presentea here. Read the book, - "STARTING FORTH" by Leo Brodie. Above all, enjoy!

FORTH-83 is in the public do-
main, and placed there kindly by Laxen and Parry. This program OSI-CLK.F83 I have placed in the bulletin board in Downey, CA., called "NORTHSTAR

DOWNEY" (213) 861-2313. Anyone who wishes to leave a message for me, may also do it at NORTHSTAR.

```
                    |
O | ca-10 sapport -.. set read lolebs5kb | ca-20 suppost ... set read
```



```
3 valagle dajs ." SonMonTueVedthreri5at" 23 dajs !
4 vaglable moaths,"JanfebharaprhapjonjolaugSepoctMovDec"
```



```
tsep 15CII : HOLD 20HOP ;
deap sula 3 4 + DUP DUP O 2 DO 1 + Ce goLD -1 +LOOP ;
```



```
.tine (s ---) tIME tyPt:
DATE {1 tetd 25Nap mROT (e DROP moaths dsep 32 mold
    1f 2DEOP 32 HOLD DROP dafs dsep O O Ol;
.date (s ...) date tTPE;
```

10tebsskab I ca-20 sappost ... set read jomaydabs
SET clock month d-o-moath d-o-week hour minate second
aEnd cloct variable 7 enonth $\mathbf{z e s e c o n d}$ all retarad 3abit lar (a)
DAPS dali table for dafi of mek display
mortus data table tor moiths display
rear dati lor pear display
sicond plact to hold cerrent second for tem-displat
tsep pots a : in fornat and jamps to nent auaber
DSty geti the day sot-string aad month sob-string

Tine displays tian on the taralaal screes
date builds date striag dod de man fill
.Dati displays date os lerninal sereen

WHAT IF YOUR SUPERBOARD REPUSES TO BREAK?

By: John Horemans
Courtesy of TOSIE
Toronto Ohio Scientific Idea Exchange
P. O. Box 29

Streetsville, Ont.
Canada L5M 2B7
Sorry, I meant, doesn't respond to the BREAK key. The most common symptom is a screen full of characters, yet no action. when the break key is held down.
If you think about it, the screen full of characters tells you quite a bit. First of all, the video is working. The video counters are also responding. Most likely too, you have the phase σ signal to the CPU, pin 37. That leaves a whole area that needs little or no checking.
At this point, it is well to go over any recent changes or soldering you have done. All too often a near invisible thread of solder is left behind. A splash across two traces can be equally frustrating. Close examination, with the help of a magnifier, should find most of these problems quickly.
Check any recently installed chips for bent pins, or proper location of pin l. More than one of my chips have been consigned to the bin because of this. An 8T28, for instance, will survive for a while like this, but certainly won't allow the computer to operate. Some chips; particularly 24 pin sizes, have a
knack for bending the pin in under the chip, making the problem difficult to see. If possible, sight along the plane of the board to detect these pins.

If you have recently installed a ROM or EPROM chip, check the enable lines, pin 18 and 20, as well as pin 21. Contrary to some OSI documentation, the 2716 you are likely installing, needs +5 on pin 21. Chip enable, pin 20 , and output enable, pin 18, are both active low. You may need to invert some of these signals, by moving a jumper, or taking a signal before it is inverted. Always check OSI's documentation against another source, or with your own probe. Remember to start off the 2716's at 1 MHz . They may not work at 2 MHz on the 600 board until a few changes are made to the enable lines.

Still nothing? You can start checking signals. First and foremost is the low reset at pin 40 of the CPU. Press reset, a low pulse should then appear at pin 40. To run, this pin must return to a high. The op-amp doing this on the REV-D Superboard/ClP has been known to quit.

After this, things get more serious. Check for a clock signal on pin 37. If your probe indicates a pulsed signal, it will likely be fine. Check too for the phase 2 clock on pin 39. This is the clock output from the CPU.

Check now for action on the address lines. On a reset the processor will get $\$ F F$ page,
so there should be a lot of activity on the address bus. An inactive line could be shorted, or loaded by some defect in the computer.

You need a monitor ROM to
 also need BASIC 4, as the print routines there are used. Monitors like the ClE have a built in print routine, and can at least get to the ML monitor, to let you look around. As a matter of fact, long ago, my BASIC 4 ROM did pack up. It did run for a few seconds when it was cold. A plastic bag of ice (dangerous!) confirmed the problem, as it allowed the computer to run for a few minutes.

At this point, you had better start to follow the schematics, and try to isolate the problem. I have spoken to someone who bought one of the $\$ 10.0 \emptyset$ Superboards. In desperation he used the PIA from a running computer connected to the address bus to look through the memory map. His problem turned out to be a shorted trace, so that one part of the ROM was repeated at other locations. Hopefully, you will spot your problem by eye.

Another possibility, at least as likely as a bad chip, are defective sockets. If you have removed/replaced a chip a number of times on the OSI 600 board, cast a jaundiced eye toward the socket. They are of marginal quality, and are well known for their troubles.

Remember to go over any of your recent changes or fixes.

I know you do them perfectly the first time, but it never hurts to check it out. Then start through the troubleshooting areas I have indicated. I must say that so far, I have always finally traced the problem, sometimes after a few nights of fruitless hunting. My hat goes off to someone I know who zapped his machine with 110 volts. His repair of the Superboard qualifies as a resurrection. He replaced 2 dozen TrL chips, and the CPU. Interestingly, his 2114 RAMS, being "delicate" MOS chips, survived. Just shows how tough these Superboards are! Of course, I must tip another hat to the inventive person mentioned above who used the lines from a parallel port to check through the address decoding. It just goes to show you what OSI hackers are made of. You certainly can't say that we didn't learn anything over the last few years.

SIMPLIFIED 5 1/4" HEAD UNLOAD
By: Ray Osborn
9a, Nairn Road
Rotorua, NZ
I implemented Dave Pompea's disk switch (from an old Aardvark) about a year ago on my dual-drive C4. It wasn't all that easy as I didn't have SAMS or an MPI schematic, but it worked. I have now simplified the logic.

Firstly, I don't believe in chopping up complex boards if it can be avoided so the only tracks cut are on the Al3, and 1 on the 505. Secondly, my schematic only shows detail where it differs from that in the July 85 PEEK.

1. On the 505 find a convenient pad connected to UlA pin 22 (CSFL) and jumper to $J 2$ pin 2 (unused). $\overline{\mathrm{CSFL}}$ also seems to work on UlF pin 13.
2. Find another connected to UlA pin 25(D2) and jumper to J2 pin 16 , also unused.
3. Make a track cut on the 505 from J $2 / 2$ to U4A pin 4 which appears to be unused by OSI.
4. Have a look at the Al3 and cut tracks so as to:
(a) Separate A and B drive connector pins 16 from each other and from ground (J2-13). Do this so that J2-3 remains connected to A and B drive pins 10, and J2-18 remains connected to A and B connector

pins 12. Without schematics I'm not sure what this does except perhaps to control logic other than motor on in the drives?
(b) Isolate A and B connector pins 8 from ground but not each other.
5. Make up PCB with additional components, about $1^{\prime \prime} \times 2$ 1/2" is enough.
6. Insulate both sides of board with acetate sheet, run 10 jumpers to the Al3 and tuck the board in between the 505 and Al3.

I also used smaller capacitors and larger resistors as they take up less space. 6.3 volt 68 mF tantalum with 68 K for 2 secs and 33 K for 1 sec .

That's all there is and it works like a charm. Hope it's useful.

V3.3 BUG REVISITED

We let you and author Paul Chidley down last month. Paul's article about the patches won't do you much good without the patches, so, belatedly, here they are!

