$(PEEK(I-7+K)):NEXTK:IFC$<>A$THEN1009B
10080 PRINT"## FILE NAME "i CHR$(34); A$; CHR$(34); * IN USE ##": RUN
10092 TO=FNB(PEEK(I)) : T9=FNB(PEEK(I+1))

19095 FORK=TOTOT?: ALY (K)=~1: NEXTK

10100 NEXT I

19110 RETURN

20000 REM

29010 REM SUBROUTINE USED TO ENTER NEW NAME INTO DIRECTORY
20030 FOR I=PN TO PN+248 STEF =)

20040 IF PEEK(I)=35 THEN 20080

155

20050 NEXT I

20060 FL=0: RETURN

20089 PRINT : INFPUT "“FIRST TRACK OF FILE";To

20099 IF TO<? OR TO>76 THEN 20080

20100 INPUT “NUMBER OF TRACKS IN FILE":NT

20110 IF NT<L OR NT>68 THEN 20100

20115 T9=TO+NT-1

20120 FK=0

20130 FOR K=T@ TO T9

20140 IF AL%(K) THEN PRINT”## TRACK":Ki "IN USE ##":FK=i
20150 NEXT K

20160 IF FK<>@ THEN RUN

20170 PG=12

20180 INPUT “12 PAGES PER TRACK. IS THIS OK";:Bs$
20190 IF MID$(B%, L, 1)="Y" THEN 20220

20200 INPUT "HOW MANY FAGES PER TRACK THEN"; PG
20210 IFPGCOL2THENPRINT: PRINTYNOTE: ALL DEFAULTS ARE SET FOR 12 PAGES!®
‘20220 FORJ=QOTOS: POKEI+J, ASC (MID$(AS, J+1, 1)): NEXTJ
20250 POKE I+, FNA(TO) : FOKE I+7, FNA(T®)

20260 FORI=A1TOPG: READP$: NEXTI

20270 FOR I=TO® TO T9

20280 T$=RIGHT$(STR$(I+100),2)

20285 J$="3ATE": IFPEEK (8999)=49THENJ$="317E"

20290 DISK!"IN "+T$: DISK!"SA "+T$+", 1="+Js+"/"+P¢
20310 NEXT I ‘ .
20320 FL=1: RETURN

156

DELETE

This utility progrém may be used to delete a named file from
the directory. DELETE frees the tracks on which that file resided,
but it does not actually alter the contents of those tracks.
Consequently, until a new file is created residing on those tracks
or the tracks are otherwise changed, the contents of the old (deleted)
file are still recoverable by a direct track number access.. To delete
a named file, type:

RUN "DELETE"

[

The program output and the kind of input you may enter in

response are as shown below.: Any unacceptable response will result

in an error message and/or a repeat of the request for input.

DELETE UTILITY
REMOVES AN ENTRY FROM THE DIRECTORY
PASSWORD?

Enter PASS. The program continues with:
FILE NAME?
Enter the name of the file to be deleted. The file will now be

deleted from the directory.

157

File name : DELETE
File type : BASIC

Mini-floppy specifications

Location: Track 23
Length : 1 Track
Buffers for:

Device §6: NO

Device $7: NO
Other : NONE

8" floppy specifications

Track 18

1l Track

NO
NO
NONE

Mini-floppy to 8" floppy program conversions

"

5S¢ DISK!"CA 2E79=p8,1"

60 GOSUB14@d@d@:IF FL=1 THEN DISK!"SA #8,1=2E79/1":END

78 DISK!"CA 2E79=p8,2"

80 GOSUB1@@P@:IF FL=1 THEN DISK!"SA #8,2=2E79/1":END

158

o

10
11
20
30
3z
33
34
35
40
45
47
S0
&0
70
80
90

REM DELETE
1
2 :

REM DELETE FILE UTILITY UNDER 0S-65D VERSION 3. 0
PRINTCHR®(27);: CHR%(28);

REM

PRINT: PRINT"DELETE UTILITY":PRINT

PRINT “REMOVES AN ENTRY FROM THE DIRECTORY":PRINT

INPUT “PASSWORD"; A$: IF A$<>"PASS" THEN END

PRINT

FLAG=0 : PN=11897

INPUT “FILE NAME"; AS

IF LEN(AS)>6 THEN 40

IF LEN(AS)<6 THEN AS=AS+" " : GOTO 47

DISK ! "CALL 2E79=@8, 1"

GOSUB 10000 : IF FLAG=1 THEN DISK ! "SAVE 08, 1=2E79/1" : END
DISK ! “CALL 2e79=08, 2¢

GOSUB 10000 : IF FLAG=1 THEN DISK ' “SAVE @8, 2=2E79/1" : END
PRINT “#% "; CHR$(34); At; CHR$(34); " NOT FOUND IN DIRECTORY ##"

100 END :
10000 REM

10010 REM SEE IF FILE NAME A$ IS IN DIRECTORY BUFFER
10020 REM

10030 FOR I=PNT TO PN+248 STEP 8

10040 FOR J=I TO I+S ' :

10050 IF CHR$(PEEK(J))<>MID$(A$, J-I+1, 1) THEN 10100
10060 NEXT J

10070 FOR J=I TO I+5 : POKE J, ASC("#") : NEXT J
19980 FOKE I+6,0 : POKE I+7.0

10090 FLAG=1 : RETURN

10100 NEXT I

10110 FLAG=0 : RETURN

159

PRINT

DIR

This utility program may be used to display a list of all
currently existing named files and the numbers of the tracks on
which they reside. The directory can be unsorted or sorted in
alpha numeric order by file name or sequentially by track number.
To display a directory, type:

RUN "DIR" -

The program will display a title and a menu followed by a
prompt for information as shown below. Any unacceptable response
will causé an error message and/or a repeat of the request for
information. ‘If an error message is encountered, then type RUN to
restart the utility.

DIRECTORY UTILITY

1> Directory

2> Directory sorted by name

3> Directory sorted by track

"Type 1, 2 or 3 and depress RETURN ?
Enter 2 or 3 to specify a named or a track sort, respectively. The
pProgram continues with:

LIST ON LINE PRINTER INSTEAD OF DEVICE #d?

Enter YES or NO. (d is the current output device assignment.)

If you enter YES, the directory output will be on device l; other-
wise, it will be on the currently assigned output device, the video
monitor. If you answer YES and there is no device 1 on the system,
the directory will not be displayed. The system will lock up and you

will have to reboot.

160

If the number 1 was entered to the menu prompt above,
THEN IT WILL BE. UNSORTED

is displayed and the directory list will be in the same order as the

actual entries in the directory.

Sample mini-floppy directory displays, sorted by name and track
number, éppear on the next page. The line at the bottom of each
directory stating, "u6 ENTRIES FREE OUT OF 64", means that eighteen
directory files use up eighteen of the 64 available directory entires.

Forty-six entries remain free for new file names.

161

0S-65D VERSION 3.3

-- DIRECTORY =--

FILE NAME TRACK RANGE
ASAMPL 34 - 34
ATNENB 35 - 3§
BEXEC* 1y - 16
CHANGE 19 - 29
COLORS 36 - 36
COMPAR 39 - 39
COPIER .17 - 18
CREATE 21 - 22
DELETE 23 - 23
DIR 24 - 24
MODEM 37 - 38
0S65D3 g - 13
RANLST 25 - 26
RENAME 27 - 27
SECDIR . 28 - 28
SEQLST 29 - 30"
TRACE 31 - 31
ZERO 32 - 33

46 ENTRIES FREE’ OUT OF 6u

0S-65D VERSION 3.3

-- DIRECTORY =--
FILE NAME TRACK RANGE
0S65D3 g - 13
BEXEC* 14 = 18
COPIER 17 - 18
CHANGE 13 - 29
CREATE 21 - 22
DELETE 23 - 23
DIR 24 - 24
RANLST 25 - 28
RENAME 27 - 27
SECDIR 28 - 28
SEQLST 29 - 34
TRACE 31 - 31
ZERO 32 - 33
ASAMPL 34 - 34
ATNENB 3§ - 38
COLORS 36 - 38
MODEM 37 - 38
COMPAR 39 - 38

46 ENTRIES FREE OUT OF 6u

162

File name

File type

Location:

Length :

Buffers for:
Device #6:

Device §7:
Other :

DIR

BASIC

Mini-floppy specifications

Track 24

1 Track

NO
NO
NONE

8" floppy specifications

Track 19

1 Track

NO
NO
NONE

Mini-floppy to 8" floppy program conversions

16p68 DISK! "CA 2E79=g08,1"

19888 DISK! "CA 2E79=08,2"

163

i

DIR

1 PRINTCHR$(27); CHR$(28);

10
20
30
40
20
60
79
80
82
84
86
87
88
90
91
92
93
95
96

REM

REM

NF=0@

PN=11897

DEF FNA(X)=1@#INT(X/16)+X-16#INT(X/16)

DIM NM$(64), TO%L(L4), TOL(64)

AV=0

DV=1 : Y=1 : X=PEEK(89%94)

IF X=<Y THEN 86

DV=DV+1 : Y=Y+Y : GOTO 82

PRINT: PRINT "DIRECTORY UTILITY":FRINT

PRINT" 1> Directory":PRINT" 2> Directory sarted by name”
PRINT" 3> Directory sorted by track":FRINT
INFUT"Type 1, 2, or 3 and depress RETURN "; Z$
IFZ$<OY1"ANDZ$ <> "2 ANDZ $<> 3" THENRUN

PRINT: IFZ$="2"THENZS$="N"

IFZ$="3"“THENZS$="T"

PRINT “LIST ON LINEPRINTER INSTEAD OF DEVICE #"iDVi
INFUT A$: IF MID$(A$, 1, 1)="Y" THEN DV=1

100 IF Z$="N" OR Z%$="T" THEN 10000
110 PRINT “THEN IT WILL EBE UNSORTED"

10000 REM

10010 REM

10020 REM

10030 PRINT #DV : PRINT #DV, "0S-6SD VERSION 3. 3"
10035 PRINT #DV, * —— DIRECTORY ——" : PRINT #DV
10040 PRINT #DV, “FILE NAME TRACK RANGE"

1005@ FPRINT #DV, "~ ————— e e "

100460 DISK ! "CA 2E79=08, 1

10076 GOSUE 11009 ‘

10080 DISK ! "CA 2E79=e8, 2

10090 GOSUE 11000

10095 IF Z$="N" THEN GOSUE 200009

10097 IF Z$="T" THEN GOSUE 21000

190100 FOR I=0 TO AV-1

10110 PRINT #DV.NM$(I);TA8(12)5TOZ(I)5TAB(lb);“—"3TAB(17);T9%(I)
10120 NEXT I

10130 PRINT #DV : PRINT #DV, 64-AV; "ENTRIES FREE OUT OF 64" : PRINT #DV
10149 END

11006 REM

11610 REM

11020 REM

11040 FOR I=PN TO PN+248 STEF 8

11050 IF PEEK(I)=35 THEN 11139

11060 N$=CHR$(PEEK(I))+CHR$(PEEK(I+1))+CHR$(PEEK(I+2))+CHR$(PEEK(I+3))
11070 NM$ (AV)=N$+CHR$ (PEEK (I+4))+CHR$ (PEEK(I+3))

11100 TO%L(AV)I=FNA(PEEK(I+6))

11110 TR%L(AV)I=FNA(PEEK(I+7))

11120 AV=AV+L

11130 NEXT I

11140 RETURN

20000 REM

20010 REM

20015 REM

20020 REM

20022 M=AV-1

20023 M=INT(M/2)

20030 IF M=0 THEN RETURN

164

20032
20040
20050
20070
20080
20090
20100
20105
20110
20120
20130
20140
21000
21010
21020
2ie22
21025
21030
21032
21040
21050
21070
21080
21099
21100
211e5
21110
21120
21130
21140

IF NM$(I)H<SNM$ (L) THEN 20120
T$=NMS$(I): NM$(T)=NME(L): NME(L)=T$
T%4=TO%Z(I): TOZL(I)=TOL(L): TOL(L)=TZ
TA=TR%(I) : TR =TZL(L) : TRA(L)I=T%
I=I-M

IF I>=0 THEN 20059

J=J+1

IF J>K THEN 20025

GOTO 20040

REM

REM

REM

M=AV-1

M=INT(M/2)

IF M=0 THEN RETURN

J=0 : K=AV-1-M

I=J

L=T+M

IF TOXL(IN<TO%Z(L) THEN 21120
T$=NM$(I): NM$(I)=NM&E(L): NM$(L)=T%
T%4=TO%(I): TOL(I)=TO%(L): TOL(L)=T%X
T4%=TQ4(T): T%(T)=TQL(L) : TRL(L)=T%X
I=1-M

IF I>=0 THEN 21050

J=J+1

IF J>K THEN 2125

GOTO 21040

165

RANLST

This utility program may be used to list the contents of a
random access file either a single record at a time or in groups
of contiguous records. The program assumes 128 byte records. To
list a random file, type:

RUN "RANLST"

The program output and the kind of input you may enter in
response are as shown below. Any unacceptable response will result
in an error message and/or a repeat of the request for input.

RANDOM ACCESS FILE READ

- FILE NAME?

Enter the name of the random access file to be listed.
EXAMINE SINGLE RECORDS OR GROUPS (S/G)?
Enter S or G. If S is entered, the number of the single record to
be listed is requested.
RECORD NUMBER?

ﬁnter the number of the record to be listed. (Records are numbered
from.zero through n.) The specified record is listed, then the
RECORD NUMBER questions is again asked. To terminate the program,

merely depress RETURN in answer to this question.

If G is entered, above, the range of record numbers to be listed

are requested.
FIRST RECORD?
Enter the number of the first record to be listed.
(LAST RECORD?
Enter the number of the last record to be listed.
The specified records are listed, then the "SINGLE RECORDS OR

GROUPS" question is again asked. To terminafe the program, merely

depress <RETURN>.
166

File name

File type

Location:

Length

Buffers for:

Device #6:
Device §7:
Other :

: RANLST
: BASIC

Mini-floppy specifications

8" floppy specifications

Track 2§

2 Tracks

YES
NO
NONE

Track 28

2 Tracks

YES
NONE

Mini-floppy to 8" floppy program conversions

NONE

167

RANLST

1 PRINTCHR$(27): CHR$(28);

10 REM RANDOM ACCESS FILE LIST UTILITY UNDER 0S-6SD VERSION 3. ©
20 REM

30 PRINT : PRINT “RANDOM ACCESS FILE READ" : PRINT
490 INPUT “FILE NAME"; N$

SO IF LEN(N$)>6 THEN 40

7@ DISK OPEN, &, N¢

75 INPUT “EXAMINE SINGLE RECORDS OR GROUPS (S/G)";R$
77 IF R$="G" THEN 200

78 IF R${O"S" THEN 75

80 PRINT : INPUT “RECORD NUMBER"; R

90 DISK GET,R

100 INPUT #é&, AS

110 PRINT : PRINT aAs

i20 GOTO 8@

200 PRINT : INPUT “FIRST RECORD";: RO

210 INPUT "LAST RECORD"; R9

229 IF R9<RO THEN 200

239 FOR R=RO TO R9

249 DISK GET, R

230 INPUT #6é, AS

2469 PRINT : PRINT AS

270 NEXT R

280 GOTO 7S

168

RENAME

This utility program may be used to change the name of any

file listed in the directory. To rename a file; type:
RUN "RENAME"

The program will display a title and prompt you for information
as shown below. Any unacceptable response will cause an error message

and/or a repeat of the request for information.

RENAME UTILITY
OLD NAME?

Enter the name of the file to be rename@ as it currently appears
in the directory. The program then displays:

RENAME "aaaaaa" TO? (aaaaaa is the old file name)

Enter the new name for this file (one to six characters, the first
being a letter). This new name will then appear in the directory in
place in "aaaaaa".

The name will be changed and the utility program will end with

the BASIC prompt. For example,

RENAME UTILITY

OLD NAME? TEST
RENAME "TEST " TO? TESTER

0K

169

File name : RENAME

File type : BASIC

Mini-floppy specifications

8" floppy specifications

Location: Track 27
Length : 1 Track
Buffers for:

Device $#6: NO

Device $7: NO
Other : NONE

Track 22
1 Track -

NO

" NONE

Mini-floppy to 8" floppy program conversions

58 DISK! "CALL 2E79=88,1"

60 GOSUB1#@ggQ:IF FLAG=i THEN DISK!"SAVE‘ﬂB,l=2E79/l":END

70 DISK! "CALL 2E79=08,2"

80 GOSUB18@60:IF FLAG=1 THEN DISK!"SAVE 88 ,2=2E79/1" :END

170

RENAME

1 PRINTCHR$(27); CHR$(28);

10
20
30
3s
40
45
47
s
60
70

REM RENAME FILE UTILITY UNDER 0S-45D VERSION 3. @

REM

PRINT : PRINT "RENAME UTILITY" : PRINT

FLAG=Q : PN=11897

INPUT "OLD NAME"; As

IF LEN(AS$)>& THEN 40

IF LEN(A$)<6 THEN As=A$+" " : GOTO 47

DISK ! "CALL 2E79=08, 1"

GOSUB 1€000 : IF FLAG=1 THEN DISK ! “SAVE @8, 1=2E79/1" : END
DISK ! "CALL 2E79=@8, 2"

80 GOSUB 10000 : IF FLAG=1 THEN DISK ! “SAVE @8, 2=2E79/1" : END
90 PRINT “## “;CHR$(34); A$; CHR$(34); " NOT FOUND IN DIRECTORY ##*"
100 END

10000 REM

10010 REM SEE IF FILE NAME A$ IS IN DIRECTORY BUFFEK

10020 REM

10030 FOR I=PNT TO FN+248 STEF 8

10040 FOR J=I TO I+5

1005@ IF CHR$(PEEK(J))OMIDS (A$, J-I+1, 1) THEN 10100
10060 NEXT J

10070 PRINT "RENAME "; CHR$(34);A%; CHR$(34); : INPUT * TO“; ANS
10075 IF LEN(AN$)>6 THEN 16070
19088 IF LEN(AN$)<6 THEN AN$=AN$+" “ : GOTO 10080

10082 IF MID$(ANS, 1, 1)<"A" OR MID$(ANS$, 1, 1)>"Z" THEN 10070
16085 FOR J=I TO I+5 : POKE J, ASC(MID$(ANS$, J-T+1, 1)) : NEXT J
100990 FLAG=1 : RETURN

19100 NEXT I

12110 FLAG=0 : RETURN

171

SECDIR

This utility prdgram may be used to output the number and size
of each sector on each of a specified range of tracks. Té output a
sector directory, type:

RUN "SECDIR"

The program output and the kind of input you may entér in
response are as shown beiow. Any unacceptable response will result
in an error message and/or a repeat of the request for input.

SECDIR

USES 0S-65D'S DIR COMMAND TO PRINT OUT A SECTOR MAP
OF A GIVEN RANGE OF TRACKS

FIRST TRACK?
Enter any valid track number greater than zero and less than the total
number of existing tracks (76 for full size disks or 39 for mini-disks).
LAST TRACK?
Enter any valid track number greater than that entered for the first
traék.
A sector map for the specified tracks will be output, then the
program will terminate. A sample of such is shown below.
SECTOR MAP DIRECTORY
TRACK 81
81-05
82-85
TRACK #2
81-0B
etc.
OK

In the sample, track 1 has two sectors, both five pages in length.

Track 2 has one sector of 11 (hex B) pages.

172

File name

File type

Location:
Length :

Buffers for:

Device j4:.

Device §7:
Other :

¢ SECDIR
: BASIC

Mini-floppy specifications

Track 28
1 Track

NO.

NO
NONE

8" floppy specifications

Track 23
1 Track

NO
NO
NONE

Mini-floppy to 8" floppy program conversions

48 IF TP<1l OR TA>76 THEN 30

68 IF T9<T@ OR T9>76 THEN 58

173

SECDIR

1 PRINTCHR$(27); CHR%(28);

1o
15
20
22
24
30
49
S0
-17]

REM SECTOR DIRECTORY UTILITY UNDER 0S-6SD VERSION 3. 0
REM

PRINT : PRINT "SECDIR" : PRINT

PRINT “USES 08~4SD’6 DIR COMMAND TO PRINT OUT A SECTOR"
PRINT “MAP OF A GIVEN RANGE OF TRACKS"“ : PRINT

PRINT : INPUT “FIRST TRACK"; TO

IF Te<i OR T@>76 THEN 30

PRINT : INPUT "LAST TRACK"; T9

IF T9<T0 OR T9>76 THEN 50

7@ PRINT : PRINT "SECTOR MAP DIRECTORY" : PRINT
80 FOR I=109+TO TO 100+T9

99 DISK ! "DIR "+RIGHT$(STR$(I), 2)

93 PRINT

100 NEXT I

110 END

174

-SEQLST

This utility program may be used to list the contents of a
sequential file. A sequential file is one in which all entries
within the file are contiguous with no intervening gaps. To
list a sequéntial file, type:

RUN "SEQLST"

The program output and the kind of input you may enter in
response are as shown below. Any unacceptable response will result
in an error message and/or a repeat of the request for input.

SEQUENTIAL FILE LISTER
TYPE A CONTROL-C TO STOP
FILE NAME?
Enter the name of the sequential file to be listed.

The specified file is listed until you type a CONTROL-C or the
end of the file is reached in which case the program terminates with
the following end-of-file message:

| ERR #D ERROR IN LINE 108
0K

175

File name

File type

Location:

Length :

Buffers for
Device 6

Device §7
Other

SEQLST
BASIC

Mini-floppy specifications

Track 29

2 Tracks

YES
NO
NONE

8" floppy specifications

Track 24

2 Tracks

YES
NO
NONE

Mini-floppy to 8" floppy program conversions

NONE

1786

SEQLST

1 PRINTCHR$(27): CHR$(28);
10 REM SEQUENTIAL FILE LISTER UTILITY UNDER 0S-45D VERSION 3. 0

20 REM

30 PRINT : PRINT "SEQUENTIAL FILE LISTER" : PRINT
49 PRINT “TYPE A CONTROL-C TO STOP"™

60 PRINT : INPUT “FILE NAME"; A%

70 IF LEN(A$)>6 THEN 60

70 DISK OPEN, &, A$

100 INPUT #6, D$

110 PRINT Ds

120 GOTO 100

177

TRACE

During the development of any new program, frequent testing
is required to insure that the program is actually performing the
desired tasks. The process of correcting the program problems
(bugs) is called debugging. The TRACE utility is an aid for de-
bugging BASIC programs, which displays the line number of each
line of the BASIC program as it is being executed. This gives the
programmer useful location information about any 'bugs' that he
might be trying to cure.

This utility program may be used to enable or disable a line
number trace for BASIC prograﬁs. To trace a BASIC program, type:

| RUN "TRACE"

The program will display a title and then prompt you for informa-
tion as shown below. Any unacceptable response will cause the request
for information to be repeated.

TRACE UTILITY

WHEN BASIC'S TRACE FEATURE IS ENABLED, BASIC WILL PRINT OUT EACH
LINE NUMBER OF THE PROGRAM BEFORE IT IS EXECUTED.

ENABLE OR DISABLE (E/D)?
Enter E to enable the trace, or D to disable the trace. If the
trace is being enabled,
led
0K
will be displayed. The "168" is a trace of the last line of the
utility program. Now run the program you wish to test with line
number tracing.
Note that the execution of any proéram (including utility
programs such as this one) will cause the line number of the line

currently being executed to be displayed, along with all other

178

information displayed by the program, while the trace is enabled.

This should not adversely affect the operation of the program.

179

File name . TRACE

File type . BASIC

Mini-floppy specifications

8" floppy specifications

Location: Track 31
Length : 1 Track
Buffers for:

Device #6: NO

Device $7: NO
Other :+ NONE

Track 26
1 Track

NO
NO
NONE

Mini-floppy to 8" floppy program conversions

NONE

180

o R
1 :
2
l1e
11
20
30
3s
37
38
40
50
&0
70
100
110
120
130
140
150
1460
200
210
229
230
240
250
260

EM TRACE

REM TRACE UTILITY UNDER 0S-65D VERSION 3. @
PRINTCHR$(27); CHR$(28);

REM

PRINT : PRINT "TRACE UTILITY" : PRINT

PRINT "WHEN BASIC’S TRACE FEATURE IS ENABLED., BASIC WILL PRINT"
PRINT "“OUT EACH LINE NUMBER OF THE PROGRAM BEFORE IT IS EXECUTED"
PRINT

INPUT "ENABLE OR DISABLE (E/D)"“; A$

IF As="E" THEN 100

IF As="D" THEN 200

GOTO 40

REM

REM ENABLE

REM

REM THIS MUST ALL BE DONE AS ONE LINE!

REM

L=2011: POKEL, 32: POKEL+1, 216: POKEL+2, 28: POKEL+3, 234: POKEL+4, 234
END

REM

REM DISABLE

REM

REM THIS MUST ALL BE DONE AS ONE LINE!

REM

L=2011: POKEL, 24: POKEL+1, 144: POKEL+2, 2: POKEL+3, 230: POKEL+4, 200
END

181

This utility program is used to zero the contents of a data
file. This fills the entire data file with null (hex 88) characters
which are ignofed (skipped over) during BASIC input. You may find
it advantageous to "zero" random data files before entering data into
+hem in order to provide a "backgrouynd" that is "transparent" (not
seen) by a BASIC INPUT command. To zero a file, type:

RUN "ZERO"

The program output and the kind of input'you may enter in response
are as shown below. Any unacceptable response will result in an error
message and/or a repeat of the request for input.

FILE ZERO UTILITY
COMPLETELY ERASES THE CONTENTS OF A DATA FILE
PASSWORD?

Enter PASS.
FILE NAME?

Enter the name of the file to be zeroeﬁ. The program continues with:
IS IT A NORMAL 12 (8 for a mini-floppy) PAGE DATA FILE?
Enter YES or NO. If NO is entered, the following message is output:
| THEN HOW MANY PAGES PER TRACK? |
Enter 1 through 12 (8 for a mini-floppy) to specify the number of 2656
byte pages per track in the file.

The file will be zeroed and the program will terminate.

182

File. name : ZERO

File type : BASIC
Mini-floppy specifications 8" floppy specifications
Location: Track 32 Track 27

Length : 2 Tracks 2 Tracks

Buffers for:

Device $6: YES - YES
Device $#7: NO NO
Other : 18 BYTE OBJECT FILE 18 BYTE OBJECT FILE

Mini-floppy to 8" floppy program conversions

238 DATA 160,0,162,12,152,153,126,58,208,208,258

370 DISK!"CA 2E79=08,1":GOSUB10080

398 DISK!"CA 2E79=88,2":GOSUB1A#02

485 PG=12 . |

418 ?:INPUT"IS IT A NORMAL 12 PAGE DATA FILE";AA$

Lu4g IF PG<1l OR PG>12 THEN 438

183

© REM ZERO
1
10 REM FILE ZEROING UTILITY OF 0S-63D0 VERSION 3.0
11 PRINTCHR$(27); CHR$(28);

49 REM TO ZERO OUT DATA RUFFER: EXECUTE THIS:

S© REM

100 REM 2E7E A0GQQ ZERO LDY #0
110 REM 2EBO Az2eC LDX #i2
120 REM 2EB2 98 TYA

1390 REM 2E83 997E31 ONE STA $317E, Y OR $3ATE,Y
140 REM 2EB4 (8 INY

150 REM 2EB87 DOFA EBNE ONE
160 REM 2E89 EES8SZ2E INC ONE+2
170 REM 2E8C CA DEX

180 REM 2E8D DoF4 ENE ONE
199 REM 2EBF &9 RTS

200 REM ‘

230 DATA 160, 0, 162, 12, 152, 153, 126, 58, 200, 298, 259

240 DATA 238, 133, 44, 202, 208, 244, 96

2350 FORI=11902T011919: READD: FOKEI, D: NEXT

260 IFPEEK(8999)=49THENPOKE11209, 49

280 POKEB9SS, 1246: POKEB?T6, 46: X=USR(X): POKE8S935, 212: POKEB?56, 34
2835 DEF FNA(X)=10#INT(X/16)+X—-16#INT(X/16)

299 PRINT: PRINT"FILE ZERO UTILITY":PRINT

300 PRINT"COMPLETELY ERASES THE CONTENTS OF A& DATA FILE"
310 FRINT

320 INPUT “PASSWORD"; A% : IF AS<>"PASS” THEN END

33@ INPUT “FILE NAME"; A%

349 IF LEN(A$)>6 THEN 330

350 IF LEN(A$)<6 THEN As=A%+" " : GOTO 35@

36@ FN=11897

370 DISK!"CA 2E79=08, 1": GOSUB 10000

380 IF FL<C>@ THEN 405

390 DISK!"CA Z2E79=08, 2": GOSUB 10000

400 IF FL=0 THEN PRINT "## FILE NAME NOT IN DIRECTORY ##":END
485 FG=12

410 PRINT: INFPUT"“IS IT A NORMAL 12 FAGE DATA FILE"; AAS$
420 IF MID$(AA%, 1, 1)="Y" THEN 450

430 INPUT “THEN HOW MANY PAGES PER TRACK"“: PG

440 IF PGK1 OR PG2>12 THEN 430

459 DATA 1,2,3,4,5, 6,7, 8.9, A B/ C

469 FOR ‘I=1 TO PG : READ P$: NEXT I

480 FOR I=T@ TO T9

490 T$=RIGHT$(STR$(I+109), 2)

495 J$="3A7TE": IFFEEK(B999)=49THENJ$="317E"

500 DISK!“SA "“+T&+", 1="+Js+"/"+P¢

510 NEXT I

S20 END

10000 REM

10010 REM FIND A% IN DIRECTORY

10020 REM

19030¢ FOR I=PN TO PN+248 STEP 8

10040 Bg=""

10050 FOR K=I TO I+5S : E$=B$+CHR$(FEEK(K)) @ NEXT K
19060 IF A$<>B% THEN 10090

1007¢ TO=FNA(PEEK(I+6)) : T9=FNA(FPEEK(I+7))

10980 FL=1 : RETURN
190990 NEXT I
10100 FL=0@ : RETURN

184

ASAMPL

Tutorial disk S5 contains a file named ASAMPL. This file hold§
a sample assembly language program which cannot be loaded while BASIC
is in memory. If you are interested in assembly language programming
and would like to examine this file, choose option 9 from the Tutorial
Disk 5, then enter the command EXIT. The DOS prompt, A* will appear.
Enter ASM to load the assembler/editor. When the '.' prompt appears,
load ASAMPL by entering "!LO ASAMPL'. The '.' prompt will again
appear. To list the program enter 'P'. Next, enter A3 to assemble
and store the program. Finally run the program by entering '!GO 1l608°'.

The message

THIS IS A SAMPLE PROGRAM

should appear, then the system control is transferred to DOS as

indicated by the A* prompt.

As indicated earlier, the loading of ASMAPL used memory which
contained BASIC. 1In order to return to BASIC, then, BASIC must be

reloaded by entering BA. When this is done, the message

0SI 8 DIGIT BASIC
COPYRIGHT 1977 BY MICROSOFT
9641 BYTES FREE

will appear followed by the OK prompt.

185

File name : ASAMPL

File type : ASSEMBLER

Mini-floppy specifications 8" floppy specifications
Location: Track 34 Track 29
Length : 1 Track 1 Track

Buffers Eor:

Device #5: pNO NO
Device #7: NO NO
Other : NONE NONE

Mini-floppy to 8" floppy program conversions

NONE

186

10

ey
P

RAN]
Ji

=
-}

&

TO

(=1y)

20
100
110

20
120
140
140
14¢
140
140
140
140
140
130
140
144
140
140
143G
143
140
140
144G
140G
14
14¢
14G
14
14
140
130
150
170
120

2DsA=
2AS1=

2D7Z=
1&£00

1800
1603
1608
1607
1508
1609
1504
140R
150C
150D
160E
160F
1810
1611

1612
1813
1514
1615
1614
1617
1618
1619
151A
1&1E
151C
161D
1581E
161F

1822

208A2ZD
20732
54

48

49

5=

20

49

53

20

41

20

52

41

4D

S0

4C

45

20

S0

]
s o

3F
a7

=
il

41
4D
atn)
20&AZD
4CS12A

ASAMPL

SAMFLE ASSEMELY LANGUAGE FRGGRQM

i EXTERNAL LAEELS
CRLF = $2DsA
0S&5DT = s$2AS1
STROUT = £2D73

’ X = $1600
START JSKR CRLF
JSR STROUT :
.BYTE °"THIS IS A SAMFLE FROGRAM®,0

JSR CRLF
JMFP 0S&35D3

. END

187

ATNENB

Tutorigl disk 5 contains a program called ATNENB which is used
to enable or disable BASIC's arctan function and the 0S-65D V3.3
print extensions. Due to memory contraints in V3.3, only one of
these features may be enabled at a time. ;To enable the features
you desire, run the program ATNENB. You will be given an option
of which feature you want. After making your selection, the system
will configure itself to your needs. Use of the 0S-65D V3.3 print

extensions will be explained in Chapter 6.

188

File name

File type

Location:

Length

Buffers for:
Device i4:

Device ¢7:
Other

ATNENB

3ASIC

Mini-floppy specifications

8" floppy specifications

Track 35§
1 Track

NO
NO
1 PAGE OBJECT FILE

Track 38

1 Track

NO
NO
1 PAGE OBJECT FILE

Mini-floppy to 8" floppy program conversions

NONE

189

© REM ATNENE
1

2

10 PRINTCHR$(27); CHR$(28): REM run under 0S5-45D V3. 3 only!'!!
20 :

30 PRINT"### ATN wvs. PRINT extensions ###": PRINT
40 PRINT"Only one may be enabled at a time!Y: PRINT
5@ PRINT"Enter the number of your selection: "

69 PRINT: PRINT

79 PRINT"1> Enable ATN function

8@ PRINT"2> Enable PRINT extensions"

9@ PRINT: PRINT

490 :

500 INPUT“Your choice (1 or 2) iys

5910 IF (ys<>"1") AND (Y$<>"2") THEN 500

020 t=B8278: f=14974: ct1=FEEK (2073): POKE 2073, 96

5295 ¢

530 IF y$="2" THEN FOR i=1 TO 9: READ a: NEXT: f=f+110
S40 :

530 FOR i=0 TO 109: a=PEEK(f+i): POKE t+i, a: NEXT i
560

S70 a=0558: READ b, c :POKE a, b: POKE a+i, c

S7S a=@828: READ b. c, d: POKE a, b: POKE a+l, c: POKE a+2, d
S80 a=2642: READ b, c : POKE a, b: POKE a+1, c

S85 a=8&43:READ b, c :POKE a, b: POKE a+li, c

590

609 POKE 2073, ctl: a$="ATN function"

619 IFys$="2" THEN a$="PRINT extensionsg"

620 PRINT: PRINT: PFRINTas$" enabled. *

- 630 END

8909 :

900 DATA 169, 833, 045, 084, 206, 236, 028, 205, 12

P10 DATA 688,032,010.0;0,138.127.047,178.032

COLORS

Tutorial disk 5 contains a program called COLORS which may be
used to aid in the adjustment of your color monitor. When the
program COLORS is run, a test pattern is displayed on your video
monitor. The pattefn shows all sixteen colors that can be produced
by your Challenger computer. You may then adjust your monitor using

these colors as a guide. To exit the program, depress the SPACE BAR

on the keyboard.

131

File name

File type

Location:

Length

Buffers for:
Device $65:

Device §7:
Other :

COLORS
BASIC

Mini-floppy specifications

Track 38

1 Track

NO
NO

NONE

8" floppy specifications
Track 31
1 Track

NO
NO

NONE

Mini-floppy to 8" floppy program conversions

NONE

192

® RE
1 :
2 .

]

COLORS

10 REM ## COLOR SEQUENCE TEST PROGRAM %
20 POKES6832, 7: PRINT! (28);
FORI=@TOLSSTEP2
READAS, B$: FORU=1T02

loe

300

400

S00

600

700

1000
loieo
1020
1030
1040
10350
10460
lo7e
lo80
1090
1i00
1iie
1120
1130
1140
115@

20000 PRINT"
20010 DISK!"“GO 233s&":

PRINT! (31, I)As!(25)"

"1(31, I+1)Bs% ! (25)

“: B$=A%$: NEXT

As= ”"
IFIC14THENPRINT

NEXT

DATA" 9> YELLOW

DATA" 1> INVERTED YELLOW
DATA" 2> RED

DATA* 3> INVERTED RED

DATA" 4> GREEN

DATA" 3> INVERTED GREEN

DATA" 6> OLIVE GREEN

DATA" 7> INVERTED OLIVE GREEN
DATA" 8> BLUE

DATA" 9> INVERTED ELUE

DATA" 10> PURPLE

DATA" 11> INVERTED PURPLE
DATA" 12> SKY BLUE

DATA" 13> INVERTED SKY BLUE
DATA" 14> BLACK

DATA" 15> INVERTED RLACK (WHITE)

PRESS THE SPACE

20020 PRINT!(28);
20038 RUN“BEXEC#*

193

BAR TO END THIS PROGRAM

IFFEEK (9059)<>32THEN20010

?

MODEM

This is a BASIC program which will set up a machine
code modem routine designed for use with a standard modem
(with RS-232). The routine will operate with the modem ports
on the Ohio Scientific C1P, C4P and C8P computers. The 638
and UTI board modem ports are exceptions to this and are not
supported by this routine.

Under OSI 6SD V3.3 (but not under V3.2 or ROM) input
and output are directed through the Hazeltine 1420 emulator.
Thus, you will appear as a Hazeltine terminai to the computer.
Some.IMZD codes have been altered slightly to allow manipu-
lation of 0SI's color video. ;Others have been altered to
facilitate use with 0SI's Microsoft BASIC. Additionally,
some codes have been added to support features the Hazeltine
does not. In all cases, the changes to the Hazeltine command
set have been done in a way to maximize software compatibility

between the serial and video systems offered by Ohio Scientific.

-~

19y

There are two local commands:

CONTROL-D - Toggles the output back and forth between Full
and Half duplex mode. (Sometimes echoed as a
comma.)

CONTROL-B - Returns to BASIC if the routine is operating on
a cassette system, or runs BEXEC* if it is
operating on a disk system, effectively
terminating the call.

Shift-0 is still used to output a delete character code.
Since ROM BASIC doesn't process a backspace, the previous
character will be omitted from the text but not on the
video screen. The delete code will be displayed as a graphic
backspace, a forward space and another graphic backspace on
the ROM BASIC computers.

Suppose you want to call the local computer club
computerized bulletin board, phone number (XXX-XXXX). You

would,

1. Connect your modem to your computer via RS-232
(as discussed in your user's manual).

2. Type, RUN"MODEM"<RETURN>.

3. Dial up the bulletin board and connect the telephone
to your local moden.

4. When you are through with modem operations, sign off
using the remote's protocol and type <CTRL-B>.

5. Physically hang up the telephone to complete call
termination.

195

File name : MODEM

File type : BASIC

Mini-floppy specifications 8" floppy specifications
Location: Tracks 37-38 Track 32
Length : 2 Tracks 1 Track

Buffers for:

Device #6: NO NO
Device §7: NO . NO
Other : NONE : NONE

Mini-floppy to 8" floppy program conversions

NONE

196

0 RE
1
2 .

M

MODEM

10 REM MODEM PROGRAM USING HAZELTINE EMULATOR

15 POKEL33, 80: CLEAR: FORI=1T030: PRINT: NEXT

20 PRINT"MODEM ROUTINE LOADING"

39 Y=PEEK(2): Z=PEEK(64774)

49 IFZ=32THENGOSUR300@: GOT040

S50 GOSUB4000

60 FORI=1T032: PRINT: NEXT: FRINT"MODEM READY"

7@ X=USR(X): POKE&3235, 0: FOKE64S12, 17

8o RESTORE:COSUBSGO:IFY=4THENX=PEEK(8960):POKELSQ.X:RUN"BEXEC*“

90 E
S00
3505
Sie
520
5360
540
550
560
a7@
Sg8e
S99
610
&20
639
640
450
670
689
690
P99
1500
1510
1520
153e
2000
2010
2020
2030
2035
2040
2030
2960
2070
2089
2090
2100
2110
2129
2130
3000
3005
3008
3610
3029
3030
3040

ND
IFPEEK

(8999)=SBTHENFORI=1T048: READP: NEXT: RETURN

PS=1: IFPEEK (9800) =32THENPS=2
IFY<>40RZ<>32THENFORI=1T048: READP: NEXT: RETURN
READP, C(1), C(2): IFPTHENPOKEP, C(PS): GOTOS520

RETURN
DATA @9
DATA <

730, 8, 146
743, 7, 15

DATA 9723, 31, 63

DATA <
DATA 9

736, 31, 63
25, 4, 1.0

DATA @738, 29, 59
DATA 9800, 32, &4
DATA 9636, 101, 75
DATA 9766, 101, 75
DATA 9770, 101, 75
DATA 9815, 101, 75
DATA 9670, 125, 123
DATA 9783, 125, 123

DATA 9682, 95, 164
DATASS294, @, 1,0, @, ©

FORI=0@+FTO0216+F: READX

IFX=-1THENX=INT(I/256)

POKETI, X: NEXT

RETURN

DATA 32,13;37,173.0;240,74.144'6.173;l;240.32167'35

DATA 32;93,—1.240.239;201.2,240:22,201;4,240,21172.32

DATA 67;35:173.0:246,74;74.1444249;l@4.14lal:240;76.37

DATA -1, 76, 13, 37, 173, 63, -1, 73, 12, 141, &3, -1, 2681 2235, .1.38

DATA 72, 152, 72

DATA 169.l:32;1901252,32;1981252:208;5.l0.208;245;240:83
DATA 74,144,9,42:224;33,268,243:169:27.208.33:32:200,253
DAaTA 152;141:19;2110,10.10.56:237:19.2.14l;19»2:168,138
DATA 74.240,49'136.200,74.144:252.208,42,234:185:207.253.205
DATA 2142,208,38;296,20.2.240,43116015.162;209:202.208;253
DATA 136.2084248.240;67.201,l:240:53,i60.0;20112:240:54‘160
DATA 192,201132.240.48,169,0,141,22;2.141,21;2,169.2.141
DATA 29,8,208;36;162a150.205,22:2:20812.162,14'142;20;2
DATA 141;22:2,169.1;32,l99,252;32:207,252,74:144:3.76

DATA 143;253:208,194;160.32:76;167,253,L6?;0;76,l83:253
GOosueSeo
IFY=4THENPOKE8955;341POKE8936,82:F=2l026:GOSUBLSOOICOTO4071
F=346: GOSUBLS0

FOKES46, 44: FOKES92, 94
POKESSQ,ESlfPOKESbG,EtFOKE5761251:POKE577,2
POHE763,41:POKE764,lE?:POKE?éS,76:POHE7bé,45:POKE767,191

FOKEL

1, 34 FOKELZ2, 2: RETURN
197

4000 GOSUE3000
4005 IFY=4THENFOKE&323S, S2: FOKEG4S12, 2

4010 FOKEF+645S, 141: FOKEF+66, 0: POKEF+67, 223
4020 FPOKEF+68, 174: FOKEF+69, 0: POKEF+70, 223
4939 POKEF+193, 141: FOKEF+194, @: POKEF+195, 223
4040 POKEF+196.173:POKEF+197:0:POKEF+19B:223
4050 POKEF+1, &48: POKEF+2, 38

4060 POKEF+47, 68: POKEF+48, 38

4070 POKEF+5.252:POKEF+11.ESE:POKEF+34:252:POKEF+42.252
4071 IFPEEK(8999)=S50THENRETURN

4972 POKEF+16, 204: POKEF+17, %0

4973 POKEF+13, 192: POKEF+14, 51

4074 POKEF+30, 192: POKEF+31, 51

4975 POKEF, 44: POKEF+46, 96

4080 RETURN

198

COMPAR

Diskettes can be compared on a dual drive system as follows:

Place one disk in drive A and one in drive B.

Choose option 9, then enter
EXIT

The A* prompt will appear.
Enter
CA 0209=33,1 (for 8" floppies)
or

CA 9280=39,1 (for S" floppies) .
then enter

CA 2808=39,2 (for 8" and 5" floppies)
Start running the program by entering
GO 0200

The disk COMPAR utility menu will appear on the screen.
Select option 1.

Answer the sequence of questions so that the comparison
will be made from drive A to drive B and over the range
of tracks you wish to compare.

As each track is compared, its track number and
sector specifications will appear on the screen.

If any differences occur in a track, they will be
listed with drive A on the left and drive B on
the right, as follows:

B/

1

gagp 7B 7C
8801 ps 99
8018 96 87
g8 :
1

1399

This shows three differences on track 7, sector 1.
The first, second, and seventeenth bytes on this
track/sector differ. The compare program found a
7B, 85, and 96 hex. on drive A and a 7C, 89, and
87 on drive B at these disk addresses.

200

File name

File type

Location:

Length :

Buffers for:
Device #f:

Device §7:
Other :

: COMPAR
: OBJECT CODE

Mini-floppy specifications

Track 39

1 Track

NO
NO
NONE

8" floppy specifications
Track 33

1 Track

NO
NO
NONE

Mini-floppy to 8" floppy program conversions

NOT TRANSFERABLE

201

t

Appendix 2

ASM

BASIC

CALL NNNN=TT,S

D9

DIR TT

EXAM NNNN=TT

GO NNNN

HOME

INIT

INIT TT

I0 NN,MM

I0 ,MM

I0 NN

LOAD FILNAM

LOAD TT

MEM NNNN, MMMM

DOS Command Summary

LOAD THE ASSEMBLER AND EXTENDED MONITOR.
TRANSFER CONTROL TO THE ASSEMBLER.

LOAD AND TRANSFER CONTROL TO BASIC.

LOAD CONTENTS OF TRACK, "TT" SECTOR, "S"
TO MEMORY LOCATION '‘NNNN".

DISABLE'ERROR>9.‘ THIS IS REQUTRED TO READ
SOME EARLIER VERSION FILES (Vi.5, v2.9).
(on 8" systems only)

PRINT SECTOR MAP DIRECTORY OF TRACK "TT".
FOR EACH SECTOR, THE NUMBER OF PAGES IS GIVEN.

- LOAD THE ASSEMBLER AND EXftNDED MONITOR.

TRANSFER CONTROL TO THE EXTENDED MONITOR.
EXAMINE TRACK. LOAD ENTIRE TRACK CONTENTS,
INCLUDING FORMATTING INFORMATION, INTO
LOCATION '"NNNN'.

TRANSFER CONTROL (GO) TO LOCATION "NNNN".

RESET TRACK COUNT TO ZERO AND HOME THE CURRENT
DRIVE'S HEAD TO TRACK ZERO.

INITIALIZE THE ENTIRE DISK. I.E. ERASE THE
ENTIRE DISKETTE (EXCEPT TRACK #) AND WRITE
NEW FORMATTING INFORMATION ON EACH TRACK.

SAME AS "INIT", BUT ONLY OPERATES ON
TRACK "TT".

CHANGES THE INPUT I/0 DISTRIBUTOR FLAG TO
"NN'", AND THE OUTPUT FLAG TO "MM".

CHANGES ONLY THE OUTPUT FLAG. (See page Su)
CHANGES ONLY THE INPUT FLAG. (See page 5u)
LOADS NAMED SOURCE FILE, "FILNAM'" INTO
MEMORY.

LOADS SOURCE FILE INTO MEMORY GIVEN STARTING
TRACK NUMBER '"'TT".

SETS THE MEMORY I/0 DEVICE INPUT POINTER TO
""NNNN'', AND THE QUTPUT POINTER TO 'MMpM".

202

PUT FILNAM SAVES SOURCE FILE IN MEMORY ON THE NAMED DISK
FILED "FILNAM".

PUT TT SAVES SOURCE FILE IN MEMORY ON TRACK "“TT" AND
FOLLOWING TRACKS. '

RET ASM RESTART THE ASSEMBLER. |

RET BAS RESTART BASIC.

RET EM RESfART THE EXTENDED MONITOR.

RET MON RESTART THE FROM MONITOR (VIA RST VECTOR).

SAVE TT,S=NNNN/P SAVE MEMORY FROM LOCATION “NNNN" ON TRACK "TT"

SECTOR "S" FOR "P" PAGES.
SELECT X SELECT DISK DRIVE "X'" WHERE "X" CAN BE;

A, B, C, OR D. SELECT ENABLES THE REQUESTED
DRIVE AND HOMES THE HEAD TO TRACK @. :

XQT FILNAM - LOAD THE FILE, "FILNAM" AS IF IT WAS AN OBRJECT
: FILE, AND TRANSFER CONTROL TO LOCATION $3A7E
(317E on 8" Vv3.2; 327E on 5" V3.2)

XQT TT v LOAD THE FILE BEGINNING ON TRACK "TT" AS IF IT

WAS AN OBJECT FILE AND TRANSFER CONTROL TO
LOCATION $3A7E (317E on 8" Vv3.2; 327E om 5" V3.2)

NOTES:

~ ONLY THE FIRST 2 CHARACTERS ARE USED IN RECOGNIZING A COMMAND.
THE REST UP TO THE BLANK ARE IGNORED.

- THE .LINE INPUT BUFFER CAN ONLY HOLD 18 CHARACTERS INCLUDING
THE RETURN.

— THE COMMAND LOOP CAN BE REENTERED AT $2A51.

- FILE NAMES MUST START WITH A "A" TO "Z" AND CAN BE ONLY
6 CHARACTERS LONG.

- THE DIRECTORY IS ALWAYS MAINTAINED ON DISK. THIS PERMITS THE
INTERCHANGE OF DISKETTES.

- THE FOLLOWING CONTROL KEYS ARE VALID:

CONTROL - Q CONTINUE OUTPUT FROM A CONTROL-S.
CONTROL - S STOP OUTPUT TO THE CONSOLE.

— COMMANDS CAN BE USED IN THE BASIC MODE IN THE FORM DISK!"DOS"
WHERE DOS REPRESENTS ONE OF THE COMMANDS ABOVE.

~
[so]
(93]

Appendix 3 BASIC Command Summary

The entries are organized alphabetically according to Keywords used.
Each entry consists of the general syntax, examples where appropriate,

and a brief description.
The following notation is used:

(al see page n of the 0S-65D Tutorial and Reference Manual (this manual)
(*) cannot be used in the immediate (direct) mode; must be used with
a program statement number.
(**%) can only be used in the .immediate (direct) mode; must not be
A used within a program. »
(2) not available under 0S-65D Vv3.3.
(3) available only under 0S-65D V3.3.
{n} see page n of the 0SI BASIC Reference Manual _
ae a numeric comstant or arithmetic expression (see {3})
re a logical constant or relational expression (see {4})
se a string constant or expression (see {4})
dos a 65D Disk Operating System (DOS) command.
e a constant or expression. . -
v a variable : :
c a constant
nv a numeric variable
iv an integer variable
sv a string variable
niv a nv or iv
rae a re or ae
FILE a disk file name
loc a memory locatiom address
sa a program statement number
dev an 0S-65D deyice number (see [543])
ABS ABS(ae)
A function. Returns the absolute value of its
argumenc. {19} ’
AND re AND re
IF X<15 AND X>=@ THEN 1¢@
A bitwise Boolean AND operator . re AND re
will be TRUE only when both of the operands
have the value TRUE. {4} -
ASC ASC(se)
ASC(X$) ASC("BIG"™)
A function. Returns the ASCII value in
~decimal of the first character in the argument
{20}
ATN ATN(ae) (-1<ae< 1)
ATN(B.431)

A function. Returns the arctangent of the
argument {20} (2) 1883

20u

CHRS CHRE(ae) (Pae< 255)
CHR3(66)
A function. Returns the character whose decimal
ASCII value is the greatest integer less than or
equal to the argumenc. {21}.

CLEAR CLEAR
Clears the program variable table and restores

the data pointer (*) {17}

CLOSE DISK CLOSE, dev (dev =6 or dev =7)
‘Closes a disk file that has been previously
opened. {28} (1531

CONT CONT
Restarts as program whose execution has been

interrupted by a STOP or END statement or a
CTRL-C. {15} (**)

cos CoS (ae)
A function. Returns the cosine of the

argument. {20}

DATA DATA ¢, €, €, ...
DATA 1.7, "BIG", 173, -812
Establishes a list of constants to be input
by the program via the READ statement {67}

DEF FN DEF FNnv(nv) = ae.
DEF FNA(X) = X*7+3
Defines a single variable function for future
use within the program segment {23} (%)

DIM DIM v(ae, ae,...) ..«
X DIM A(20), B3(6,7)
Declares the variables specified to be
subscripted. {18},

DISK! DISK! "dos"
DISK! "IO 5,6"
DISK! "LOAD FILE"
-Permits 65D DOS commands to be used within a
BASIC program. (2§2] -

DISK CLOSE see CLOSE
DISK FIND s;e FIND
DISK GET see GET
DISK OPEN see open
DISK PUT see PUT
EDIT EDIT sn
EDIT 149

Returns line sn for editing. The short
form is ! sn. (**) [71] (3)
205

END

EXIT

FIND

FOR

GOSUB

GOTO

END
Terminates program execution {13}

EXIT
Transfers control to the DOS mode {28} [53] (**)

EXP (ae) ae< 88.029619

EXP(41.662)
A function. Returns e = 2.71828...raised to
the power equal to the value of the argument.

{19}

DISK FIND, se

DISK FIND, "BIG"
Beginning at current file pointer location, the
data file is searched for the specified string, the
pointer is set to the end of the field in which
it is found. An unsuccessful search results in
a #D error. [96] (3)

see DEF FN

FOR niv = ae TO ae
FOR niv = ae TO ae STEP ae
FOR XZ = 15 TO. 45 STEP 5
Opens program loop. End of the loop is
indicated by the statement NEXT or NEXT niv.
STEP is used to define an increment other than
1 for niv for each iteration of the loop. In
the example, the loop is executed 7 times {12} (*)

FRE(X) X is a dummy variable
A function. Returns the number of bytes of memory
in the workspace that are unused. Save the program

before using FRE. {17}

DISK GET, niv
DISK GET, 15

Brings the record number niv from the disk
to buffer #6 and sets the I1/0 pointers to the
beginning of the record {28} (173

GOSUB sn

GOSUB 1999
Program control is transferred to statement number

sn. When the statement RETURN is encountered,
control goes back to the statement following sn

{23}

GOTO sn

GOTO 1909
Program control is transferred to statement

number sm. {11}

IF

INPUT

INPUT#

LEFTS

LIST

LIST#

IF rae GOTO sn

IF rae THEN sao

If the value of rae is TRUE (arithmetic expressions
are considered to be TRUE if they have a value
other than #) program control is transferred to
statement sn.

IF rae THEN S (S is a program statement)

If the value of rae is TRUE, statement S is
executed {11}

INPUT V, V, ...

INPUT X, Y, AS
Prompts for keyboard input to the specified
variables {6} {*}

INPUT#dev, V, V, ...

INPUT#6; A, B, Q$.
Input is from device number dev to the
specified variables. {9} [13]1 (*)

INT (ae)

INT (-16.8)
A function. .Returms the greatest integer less
than or equal to the argument {19}

LEFTS$(se, ae) ae >9

LEFTS ("4BCDE", 3)
A function. Truncates ae to an integer and
returns that leftmost number of characters from
string se. In the example, "ABC" is returned.

{21}

LEN(se)

LEN(AS)
A function. Returns the length of the string
se {21}

LET V=ce¢e
LET A$ = IIBIGH
Assignment statement. Keyword LET is optibhal.

{6}

LIST

LIST sn-sn
LIST 1990-209
LIST - 1994
LIST 200~

Lists the program in the workspace between the two
specified statement numbers. If the first (second)
statement number is omitted, the default is the
beginning (end) of the program. {15}

LIST#dev

LIST#4
Same as LIST, but the listing is sent to device
number dev. {9, 15}

207

LOG

MID$

NOT

ON

OPEN

OR

PEEX

POKE

POS

LOG (ae) ae>f

L0G14.8
A function. Returns the natural logarithm (log
to the base e) of the argument. {19}

MIDS$ (se, ae, ae) first ae>@, second ae2d

MIDS$ ("ABCDEFG", 2, 3)
A function. In the example, A string of length 3
starting at position 2 is returned; i.e. "BCD".
If the second ae is omitted, the sting returned
goes to the end of se. {21}

NEW
Clears the workspace to prepare for creatiom of
a new program {15}

see FOR

NOT re

NOT (A>5)
A bitwise Boolean NOT operator. Reverses the
truth value of the operand re. {3}
NULL iv p<iv< 8
Inserts iv zeros at the beginning of each line as
it is stored on tape. {27} {2}

ON ae GOTO sm, sn,...

ON ae GOSUB sn, sn,...

ON a GOTO 1¢8;, 209
Depending upon the value of ae (truncated to an

integer) program control passes to the ae-th
statement in the list of statement numbers

{12, 24}

DISK OPEN, dev, "FILE" (dev = 6 or 7)
Opens the disk file FILE for sequential (dev=6 or 7)

or random access (dev=6 only) {28} [151]

re OR re
IF A >S5 OR A <2 THEN lﬂﬂ

A bitwise Boolean OR operator. re OR re is
FALSE only when both of the operands are FALSE.

{3}

PEER(loc)
A function. Returns the value stored in memory

location loc {25}

POKE loc, ae ae 1s an integer.
POKE 11686, 17
The value ae is stored in memory location loc

{25}

POS (X) X is a dummy variable.

A function. In or following a PRINT statement,
returns the current position (between § and
132) of the cursor {9}

208

PRINT

PRINT#

PRINT!

PRINT CHRS

PRINTS

PRINT USING

PUT

REM

RESTORE

RETURN

PRINT e, e,...

PRINT A, B$; C$
Qutputs the values stored in the list of
expressions. The keyword PRINT can be replaced
by a question mark. {7}

PRINT#dev, e, e,...
Same as PRINT, but output is directed to device .

number dev instead of the screen. {7} [13]

PRINT! (HOC), e, e,... (HOC=Hazeltine Operation
: code-see [(223])

PRINT! (28) X$, A, B, C

Depending on the value of HOC, certain screen

characteristics and cursor positons are selected

before beginning output of expression.values;

emulates certain Hazeltine terminal capabilities.

£2233(3)
see CHRS

PRINT&(X, Y), e, e,...

PRINT& (10, 20) A, BS

Moves the screen cursor to screen position (X, Y)
(A, 8) = upper left corner) before beginning output
of expression values. Identical to:

PRINT! (17,X,Y), e, e,... [79] (3)

PRINT USING se ae, ae, ...

PRINT USING "####.#4" 6.87304
Used to format numeric output; se must be a string
expression made up of a decimal point and/or #'s. -
In the example the output format specified results
in printing 6.87 (with three leading blanks)
£73]1 (3)

DISK PUT
Follows a previous DISK GET; places the current
record back to the disk. [28} [171

READ V, V, V,...

READ A, BS, C
Inputs constants that are specified by DATA
statements in the same program into the
specified variables {6} (*)

REM any remark

REM THIS IS A TEST PROGRAM
Used for program documentation. Everything
appearing after REM is ignored on execution of
that line {16} (%)

RESTORE
Resets the pointer in a program's DATA list

to the first item. {7} (%)

See GOSUB

RIGHTS

RUN

SGN

SIN

SPC

SQR

STEP

STOP

STRS

RIGHTS (se, ae) . ae>p

RIGHTS ("'ABCDEF", 2)
A function. Truncates ae to an integer and returms
that number of rightmost characters. 1In the example,
“"EF" is returned. {21}

RND(ae)

RND(~-16)
A function. Returns a number between $ and 1.
Can be used repeafedlyitq~generate«a.seQuenCenof
pseudo-random values. If ae>p, the argument is a
dummy argument. If ae=p, RND returns the previous
value again. If ae<¥, ae functions as a "seed" and
RND starts a new sequence. The sequence repeats
after a certain period determined by the seed.

{19}

RUN

Starts execution of the program in the workspace at
the first statement.

RUN sn .

Starts execution of the program in the workspace at
statement number smn.

RUN "FILE"

Leads the program from disk file

FILE and starts execution.

RUN "TT" (TT = a disk track number)

Loads the program from the disk file beginning at
track TT and starts execution. {15}

SGN(ae)
A function. Returns +1 if ae >9, § if
ae = ¢, -1 if ae <g. {19}

SIN(ae)
A function. Returns. the value of the sine
of the argument ae. {20}

SPC(ae)

PRINT "A"; SPC(S); "B"
A function. Used to print ae spaces in a
PRINT sequence {9}

SQR(ae) aex>f
A function. Returms the square root of the
argument ae. {20}

See FOR

STOP

Halts execution of a program and prints a BREAK
message indicating the statement number of the
STOP statement {13}

STRS$ (ae)

STR$(6.71)
A functiou. Returns the value of the argument
ae as a string. {21}

210

TAB TAB(ae) ae is an integer
TAB(19)
A function. Used in a PRINT statement to move
the print position for the next character to
position aetl on the print line. {8}

TAN TAN(ae)
A function. Returns the tangent of the
argument. {20}

THEN ' See IF
TO See FOR
TRAP TRAP sn

If an error is encountered in a program after this
statement, then control transfers to statement sn.
TRAP § disables error trapping. [711] (3)

USR USR(ae) i

Y = USR(X)

Transfers control to a machine language routine

at a location determined previously by appropriate

POKES. ae may be an input parameter. (and USR(ae)

an output parameter) or ae may be a dummy parameter.

{34}

VAL VAL(se)
VAL('6.31")
A function. It is the opposite of STRS;
returns the numeric value of the string
expression se 1f se represents a number.
Otherwise, f is returned.

WAIT WAIT loc, J 0 &7 €255
Halts program execution, Reads the contents
of location loc and AND's the result (bitwise)
until a nonzero result is obtained, then resumes
program execution.
WAIT loc, J, K 0 <J, RS 255
Halts program execution, reads the contents
of location loc, exclusive OR's that value
(bitwise) with K, and then AND's the result with
J until a nonzero resuit is obtained ; then
resumes execution {25} {2}

3

[
-

Appendix 4 Editor Command Summary (V3.3)

‘The syntax for editing a line is as follows:

p=<LN<HELPDP <CR> = carriage return or RETURN

EDIT LNSCR> or !LNKCR> =~ Edit the stacement with the line
number LN,

EDITI<CR> or 1!1<CR> = Edit the same line that vas just

EDIT<CR> or !<CR> = Edit the line fmmediately following
the line that vas just edited.

The line with its line number will be displayed following the <CR>. 1If

the line number LN does not exist, the statement with the next line number
will be displayed (e.g., typing EDITS or !§ will always give the first line
of the program). After the statement is displayed, the cursor will reside
at the end of that linpe. The following commands are.used.for the actual

line editing. ' '

CTRL-P . - nua-dcs:ruc:ivc_fcrvnrd space. Moves
the cursor one space to the righe.

CTRL-H - non-destructive backspace. Moves the
€ursor one space ta the lefc.

RUBOUT or SHIFT-0 - single character delete. The editor makes
© the correct delete keys operational as
vell as che o0ld cnes (i.e., the RUBOUT
key as wvell as SHIFT-0 vill vork onm the
0S1 polled keyboard vhen the eéditor .is
enabled).

SHIPT-P - entry delete. This will erase the line
currently being edited, leaving the line
in the text as 1t vas before it vas edited.

CTRL-R - non-destructively moves the cursor to the
"rear" of the statemenc.

CTRL-p - non-dcsiruc:ively moves the cursor to the
“front" of the statement.

CT?L-I <~ non-destructively moves the cursor forvard
to the cext Tab Position (posicions 1, 8,
15, 22, 29, 36, 43, 50, 57, 64, 71).

CTRL-T T Tetypes the statement you are currently
editing.

<CR> or RETURN = enters the line as wricten or viewed. The
. line w11l look (to the BASIC incterpreter)

a8 1f it vas cyped in by che user froa
scratch.

Character insertions and deletions can be accomplished anywhere by using"
the commands for non-destructive movement of the cursor. After the cursor

"is positioned, the user can type in insertions or delete unwanted characters.
NOTE: 1) Characters are inserted to the left of the character on which the
cursor resided, 2) the character on which the cursor resides is deleted until
the end of the line is reached. The characters to the left will be deleted if
the cursor resides ar the end of a line. '

212

Blank Page

Blank Page

Blank Page

Appendix 5 Error Message Codes

A. DOS Error Message Codes
l - Can't Read Sector. (Parity Error).
2 - Can't Write Sector (Reéread Error).
3 -~ Track Zero is Write Protected Against that Operation.
4 - Diskette is Write Protected.
5 - Seek Erfor (Track-Header Doesn't Match Track).
6 - Drive Not Ready.
.7 = Syntax Error in Command Line.
8 - .Bad Track Number.-
9 - Can't Pind Track Header Within One Rev of Diskette.
A - Can't Find Sector Before One Requested.

B - Bad Sector Length Value.

C - Can't Find that Name in Directory.
D - Read/Write Attempted Past End of Named File:

B. BASIC Error Message Codes .

BS Bad subscript: Matrix outside DIM statement range,
elc.

CN Continve Errors: Attempt to inappropriately con-
tinue from BREAK or STOP.

DD Double Dimension: Variable dimensioned lw.icc. Re-
member subscripted variables default 10 dimension
14.

FC Function Call Error: Parameter passed to function
out of range.

ID ‘INlegal Direct: INPUT and DEF statements can-

not be used in direct ‘mode.

LS Long String: String longer than 255 characters.

NF
oD
OM

ov
RG

29 2

)

0s

NEXT without FOR.
Out of Data: More reads than data.

Out of Memory: Program too big or too many
GOSUBs, FOR-NEXT loops or variables.

Overflow: Result of calculation too large.
RETURN without GOSUB. |

Syntax Error: Typo, etc.

String Temporaries: String expression too complcx.

Type Mismatch: String variable mismatched to
numeric vanable.

Undefined Function.

Undefined Statement: Attempt to jump to nonexis-
tent line number.

Division by Zero.

Out of String Space: Same as OM.

214

POKE AND PEEK LIST

Appendix 6

As systems develop, different locations are committed to hold parameters.
Many of these parameters have been mentioned in the text material. These
parameters are collected here, along with some other useful parameters which
may be needed by an advanced programmer. Users of the video systems and
systems that include certain options and accessories (e.g., Home Security,
Remote Control, High Resolution Graphics, etc.) may need to POKE or PEEK other
parameter locations. These locations are fully documented in the appropriate
User's Manuals.

Caution: care must be taken when POKEing any of these locations to avoid
system errors and subsequent software losses.

LOCATION NORMAL
DECIMAL HEX CONTENTS (DEC) COMMENTS

23 17 1132 Terminal width (number of printer
characters per line). The default
value is 132. Note, this is not to be
confused with the video display width
(64 characters).

24 18 112 Number of characters in BASIC's 14~
character fields (112 characters =
8 fields) when outputting variables
separated by commas.

120~ 78- 127 Lo-Hi byte address of the beginning of
121 79 50 BASIC work space (note 127 = $7F,
58 = $32).
Normal contents of Location 121 is
58 on V.3.3 and 49 on Serial Systems.

741 2ES 14 Control location for "LIST." Enable
with a 76, disable with a 10.

750 2EE 19 Control location for "NEW.'" Enable
with a 78, disable with a 14.

1797 785 32 Controls line number listing of BASTC
programs, enable with a 32, disable
with a 44,

2973 819 173 ""CONTROL C" termination of BASIC

programs. Enable with 173, disable
with 96.

215

LOCATION NORMAL
DECIMAL HEX CONTENTS (DEC) COMMENTS

2200 898 - The monitor ROM directs Tract #
to load here at $2209.

2888 B48 27 A 27 present here allows any null
input (carriage return only) to force
into immediate jumping out of the
program. Disable this with a 4.
Location 8722 must also be set to f.

2893 B4D 55 : Alternate "break om null input”
enable/disable locatiom.
2894 B4E p8 A null input will produce a "REDO FROM

START" message when 2893 and 2894 are
POKEd with 28 and 1l respectively.

2972 B9C 58 Normally a comma is a s:ring input
' termination. This may be disabled
with a 13 (see 2976).

2976 BAD 44 A colon is also a string input
terminator, this is disabled with a
13 (see 2976).

8708 2204 41 Output flag for peripheral devices.
8722 2212 27 Null input if = @9, normal input
‘ 1f = 27.
8902 22C6 09 Determines which registers (less 1)
RTMON scams.
8917 © 22D5 - USR (X) Disk Operation Code:

f-write to Drive A
3-read.from Drive A
6~write to Drive B
9-~read from Drive B

8954 22FA - Location of JSR to a USR functionm.
Present to JSR $22D4, i.e., set up
for USR (X) Disk Operation.

89690 23¢9 - Has page number of highest RAM
location found om 05-65D's cold start
boot in. This is the default high
memory address for the assembler and

BASIC.
8993 2321 - I/0 Distributor INPUT flag (see p. 54)
8994 2322 - 1/0 Distributor OQUTPUT flag(see p. 54)

[
'_J
(¢)]

LOCATION NORMAL
DECIMAL HEX CONTENTS (DEC)
8995 2323 -
8996 2324 -

COMMENTS

Index to current ACIA on 558 board.
If numbered from 1 to 15 the value
POKEd here is a 2 times the ACIA
number.

Location of a random number seed.
This location is constantly incre-
mented during keyboard polling.

(Note: Locations 8998 through 9005, 9132-9133, and 9155-9156 are used
for Disk Buffer #6 (I/0 Flag Bit 5 device) usage parameters.)

LO-HI byte address for the start of
Buffer #6 (*contents vary: 58 om all
Vv3.3; 50 on 5" Vv3.2; 49 on 8" :
v3.2)

LO-HI byte address for the end of

Buffer #6 (*contents vary: 66 for
5" v3.3; 70 for 8" Vv3.3; 58 for 5"
V3.2; 61 for 8" Vv3.2)

First track of Buffer #6 File

Last track of Buffer #6 File

Current track in Buffer #6

Buffer #6 Dirty Flag (if contents is
non~zero, then data has been written

to the buffer, but has not yet been
transferred to the disk)

Locations 9¢@6 through 9913, 9213-9214, 9238-9239 are used for

Disk Buffer #7 (I/0 Flag Bit 6 device) usage parameters)

8998~ 2326~ : 126
8999 2327 *
90d9- 2328~ 126
9991 2329 *

9¢92 232A -
9993 2328 -
9904 232C -
9495 232D -
'(Note:
9¢96- 232E- 126
9997 232F *
9098~ 2334 126
9@99 2331 *

LO-HI Byte address for the start of
Buffer #7 (*contents vary: 58 on
5" 3.2; 61 on 8" V3.2; 66 on

5" v3.3; 79 omn 8" V3.3)

LO-HI Byte address for the end of
Buffer #7 (*contents vary: 66 on
S" V3.2; 73 on 8" V3.2; 74 on 5"
V3.3; 82 om 8" V3.3)

LOCATION
DECIMAL HEX
9910 2332
9911 2333
9912 2334
9913 2335
9998- 238A-
9999 238B
9145~ 2391-
‘9106 2392
9132- 23AC-
9133 23AD
9155- 23C3-
9156 23C4
9213~ 23FD-
9214 23FE
9238~ 2416~
9239 2417
9368 2498
9554 2552
9666 25C2
9667 25C3
9689 23D9

NORMAL

CONTENTS (DEC)

215

95

COMMENTS

First track of Buffer #7 File
Last track of Buffer #7 File
Current track in Buffer #7

Buffer #7 Dirty Flag (§ = Clean;
see comment for location 9¢85)

Pointer to Memory Storage Input
(Lo and Hi Byte).
Memory is dedicated for use as file.

- Pointer to Memory Storage Output

(Lo and Hi Byte). Use of memory
as a file.

LO-HI Byte address of Buffer #6
current inmput. (* 56 on 5" V3.2;
49 on all other systems)

LO-HI Byte address of Buffer #6
current output. (*5¢ om S" V3.2;
49 on all other systems)

LO-HI Byte address of Buffer #7
current input. (%62 on 5" V3.2;
61 on all other systems)

LO-HI Byte address of Buffer #7
current output. (*62 on 5" V3.2;
61 on all other systems)

Indirect File Input Address (Hi Byte)
(Lo = p9) (For use, see BASIC Reference
Manual, Chapter 12)

Pointer to Indirect File (Hi Byte

only) for output (Lo = #¢)

When POKEd with N (#-63) and a LIST
command is given, this will move the
left hand margin to the right N spaces
(dashes will echo on the left unless
the cursor is removed).

When POKEd with N (2@7-215) and a
LIST command is given, this will
move the scroll up 4*(215-N) lines.

Cursor symbol character designation,
for video screen.

LOCATION

DECIMAL

9682~
9683

9774

9796
9822

9823

9824

9826
9976
19959
11511
12042
12076

13026

13743

HEX

25D2-
25D3

2624

2644
265D

265F

2660

2662

26F8

2AC6

2CF7

2FgA

2F2C

32E2

35AF

NORMAL

CONTENTS (DEC)

64

171

32

COMMENTS

Next Position for Cursor oun video
screen (HI and LO Bytes)

Display control parameters. Single

Space = 64; Double Space = 128;

Quad Space = 255; Two columns = 32,

Entry point to Keyboard Swap Routine
Sector for USR(X) om Disk.

Page Count for USR(X).
Read or Write. :

Pointer to memory for USR(X).

(Lo and Hi Bytes) USR(X) will
reside in location pointed to.

Contains track number for USR(X)
on disk

Disable ":" Terminator. See Location
2976 comments. '

Console terminal number. (*1 on
Serial Systems; 2 on Video Systems)

Used by Disk Page @#/1 Swap Used by
Random Access File

Sets Number of records per track for
data file use (see chapter 4 or 6)

Sets record length for data file use
(see chapter 4 or 6)

Selects curser character (V3.3 only)

Selects Flashing cursor; 44 selects
non-flashing cursor. (V3.3 only)

Appendix 7 ASCII Character Codes
CODE CHAR CODE CHAR CODE CHAR

00 NUL 2B + 56 v
01 SOH 2C , 57 W
@2 STX 2D - 58 X
@3 ETX 2E . 59 Y
04 EQOT 2F / SA V4
05 ENQ - 30 0 SB {
@6 ACK 31 1 5C /
@7 BEL 32 2 5D]
28 BS 33 3 SE A
A LF : 35 5 60
28 vT 36 6 61 a
eC FF 37 7 62 b
QE SO 39 (] 64 d
10° DLE 3B . ' 66 t
1 OC1 3C < 67 g
12 - DC2 3D - 68 h
13 DC3 3E > 69 i
14 DC4 3F ? 6A j
15 NAK 40 @ 68 K
16 SYN 41 A 6C I
17 ETB 42 8 6D m
18 CAN 43 o] 6E n
19 EM 44 D 6F o
1A Sus 45 E 70 D
1C FS 47 G 72 r
10 GS 48 H 73 s
1€ RS 49 i 74 t
1F us 4A J 75 u
20 SP 48 K 76 v
21 ! 4C L 77 w
22 “ 40 M 78 X
23 # 4€ N 79 y
24 $ 4F /] 7A z
25 % 50 P 78 e
26 & 51 Q 7C }
27 ' 52 R 70 :
28 (53 S TE =
29) 54 T 7F DEL
2A : S5 u

220

Appendix 8

V3.3 PRINT Command Summary

A. Arranged According to Function

(These commands must be used in PRINT statements)

1(28)

1(21)

1(22, w, h)

Single Step

CHR$(8)
CHR$(16)

(12)
1(11)
CHR$ (18)

Multisteg

CHR$(13)
CHRS(14)

Anzghere

(17, x, y)
Elx, y)

Home

1(18)

1(28)

Display Size

Selects "wide letter" display (32 x 32 on
C4P and C8P, 12 x 24 on ClP, clears screen
and homes cursor to upper left screen corner.

Selects "narrow letter" display (32 x 64 on
C4P and C8P, 24 x 48 on ClP), clears screen,
and homes cursor to upper left screen corner.

Selects_print window w characters wide and h
characters high. Upper left window corner is
at current cursor position; screen is not
cleared.

Cursor Control

Back one space.
Forward one space.
Up one space.
Down on space.
Down one space.

Back to front of line.
Forward to next eight space tab set
(seven space for left-most field).

Relocate to x, y(g, & at upper left corner).
Relocate to x, v (g, g at upper left corner).

Relocate to 3, 8 (upper left corner).

Insert

Inserts line at cursor position; lower lines
scroll down.

-
(8]
b

Line
1(15)
1(19)
Screen

1e2s)

1(28)

Color Select

1(1)
1(25)

(31, n)

Color Change

(2, n, m)

1(29, n)

1(5)

1(33)

Clear

Clears from cursor to end of line.

Clears entire line (lower lines move up).

Clears from cursor to end (lower right)
of window.

Clears entire screen and homes cursor in
window.

Color

Selects color # as cell background.
Selects normal black/white display
mode (i.e., black background, white character).
Selects color n as cell background.

Changes all displayed cells of background
color m to background color n.

Clears all displayed cells of background
color n (i.e., cell background is changed
to black and character is replaced with a
blank).

Cursor Sensing

Sends information for current cursor position
X, ¥y, to string variable in following INPUT
statement. Information is in the form of two
characters for which (x + 65) is the ASCII
code. Line feed follows the INPUT statement
used with !(5).

Sends character at cursor position to

string variable in following INPUT statement.
Line feed follows the INPUT statement used
with 1(33).

222

B. Arranged According to ASCII Codes.

(1) Color @ select
'(2, n, m) Color change
1(S) Cursor position sensing
CHR$(8) Cursor backspace
CHR$(19) Cﬁrsor down one space
1(11) Cursor down one space
1(12) Cursor up one space
CHR$(13) Cursor tab forward
CHRS$ (1u4) Carriége return
1(15) Partial line clear
CHR$(16) Cursor forward one space
(17, x, y) Cursor relocation to position (x, y)
1(18) Cursor home
1(19) Total line clear (lower lines up)
1(28) Wide character select |
1(21) Narrow character select
1(22, w, h) Window select
S 1(2u) Partial screen (or window) clear
1(259) Color black/white select
1(26) Line insert (lower lines down)
1(28) Total screen clear (cursor home)
1(29, n) Selective color clear
1(31, n) Color n select
1(33) Character pick-up

Blank Page

Blank Page

Blank Page

Appendix ¢

Extended Utilities Command Summary

RESEQUENCER

System must first be booted under V3.2. Enable by the command RUN"RSEQ
and then type "E". Then LOAD the program to be resequenced into the workspace.

RSEQ<CR>

The syutax for the RSEQ command is as follows:

NLN = new line number #<=NLN<64 000
OLN = 0ld line number: #<=0LN<64 000
INC = increment between line number B<INCL256

- resequence starting with the line
number 1@ at the first line and
renumber the lines in increments
of ten.

RSEQ NLNZCR> © = resequence using NLN as the first

RSEQ NLN,

RSEQ NLN,

RSEQ NLN,

line number and renumber the lines
that follow by increments of ten.

OLN<ZCR> - resequence starting at line OLN with
line number NLN and renumber the lines
that follow by increments of ten.

OLN, INCLCR> - resequence starting at line OLN with
the line number NLN and renumber the
lines that follow by increments of INC.

, INC<CR> - resequence starting with the first line
as NLN and renumber the lines that
follow by increments of INC.

RSEQ ,,INCLCR> - resequence starting with the first line

REPACKER

and renumber the lines that follow by
increments of INC.

System must first be booted under V3.2. Simply RUN"REPACK, insert the
disk which contains the program to be repacked and enter the program's file
name. Select the method of repacking (remove blanks, REM's or both). When
the operations are completed, a message will appear reporting the number of
bytes removed from the program.

S}
[3e]
=

BUFFER CREATOR

System must first be booted under V3.2. Enable with the command RUN"BUFFER
and then type "E". Then LOAD the program you wish to work with (the source)
and use the BYTE.command accerding to the following syntax:

p=<NB<64 300

BYTE NB<KCR>- moves source leaving NB free bytes in between the
operating system and the source.

BYTEXCR> - reports the start of the buffer, the starting byte

of your program and the number of bytes between the
source and the operating system.

DATA FILE COPIER

System must first be booted under V3.2. To use, type RUN"DATRAN and
respond to the prompts for input file name, output file name and location
(device A, B, C, D) for each file. The input file is then copied onto the
output file.

BASIC DISASSEMBLER

Can be run with the system booted under any version of 65D. To use, type
RUN"DISASM and then enter the addresses in decimal for the beginning and end
of the disassembly.

GENERAL STRING ORIENTED SORT

Can be run with the system booted under any version of 65D. To use,
type RUN"GSOSRT and respond to the prompts for type of file and type of
sorting. The sorted file can be stored in ascending or descending order.

SEE CHAPTER 8 FOR DETAILS

225

Appendix 10 GLOSSARY

ACIA (Asynchronous Communications Interface Adapter) An IC
used for serial data transfer between a device such as a small
computer and a serial terminal.

A/D (Analog/Digital) Refers to changing an analog signal to a
digital signal which the computer can use.

BACKPLANE BOARD (Sometimes called Mother Board) Allows simple
interconnection between small computer boards using the same
bus.

BASIC (Beginners All-Purpose Symbolic Instruction Code) A
popular’ computer Ilanguage ideally suited for use with Ohio
Scientific computers. One of the simplest languages to learn,
it can be used for a wide variety of applications.

BAUD A measure of the speed with which information can be
communicated between two devices. For example, if the
information is in the form of alphabetic characters, then 300
baud usually corresonds to about 30 characters per second.

BIT The smallest amount of information that can be known (ocne
or zero). Eight bits equal one byte.

BUS The means used to transfer information from one part of
the computer to another.

BYTE A unit of information composed of 8 bits, which is
treated by the computer as a single unit. A byte is usually
used to represent an alphanumeric character or a number in the
range of 0 to 255.

CASSETTE A compact magnetic tape medium for the electronic
storage of data. Most personal computers use ordinary
audio-cassette tape recorders and cassette tapes.

CENTRAL PROCESSING UNIT (CPU) The part of computer hardware
responsible for interpreting data and executing instructions.

CBIP A small rectangular module which encapsulates an
integrated circuit.

COMPUTER An electronic device which is programmable and which
processes, operates on, and outputs information according to
its stored program upon receipt of signals through an I/0
device.

COMPUTER LANGUAGE A language that is used for programming a
computer, e.g., BASIC.

CURSOR The marker (underline,. rectangle, etc.) on a video
monitor screen which indicates the location on the screen where
the next character will appear.

DAC (Digital-to-Analog Converter) A device- that changes
digital signals into one continous analog signal (voltage

output). ; :]

DATA The information units, or signals, that are processed by
a computer,

DIGITAL Word used to described information that can be
represented by a collection of bits. Modern computers store
information in digital form. -

DISK A circular piece of rigid material which resembles a
record and which has a magnetic coating similar to that found
on ordinary recording tape. Digital information can be stored
magnetically on a disk. ‘

DISK DRIVE A peripheral which can store information on, and
retrieve information from, a disk. A floppy disk drive can
store and retrieve information from a floppy disk. ,

EPROM (Erasable Programmable Read Only Memory) Information
stored in an EPROM IC (Integrated Circuit) can only be removeéd
by special light sources or specific voltages (depending on the
type of EPROM). Through the use of a special programming
device, the user can store a set of information in the EPROM
after it has been erased.

FLOPPY DISK A thin, pliable 8" or 5-1/4" flexible media for
storing data. 8" disks store 3, or more, times as much
information as 5-1/4" floppies and access the information
faster. :

FOREGROUND/BACKGROUND Operation term used to describe the
ability of a computer to function with normal programs at the
same time it monitors external devices, e.g., home appliances,

security, etc.

HARD COPY Information printed on paper or any durable surface,
as opposed to information temporarily presented on the CRT
screen (see Monitor) :

HARDWARE The physical equipment that makes up the computer
system.

IC (Integrated Circuit) Many miniature electronic components
(transistors, diodes, resistors, etc.) built into one small
multicontact unit (chip) to produce a special purpose circuit.

I/0 (Input/Output) Refers to bringing information intoc the

machine in a form it recognized and allowing the machine ¢to
transmit information. In other words, communicating with the

227

outside world.
INPUT Signals given to a computer for processing.

INTERFACE The connection between two systems. A printer
interface, for example, connects the printer to the computer.

JOYSTICK Accessory equipment (peripheral) that permits the
user to move the figures on the monitor. For example, when you
and another person play a joystick computer game, you operate
joysticks to perform the functions of the game.

K The initial ®"K®* stands for "kilo", meaning 1,000. In
computer language, K means 1,024 bytes of information that can
be stored in a computer system. A computer with 16K memory,
for example, has 16 times 1,024, (16,384) bytes of memory.

LSI (Large Scale Integration) Descriptive of the type. of
circuit in an IC chip where thousands of electronic functions
are included. .

MEMORY The area in the computer for storage of data and
instructions.

MICROCOMPUTER A computer based on a microprocessor.

MICROPROCESSOR The “brains®" or CPU of -a modern personal
computer. All Ohio Scientific personal computers use the 6502
microprocessor, generally recognized as the fastest
microprocessor available. '

MINI-FLOPPY DISK A small 5-1/4" floppy disk that stores about
1/3 the information on an 8" floppy disk. .

MODEM Word derived from MOdulator-DEMcdulator. A device that
allows the computer to communicate over telephone lines and
other communications media by changing digital information into
audio tones (modulating) and from audio tones into digital
information (demodulating).

MONITOR A CRT or television screen. You can purchase an Ohio

Scientific monitor to hook up to your computer or else simply
use an ordinary TV set and attach it with an RF convertor.

OS Operating system.

PC BOARD (Printed Circuit Board) A card with foi;s
(electronically conductive pathways) connecting electronic
components which are mounted on the board.

PERIPHERAL Any device that can send informtion to and/or
receive information from a computer, e.g., printer, modem, etc.

PIA Peripheral Interface Adapter. A programmable control IC.

228

PRINTER A peripheral device which makes hard copy of letters
and numbers.

PROGRAM A set of instruction, arranged.in a specific sequence,
for directing the execution of a specific task, or the solution
of a problem, by a computer.

PROM (Programmable Read Only Memory) Memory which can have
information stored on it once, but is not normally changeable.

PROMPT A signal given by a computer to indicate that a
particular function is ready.

RAM (Random Access Memory) A storage device and main memory of
any computer which can be read from and written_._lnto.
Information and programs are stored in RAM, and they can be
retrieved or changed by a program.

ROM (Read Only Memory) A memory .storage device in which the
information is stored once, usually by the manufacturer, and
cannot be changed.

" SOFTWARE Programs and operating systems used by the computer;
they may be on cassette or on disk and in ROM.

2289

INDEX

A

ABS Function

AND Operator

Arc Tangent Enable
ASAMPL Program Listing
ASC Function

ASCII Character Codes
Assembly Program Example
ATN Function

ATN, Absence of

ATNENB Program Listing

B

BASIC Arithmetic Symbols
BASIC Command Summary
BASIC Device Numbers
BASIC Disassembler

BASIC Error Codes

BASIC Immediate Mode
BEXEC*

BEXEC* Program

BEXEC* Program Listing
Biorhythm Demonstration Program
Blank Space Removal
Bootup

Break Key

Breakout Demonstration Program
Buffer

Buffer Creation

Buffer Memory Locations
Buffer Program Listing
Buffer #6

Buffer #7

BYTE Command

230

Page

204
204
188
187
204
220
185
204

0190

27,

12,
L1,

204

54
112
213

131
46
134

106

50
1089
41
117
12
1?2
108

C

CALL Command

CHANGE Program Flowchart

CHANGE Program Listing

CHR$ Function

CLEAR Command

CLOSE Statement

Color Adjustment

Color Change Commands

Color Code Table

Color Control Limitations

Color Select Commands

COLORS Program Listing

Comparing Disks

CONT Command

Control Commands

CONTROQL~B Command

CONTROL-D Command

CONTROL-F Command

CONTROL-H Command

CONTROL-I Command

CONTROL~P Command

CONTROL-R Command

CONTROL-T Command"

Copying Data Files

Copying Disks

Copying Programs

COS Function

CREATE Program Listing

Creating a File

- Cursor Change

Cursor Location Control

Cursor Movement

Cursor Movement
Multistep
Single-Step

Cursor Sensing Commands

Curscr, V3.3

231

14,

15,

58
148
150
205
205
205
191

83

81

69

83
193
199
205

185§
195
212
212
212
212
212
212
113

23
138
205
155

32

66

74

79
73

78
8L
66

D

Data Buffer Vertification 108
Data Buffers . 142
Data File Copier 113
Data File Erasing 182
Data File Sorting - 111
Data File Storage 43
DATA Statement 205
DATRAN Program Listing 124
Debugging Programs with TRACE 178
DEF FN Statement - 205
DELETE Program Listing 159
Deleting Files 31
DIM Statement 208
DIR Command 58
Directory Entry Creation 152
Directory Entry Deletion . - 157
Directory Format 61
Directory Program Listing 1ls4
Directory, 5" Disk : 128
Directory, 8" Disk 129
Directory Listing 26
Directory, Disk Track Sector 172
Directory, Sorted by Name 160
Directory, Sorted by Track 160
Directory

Tutorial Disk 2 102

Tutorial Disk 3 29

Tutorial Disk § 27
DISASM Program Listing 121
Disassembler, Machine Code 112
DISK CLOSE Command 62
Disk Drive Select Error 27
DISK FIND Command 92
DISK FIND Random File Example 97
DISK FIND Record Calculation Program 93
DISK FIND Sequential File Example 9s
Disk Format ' 13, 25, S8
DISK GET Command 62
Disk Initialization S8
DISK OPEN Command 62
Disk Operating System (DOS) 45
DISK PUT Command 8, 62
Disk Storage Capacity 10, 13, 25
Display Sort Example Program g0
DOS Command Summary 63, 202
DOS Commands S8
DOS Error Message Codes 84, 213
DOS Kernel 11, 45

D9 Command 59

E

EDIT Command

Editing Programs (V3.3)
Editor Commands

END Statement

Erasing Data Files
Error Message Codes
Error Messages, DOS Kernel
Escape Key (ESC)

Escape Key (ESC) Codes
EXAM Command

Examining Disk Files
EXIT Command

EXP Function

Extended Utilities

F

File

File Name Limitations
File Storage

File, Random

File, Sequential

FIND Command

FOR Statement

FRE Function

G

General String Oriented Sort
GET Command

GOSUB Statement

GOTO Statement

GSORT Program Listing

H

Hangman [emonstration Program
Hazeltine 1420 Emulation
Header

Sector

Source File

Track
HOME Command

(98]

[#9)

2085,
71,

101,

92,

17,

212
70
212
206
182
213
B4
2
68
58
38
206
206
224

10
60
12
12
206
2086
206

111
206

- 206

2086
119

57
53

-

58

I

I/0 Device Description

I/0 Distributor Commands

I/0 Flag Settings

IT Statement

Indirect File Memory Locations
INIT Command

Input Flag

Input Pointer

INPUT Statement

INPUT# Statement

Input/Qutput Distributor Table
INT Function

K

Kernel Command Format
Kernel Commands

L

LEFT$ Function

LEN Function

LET Statement

Life Demonstration Program
Line Clear Command

Line Editor (V3.3)

Line Insert Example Program
Line Insertion Command

LIST Command

LOAD Command

Loan Interest Demonstration Program
LOG Function

M

Memory Allocation
Memory I/0 Pointers
Memory Locations, Important
Memory Maps
Memory Size
Memory Size Table
Menu
Tuteorial Disk 1
Tutorial Disk 3
Tutorial Disk §
MID$ Function
Modem Operation
Modem Program Listing

234

85

St
207
218
56, S8
S4
56
207

Su
207

Sl
$0,- 63

207
207

47
S6
215§
4g
143
3y

26
208
139y
1397

N

Narrow Letter Screen Display
NEW Command

NEXT Statement

NOT Operator

NULL Command

NULL, Absence of

Numerical Output Formatting

0

ON Statement
OPEN Statement
Operating System
OR Operator
Output Flag
Qutput Pointer

P

PEEK Command

POKE and PEEK List

POKE Command

POS Function ‘

PRINT CHRS Statement

Print Command Summary

PRINT Statement

PRINT USING Statement

Print Window

PRINT! Commands

PRINT# Statement

PRINTE Demonstration Program
PRINT& Statement

Printer Control

Printer Form Length

Program Entry

Program Length Determination

Program Listing - See Program Name

Prompt
PUT Command

235

17,

36,

15,

6,

73,

78,
13,

74,

80,

76
208
2086
208
208

98

73

208
208
45
208
54
58

208
215§
208
208
209
221
209 .
208
76
209
209
89
209
86
86

11

208

R

Random File Example Program
Random Files, Listing
RANLST Program Listing
READ Statement
Record
Record Length
Record Length Change Table
Record

Fixed Length

Variable Length
REM Statement
REM Statement Removal
RENAME Program Listing

Renaming Files 34,

REPACK Program Listing
Repacker

Resequencer

Reset Button

RESTORE Statement
RETURN Statement
RIGHTS$ Function

RND Function

RSEQ Command

RSEQ Program Listing

RUN Command 7, 38,

S

SAVE Command
Screen Clear Command
Screen Commands - Limitations
Screen Display Control
Screen Display Print Window
Screen Display Size Commands
Screen Display

Narrow Letter

Wide Letter
SECDIR Program Listing
Sector
Sector Header
SELECT Command
SEQLST Program Listing
Sequential File, Listing a
Sequential File Example Program

236

19
166
168
209

12

13

21

13
13
208
106
171
169
116
106
102
1
209
209
210
210
103
11y
210

S8
80
69
67
76
76

76
76
174
57
57
58
177
175
16

S - continued...

Serial System Limitations ii, 1, 68, 100
SGN Function 210
SIN Function 210
Sorting Data Files 111
Sorting MDMS Master Files 111
Source File Header 59
Source Files SS9
Space Wars Demonstration Program 2
SPC Function 210
SQR Function 210
STEP Statement 210
STOP Command ‘ 210
Storing Program Files : 39
STR$ Function 210
System Memory Maps 49
T
TAB Function 211
TAN Function 211
~ Torpedo Demonstration Program 2
TRACE Enable _ 178
TRACE Program Listing 181
Track 13, S6
Track Header 57
Track Sector 57
Track Zero 56
Transfer of Control Chart 52
Transfer of Control Limitations 53
Transient Processor Memory Area 48
TRAP Statement 71, 211
Typing Error Correction L
U
Upper/Lower Case Interchangeability 69
USR(X) Function 211
USR(X) Operation 216, 219
Utility Programs Bu

Utility Program Sample Fact Sheet 126

;N
w
~

v
VAL Function
W

WAIT Statement

WAIT, Absence of

Wide Letter Screen Display
Workspace

Workspace Limits, Changing
Workspace Size Table

(%]
[¥%)

211

211

76
142
141

34

Blank Page

Blank Page

Blank Page

65D Tutorial and Reference Manual

Addendum 1

Using Machine Language Subroutines

A. TFinding a Place for a Machine Language Routine

There are three areas in memory that are normally used

to hold a machine language subroutine:

1) The beginning of workspace
The Qorkspace for BASIC programs begins at address
$3A7E (327E in Version 3.2). It is possible, however, to
move the starting point for BASIC to a higher address,
leaving some free space in front of the BASIC program.
One advantage in using this space for a machine language

subroutine is that when a BASIC program is in memory and

a
DISK!"PUT..."

is executed, everything in memory is saved from $327E to
the end of the BASIC program. Thus, a machine language
program in this area is saved along with the BASIC pro-
. gram that uses it. A disadvantage is that the start of
the BASIC program will still be at the higher address
even after a NEW éommand, thus effectively shortening
the space for a new BASIC program. To restore the work-
Space to normal the user can either re-boot or LOAD a
program known to use the normal workspace. For example,
the BEXEC* program on disk #5 of the tutorial set some-

times calls a machine language screen clear routine but

Tutorial Addendum 1-1

this routine does not change the normal workspace

otherwise it would still be there after a NEW command
The user can do some PEEKS to the file headers

to determine the addresses of the beginning and end of

any BASIC program in the workspace. A five byte file

header is maintained at addresses $3A79(=14969) through

$3A7D(=14973) ($3279-$327D for 3.2 systems).

Address Contents
3A79 & 3A7A A pointer to the beginning
of the BASIC program (low,
high)
3A7B & 3A7C . A pointer to the end of the

BASIC program (low, high)

3A7D The number of tracks needed
to hold the program.

For example, suppose the contents of these locations

are:
Address Contents

3A79 7F

3A7A 3B

3A7B 88

3A7C ‘ 4B

3A7D B2

Since the workspace always begin at $3A7F and this
program begins at $3B7F, there are $100(=256) bytes free
at the beginning of the workspace. The program ends at

$4B88 and two disk tracks are required to hold the program.

Tutorial Addendum 1-2

2)

To reserve a place at the beginning of memory for
a machine language program, the programmer should
RUN"CHANGE"
He should respond YES to the question
CHANGE BASIC'S WORKSPACE LIMITS?
and also respond YES to
WANT TO LEAVE ANY ROOM BEFORE THE WORKSPACE?

The programmer should create this space after the
machine language subroutine has been created (so he knows
its size in bytes) but before the BASIC program has been
entered. Please refer to CHANGE (pages 141-151) in the
Tutorial Manual. If the BASIC program already exists,
either in the workspace or on disk, then the indirect
files technique must be used. See Chapter 12 of the
BASIC Reference Manual. The area at the beginning of
the workspace is used as an I/0 buffer area for BASIC
programs that use disk data files. When a machine
language subroutine resides at the beginning of the
workspace it is also said to be in a "buffer" although
it is not an I/O buffer.

The end of workspace

Machine language subroutines can be put at the end

of memory. This area of memory is not "safe" until the

end of workspace pointers (at 132 and 133) are reset

Tutorial Addendum 1-3

3)

because even short BASIC programs store generated string
data (e.g., through string addition or INPUT statements)
at the end of memory. The address of the end of memory
is stored at locations 132 (low half) and 133 (high half)
and the user can POKE new numbers to these bytes to create
a safe piace at the end of memory. For example, on a 24K
system, the values are # at address 132 and 96 at 133
(these are decimal values). Since 96=$68, this means
that the end of memory is at address $6008.

The commands

POKE 133,95:POKE 132,128,

will set this end of memory pointer to $S5F8Q (since
95=$SF and 128=$80) thus creating a 128 byte "safe" area
at the end of memory. The numbers at addresses 132 and
133 are not saved with the BASIC program sc that the same
POKEs must be done every time the program is ruﬁ.
The directory buffer

There is a one page (=256 byte) area between addresses
$2E79 and $2F78, inclusive, that is used to hold the disk
directory and is used for only that. This directory is
brought into memory only when a reference is made to a
disk file name, as for example, in the DIR directory
program or when DISK!"LOAD. "Filename or RUN'"filename"

is executed. This area is unused otherwise.

- Tutorial Addendum 1-4

B. Bringing a Machine Language Program into Memory

1) POKEs
A machine language routine may be POKEd into memory
by the BASIC program that uses it. This method is used
in the BEXEC* program to put a screen clearing routine
into the directory buffer. For example, consider the
three line assembly language program below which puts

an airplane character near the center of the video screen:

2E8@8 ASED LDA #237
2E82 8D1FD4 STA $DulF

2E85 60 RTS

The first column 1is the hexadecimal address, the next
column is the machine language, also in hex, and the last
+twe cziumns are the source code. Thus, the seven bytes of

the machine language program are, in hex and decimal:

$A8:-169 (LDA)

$ED=237 (ASC Code for airplane character)
$8D=1u41 (STA)

¢1F=31 (screen location, lo-hi

$Du=212 byte format)

$60=96 (RTS)

The beginning address is $2E88#=11964. A BASIC program to

put this machine language into memory is

FOR I=86 TO 5

READ X

POKE 1198u4+TI,X

NEXT I

DATA 168, 237, 141, 31, 212, 96

Tutorial Addendum 1-5

2) DISK!"CALL..."

If a machine language routine has been put into
memory by an A3 command to the Assembler/Editor or by
hand using the PROM monitor (for details see the
Assembler/Editor and Extended Monitor Manual) then it
can be saved on disk using

DISK!"SAVE..."
A BASIC program can bring it back to memory with
DISK!"CALL..."
(refer to Tutorial Manual p. 58 for CALL and SAVE details)
The user should note that the number of bytes brought
into memory by this method is always a multiple of 256.
3) Putting it in the BASIC file

If a machine language routine has been put into a
"buffer" area at the beginning of workspace (i.e.,
between address $3A79 and the start of the BASIC program)
then a

DISK!"PUT..."

command will save the buffer area along with the BASIC
program. Hence, a machine language subroutine in a
buffer will be brought into memory whenever the BASIC
program 1s RUN or LOADed (refer to Tutorial Manual p. 60
for LOAD and PUT details).

Calling a Machine Language Subroutine from BASIC

1) Y=USR(X)

This statement branches (via a JSR instruction) to

the address stored at memory locations 574 (=$23E) and

Tutorial Addendum 1-86

575 (=$23F). The low order half of the address is at
574 and the high half at 575. Thus, for example, the
three line subroutine given in Section B could be called
by

POKE 574,128:POKE 575,46:Y=USR(X).
These are the required POKEs since the starting address
is $2E80 and $2E=u46 and $8¢=128. In

Y=USR(X)

the X may be any formula and Y may be any variable. The
calling BASIC program may pass a parameter to the sub-
routine via the formula X and a built in routine may be
called by the machine language subroutine to pass back a
valve to the variable Y. See Chapter 13 of the BASIC
Reference Manual or Chapter 9 of the Assembler/Editor and
Extended Monitor Reference Manual for details. If the
subroutine does not call a r;utine to store a value at Y
then Y will have the same value as X after return from the
subroutine. When a routine is called by the USR function,
no registers must be saved, however, the integrity of
pages # and 1 must be maintained. Thus, if a machine
language program is called via the USR function, any page
zero locations that are used may have to be saved and

restored.

Tutorial Addendum 1-7

2)

DISK!"GOXXXX"

Here XXXX is the address of the subroutine in hex.
This command causes a JSR to be executed. Parameters may
be paésed using POKEs and PEEKs. (Parameters may also be

passed in this manner when the routine is called using the

USR function.)

For example, consider the routine below. When
called, it will fill the lower 1/8 of the screen with

the character whose code is stored at the byte labeled

CHR.
' *=$5000
5088 AD 8C SO - LDA CHR
S603 A2 B89 LDX #9
508S 9D AP D6 LOOP STA $D66D,X
SpA8 EB8 INX
SAP9 D@ FA BNE LOOP
SO0B 60 RTS
588C CHR .BYTE @

If this routine is in memory then the BASIC statements
($589C=29492, CHR$(36)= 3)
POKE 28492,36:DISK!"GO 5d448"

will cause the subroutine to fill the lower 1/8 of the

screen with dollar signs ($).

It can be called by USR as follows:

POKE 574,90

POKE 575,80
POKE 22492,38
Y=USR(X)

Similarly, PEEKs can be used to retrieve answers from

Tutorial Addendum 1-8

a machine language subroutine.

The execution of a DISK!"GO XXXX" produces the
following sequence of events. Page § and 1 are swapped
(moved) to a temporary storage area at $2E79-$3978. A

,)
JSR to address XXXX takes place. The code at XXXX is
proceséed. Upon completion of this code, pages 8 and 1
are swapped back from $2E79-$3078 and the program
continues to the next BASIC statement. |

Thus, use of the DISK!"GO XXXX" command allows the
programmer full use of pages # and 1. The trade-off,

of course, is that DISK!"GO XXXX" is somewhat slower

than the equivalent.USR call to a machine code subroutine.

Tutorial Addendum 1-9

PEPTRT

Blank Page

Blank Page

Blank Page

	OS65D Tutorial and Ref Manual A.pdf
	OS65D Tutorial and Ref Manual B
	OS65D Tutorial and Ref Manual C
	OS65D Tutorial and Ref Manual D

