

ELCOMP PUBLISHING, Inc.
announces:

The First Book of Ohio Scientific, Vol. II

Introcduction to 0S-65D Version 2.0 Disk Operating
System. Introduction to 0S-65U Microcomputer
Operating System, 0S-65U String Variables,
Moving machine code into 0S-65U, 0S-65U Edi-
tor.

The Ohio Scientific Wordprocessor WP-2,

1/0 Drivers, Memory Test Program, hints and
tricks for the disk-user, business applications,
Ohio Scientific Mini Floppy, Expansion Acces-
sories, Creating'DATA FILES ONLY' diskettes

and much much more.

Order No. 158 (May 1980) $ 7.95

The First Book of Ohio Scientific,Vol. III

Very important information for the Ohio Scien-
tific System Experimenter, hard-to-get sche-
matics, Interface Techniques, System Expansions,
Accessories and much much more.

Order No. 159 (June 1980) $ 7.95

J. CLOTHIER & W. ADAMS

THE
FIRST BOOK

OHIO SCIENTIFIC
VOL. |

This book is published as a service to all
Ohio Scientific users. No liability is assumed
with respect to the use of the information
herein. Ohio Scientific has provided much of
the information but Ohio Scientific should not
be held responsible for the information con-
ained in these volumes. .
é?copyright 1980 by ELCOMP Publishing, Inc.
11 rights reserved
Printed in the United States of America
Reproduction or publication of the content 1in
any manner, without express written permis-
sion of the publisher, is prohibited.

ELCOMP Publishing, Inc. 3873-L Schaefer Avenue
Chino, CA 91710

Acknowledgement:

1 L

QOHIO Scientific Technical Newsletters
No. 1 - No. 23

Copyright by

OHIO SCIENTIFIC

1333 S. Chillicothe Road

Aurora, Ohio 44202

(216) 562-5177

OHIO Scientific's Small Systems Journal
Vol. I, No. 1 to No. 6 and
Vol.II, No. 1 and No. 2

OHIO Scientific Expansion Information
Conversion of C1P (Cassette) to 52x26
display. Detailed step-by-step instruc-
tion for doubling the C1P speed and dis-
play size!

From Steven Chalfin

Conversion of C1P (Minifloppy) to 52x26
display. Same as above but includes dis-
play driver for disk operating system.
From Dave Wilkie

Aardvark Instruction Articles

1. 600 Baud Baud-Rate-Modification

2. Joystick Instructions

3. Graphics with Challenger

4. How to read a line of Microsoft BASIC
5. File Handling with QHIO Challenger

This information and much more, also soft-
ware,you can order from

Aardvark Technical Services

1690 Bolton

Walled Lake, MI 48088

Users Manual for Superboard II and 1P from
OHIO Scientific

6, The Challenger Character Graphics Reference
Manual by OHIO Scientific

7, COMPUTE. The Jdournal of Progressive Com-
puting

COMPUTE 1is published by

Small System Services, Inc.,
900 - 902 Spring Garden Street
Greensboro, NC 27403

8. Expansion Handbook for 6502, edited by
Silver Spur
3873F Schaefer Avenue
Chino, CA 91710

published by ELCOMP Publishing, Inc.

FOREVORD
These volumes of "The First Book of Ohio Scientific"
are our initial effort at getting Ohio Scientific in-
formation to their many deserving customers. Ohio
Scientific is sincerely dedicated (in our opinion) to
providing good computer hardware value, The equipment
is fairly priced and well designed for ease of ex-
pansion. However, Ohio Scientific has Tacked the so-
phistication required for writing and distributing a
good set of technical manuals. At ELCOMP, we felt
that we could no longer wait for the appearance of
good documentation,
Wle have been astounded at the large number of fellow
€1, C2, and C3 users who also have been unable to ob-
tain copies of badly needed Tistings, schematics, soft-
ware definitions, and operating instructions, "Lets get
the Ohio Scientific bandwagon rolling", we say. And we
ask others to help by sending contributioncand sug-
gestions to this first edition, At the earliest pos-
sible date ELCOMP will finalize the manuals, incor-
porate new information, and add additional volumes,

s necessary. John Clothier
W, Adams
March, 1980

TABLE OF CONTENTS

Introduction to Personal Computing
Small Computers are what Ohio Scientific
is all about
The Challenger Personal Computer as Business
Tool
Computer Glossary
Challenger 1P: The perfect starter computer
Challenger 1P MF: Greater Speed,More Versatility
Personal Computer Breakthrough
Superboard I1I: A computer for the budget-minded
Challenger 4P: Color, Sound, Exceptional Display
Challenger 4P MF: The ultimate portable Perso-
nal Computer
Challenger 8P: Ohio Scientific's Mainframe
Class Personal Computer
Challenger 8P DF: The Top of Line in Personal
Computers
C1P Challenger Memory Map
Useful Subroutine Entry Points
Challenger Superboard Introduction
2P Extended Monitor Commands
Using Breakpoints for Program Debugging
2P Extended Monitor Command Reference List
Superboard II/C-1P Monitor Entry Points,
65VK Monitor
Superboard II1/C-1P Monitor Entry Points,
Mini-Floppy Bootstrap Rout.
Superboard II/C-1P Monitor Routines
BASIC Support Routines
Bringing up BASIC
Introduction to Small Computer Software
BASIC and Machine Code Interfaces
CA-15 Universal Telephone Interface
New Products from 0SI comming in mid 1980
ROM-Summary
Some real Products
Use of 542 REV B Audio Output
Ohio Scientific C1-P Mini Floppy Expansion
Accessories
ELPACK Data Separator for MPI Model 51
MEMTST
0SI 65V Monitor Mod 2
65V Demonstration Program
Creating Data Files in BASIC
9-Digit BASIC Variables
High-Resolution Display Conversion for Challenger
1p
Video Update to 0S65-D, For C1PMF
Program to Circumvent the Garbage Collection
Problem in OSI BASIC in ROM Computers
Important Routines
Conventional Typewriter
Hex Conversion Table

]
02
06

10
11
12
13
14

15
16

17
19
28
35
43
49

52
53

54
55
57
66
71
74
75
87
88

106
107
108
118
122
123
136

145
148

151
155
176
180

Introduction to Personal Computing

Ihose who remember the first computer built
in the 40's, ENIAC, may also remember that

it was built with 18,000 vacuum tubes and
devoured 130,000 watts of power. So it's not
surprising that many people still think of
computers as immovable, awesome and erratic
creatures that only scientists could appre-
ciate.

But over the years, computers have become
considerably more approachable. Less than a
quarter of a century after ENIAC, the tech-
nology that made digital watches and hand-
held calculators possible was applied to com-
puter systems. The microprocessor, a computer
on a single chip of silicon, made it possible
Lo develop astonishingly powerful computer
systems at astonishingly Tow cost.

loday, the computer's gigantic proportions
have been scaled down to where the personal
computer weighs only a few pounds, takes up
perhaps 1 1/2 square feet of space, and uses
about as much power as a small Tight bulb.

It's been estimated that by 1985, three out of
four American homes will contain personal com-
puters. But no one need wait until then to
henefit from what they offer. For the age of

the computer is here - now. The state-of-the-
art has developed to a point that the personal
computer is an affordable useful tool hardly
more complicated to use than a calculator, and
considerably more entertaining and useful in its
diversity. In the next few pages, you'll find
out how you can use it for learning, entertain-
ment, small business and personal use, right

at home. No, the personal computer isn't exotic.
It's a valuable product of technology that young
and old can use and profit by.

Small Computers are what Ohio
Scientific is all about

Ohio Scientific has been manufacturing micro-
processor computer systems since the intro-
duction of the first microprocessor. Micro-
computers are the only products Ohio Scien-
tific makes.

Since its inception, the company has utilized
the technology to produce computers that are
considered highly advanced, by independent
experts. Its small business computer, the C3-B
for example, was named an outstanding micro-
computer application for a small business at
the 1978 WESCON show, which is the leading
show of the electronic engineering community.
A 1977 comparison of the execution speeds of
microcomputer systems, conducted by KILOBAUD
Magazine, ranked Ohio Scientific computers
first, third and fourth in a field of about
30 small computer systems. The competition
included computers from IBM, Wang, and Digi-
tal Equipment Corp., among others. And the
Ohio Scientific units' retail prices were
nearly the lowest of all.

In this book, you'll find the Challenger line
of computers described in detail. Each has
the advantage of being modular, which means
that should you begin with a basic model, you
can build greater sophistication into it as
your requirements increase. In addition, when
you purchase a personal computer from Ohio
Scientific, you can take satisfaction in
knowing that the entire line is backed by
nationwide dealer service and trained experts,
who can advise you in your choice and provide
back-up service should you ever require it.

) & A: Some of the most commonly asked ques-
tions about personal computers:

What 1s a computer, exactly?

It's really a system for using, storing and
updating information. It can solve complex
mathematical problems quickly and communicate
in words, pictures and numbers, It maintains
records, controls equipment and does other
lLasks that require extensive information
storage. It is not an independent thinker, It
gives back only the information that has al-
ready been fed into it.

What are its basic mechanical parts?

The computer is made of four essential com-
ponents: the CPU (Central Processing Unit),
which is the main part of the computer; an
input Device, which is a keyboard that looks
like a typewriter and allows you to enter in-
structions into the computer; an Output De-
vice that typically consists of a TV-Tlike
display terminal called a CRT; and a floppy
disk or cassette player that provides infor-
mation storage.

Lxtra add-on devices are called peripherals.
When you add a peripheral,you "interface" it
with your CPU. When you need to know something,
you "access" the CPU's memory.

If a person doesn't know how to program the
computer, how can he use it?

You needn't know how to program a personal
computer in order to use it. Ohio Scientific
has already created hundreds of programs on
cassette or floppy disk, ready to put you

"on 1ine" in minutes. There's even a series of
programs to help you learn a basic computer

language called BASIC, which is the language

that enables you to communicate with the com-
puter through English-like words and even-
tually create your own programs, if you so
choose,

With such a wide range of programs already
available for learning, business use, perso-
nal use and entertainment, some people don't
feel a need to learn to program. But many,
intrigued with the almost 1imitless possi-
bility of the computer, do go on to create
their own programs.

What about cost?

A personal computer ranges in price from se-
veral hundred dollars (less than the price of
a medium-sized color TV set) to several thou-
sand, depending on your requirements, i.e.,
how much you want it to do.

THE CHALLENGER PERSONAL COMPUTER AS TEACHER.
Until their cost and size decreased, computer
were not a practical addition to the class-
room or the home. But today, thousands of per
sonal computers are being used in schools and
homes across the country.

With society so dependent upon the computer
in every walk of Tife, just knowing how to
interact with one is an aid to children. Be-
yond that, the computer teaches a child at
his own pace and level with infinite patience
The keyboard teaches manual dexterity and the
computer keeps learning interest at a high le
vel, for the simple reason that it's fun to
use.

Ohio Scientific's library of programs is one
of the largest offered by any computer manu-
facturer, and a professional staff of pro-
grammers at O0SI ensures new programs on a
continuing basis. At the present time, Chal-

lenger owners can choose from a variety of
courses, ranging from foreign lanquage drills
in French, German or Spanish, to courses in
physics, math (from basic addition to inte-
grals and trig), English spelling and usage,
on into such esoteric subjects as nuclear
chemistry.

Some learning programs take the form of
qames. Others are drills. In effect, every
transaction with the computer is a form of
problem-solving and learning experience en-
Joyable for children or adults of virtually
any age.

THE CHALLENGER PERSONAL COMPUTER AS A PERSO-
NAL AID.

A computer can perform tasks that nobody
likes to do on his own. It can balance your
checkbook, calculate savings and interest
projections, make annuity and loan analyses,
aid in preparing tax returns and provide
family budgeting and planning for the future.

In the area of home control, the Challenger
can be programmed to control a wide range of
AC appliances and lights remotely, without
wiring, and as an interface with home securi-
Ly systems which monitor fire, intrusion, car
theft, water levels and freezer temperature,
all without messy wiring.

On a more personal level, the computer will
chart your biorhythms, perpare a calorie guide,
assist you along a schedule of exercise and
muscle toning, catalogue your stamp and coin
collections and even help prepare menus.

And for sheer enjoyment, the personal com-
puter offers a delightful selection of games
to play, from Star Wars to Black Jack, Tic Tac
Toe to Dodgem, Cryptography, Concentration,

Bowling, Breakout, and many more. There are
games the whole family can play against the
computey or "solitaire" games that pit one
person against the computer’s expertise.
And once again, the computer teaches pro-
blem-solving, even while providing fun and
games for everyone in the family.

The Challenger Personal Computer as

Business Tool

Not surprisingly, over half of the personal
computers sold are bought by small business.
In view of the computer's ability to save
time, drudgery and money, it makes good sense
to consider its business capability. .

Business applications for personal computers
generally fall into five categories: Data
Processing (bookkeeping tasks such as Accounts
Receivalbe, Accounts Payable, General Ledger
and Payroll); Word Processing, the method of
entering texts, lists and other manuscripts
into the computer so that they can be correc-
ted, edited, or rearranged; Inventory and
Order Processing; Financial Consultation; and
finally, Personal Services, which include such
aids as providing a personal calendar, a com-
puterized phone directory, and even automatic
dialing and control.

Ohio Scientific offers a full range of soft-
ware that complements your choice of a compute
and helps it to realize its full potential as
a business aid. Moreover thanks to their modu-
lar construction, these personal computers can
be equipped with peripheral equipment that en-
larges their applications boundaries and in-
creases their utility.

Computer Glossary...

BASIC (Beginners All-Purpose Symbolic
Instruction Code) A popular computer language
ideally suited for use with Ohio Scientific
computers. One of the simplest languages to
learn, it can be used for a wide variety of
applications.
BAUD A measure of the speed with which
information can be communicated between two
devices. E.g., if the information is in the form of
alphabetic characters, then 300 baud usually
corresponds to about 30 characters per second.
BIT The smallest amount of information that can
Ee known. (One or zero.) Eight bits equal one
yte.
BUS The means used to transfer information from
one part of the computer to another.
BYTE A unit of information composed of 8 bits,
which is treated by the computer as a single unit.
A byte is usually used to represent an
alphanumeric character or a number in the range
of O to 258.
CASSETTE A medium for the electronic storage
of data. Similar to magnetic tape. Most personal
computers use ordinary audio-cassette tape
recorders and tape.
CENTRAL PROCESSING UNIT (CPU) The part
of computer hardware responsible for
interpreting data and executing instructions.
COMPUTER An electronic device which is
programmable and which processes, operates on
and outputs information according to its stored
program upon receipt of signals through an I/O
device.
COMPUTER LANGUAGE A language that is
used for programming a computer, e.g., BASIC.
DAC (Digital-to-Analog Converter) A device that
changes digital signals into cne continuous
analog signal. (voltage output)
DATA The information, or set of signals, that is
processed by a computer.
DIGITAL Word used to describe information that
can be represented by a collecticn of bits.
Modern computers store information in digital
form.
DISK A circular piece of rigid material that
resembles a record, which has a magnetic coating
similar to that found on ordinary recording tape.
Digital information can be stored magnetically on
a disk.

DISK DRIVE A peripheral which can store
information on, and retrieve information from, a
disk. A “tloppy disk drive” can store and retrieve
information from a floppy disk.

FLOPPY DISK A thin, pliable 8" or 5% " plastic
square for storing data. 8" disks store 3, or more,
times as much information as 5% " floppies and
access the information much faster.
FOREGROUND/BACKGROUND Cperation
term used to describe the ability of a computer to
function with normal programs at the same time it
monitors external devices, e.g. home appliances,
security, etc.

HARD COPY Information printed on paper or
any durable surface, as opposed to information
temporarily presented on the CRT screen.
HARDWARE The physical equipment that makes
up the computer system.

INPUT Signals given to a computer for
processing.

INTERFACE The connection between two
systems. A printer interface, for example,
connects the printer to the computer.

1/0 (INPUT/OUTPUT) DEVICE Hardware used
for communication with a computer. For
example, a keyboard, floppy disk drive and a
printer are all I/O devices.

JOYSTICK Peripheral, accessory equipment that
permits the user to move the figures on the
monitor. For example, when you and another
person play a joystick computer game, you
operate joysticks to perform the functions of

the game.

K The initial "K” stands for “kilo} meaning 1,000.
In computer language, K means 1,024 bytes of
information that can be stored in a computer
system. A computer with 16K memory, for
example, means that the computer has 16 times
1,024, which is 16,384 bytes of memory.
MEMORY The area in the computer for storage
of data and instructions.

MICROCOMPUTER A computer based on a
microprocessor.

MICROPROCESSOR The “brains” or CPU of a
modern personal computer. All Ohio Scientific
personal computers use the 6502 microprocessor,
generally recognized as the fastest micro-
processor available.

MINI-FLOPPY DISK A small 5% " floppy disk that
stores about Y4 the information of an 8” floppy
disk.

MODEM Word derived from MOdulator-
DEModulator. A device that allows the computer
to communicate over telephone lines and other
communications media by changing digital
information into audio tones (modulating) and
from audio tones into digital information
(demodulating).

MONITOR A CRT or television screen. You can
purchase an Ohio Scientific monitor to hook up
to your computer or else simply use an ordinary
TV set and attach it with an RF converter.

OS Operating system.

PERIPHERAL Any device that can send
information to and/or receive information from a
computer, e.g., printer, modem, etc.

PRINTER A peripheral device which makes hard
copy of letters and numerals.

PROGRAM A set of instructions, arranged in a
specific sequence, for directing the execution of
a specific task, or the solution of a problem, by a
computer.

RAM (Random Access Memory) A storage device
and main memory of any computer, which can be
read from and written into. Information and
programs are stored in RAM, and they can be
retrieved or changed by a program.

ROM (Read-Only Memory) A memory storage
device in which the information is stored once,
usually by the manufacturer, and cannot be
changed.

SOFTWARE Programs and operating systems
used by the computer; may be on cassette or on
disk and in ROM.

10

Challenger 1P: The Perfect Starter

Computcer
The popular Challéngey 1P just may he the best
bargain in personal computers availahle any-
where, This cassette-based computer has a
53-key keyboard, and a hlack and white video
display of 30 rows by 30 columns of alphabe-
tical characters, It has 8K BASIC-in-ROM,
This means that your computer comes equipped
with approximately 8000 characters in its built
in read-only-memory (ROM). Read-only-memory
is available immediately when you turn on your
computer. The Cl1P comes with 8K RAM. RAM is
random access memory that can be read from and
written into. In other words, with a C1P you
have available to you approximately 8000 cha-
racters of memory or program storage.

The 1P also incorporates features normally
associated with far more expensive models:
upper and lower case on the keyboard, graphics,
extremely fast execution, and effective screen
resolution of 256x256 points in the graphics
mode for detailed pictures.

The Challenger 1P needs no lengthy prepara-
tion for use. You just attach it to your TV
(with an RF converter) or plug in an optional
TV monitor.

Connect an ordinary cassette player, drop in
an Ohio Scientific cassette program and you're
on line in minutes. And, when you're ready to
expand your system, you can add single or dual
floppies for faster program execution and great
versatility of function.

These features are all integrated into a com-
pact portable package making the C1P particu-
larly useful in the classroom as well as at
home. And it effectively competes with, and
often surpasses computers priced several hun-
dred dollars higher.

Challenger 1P MF: Greater Speed,
More Versatility

Although they share many of the same basic
feratures, the C1P MF differs from the C1P

in two major respects: First, this 8K BASIC-
in-ROM, 12K RAM computer is a "mini-floppy",
disk-based computer, instead of cassette-
hased. With "mini'floppies”, you get program
and data retrieval in seconds, compared to

the more conservative cassettes which need
weveral minutes to load and store information.

“ccond, you can enlarge the Challenger 1P

MI 12K memory up to 32K RAM. Once the system
I+ expanded to 20K or more, you can use Ohio
“wientific's more powerful 0S-65D V3.0 ope-
rating system. This system will support se-
quential, as well as random access data files,
directly in BASIC, which allows data storage
in advanced applications such as those in
w“mall businesses.

lhe C1P MF can support a printer for hard
topy print-outs, a modem, which allows your
tomputer to communicate with other computers
nver telephone lines, an AC Remote Control
“yotem that allows your computer to operate
ltgyhts and appliances, and a real-time-clock,
which gives you the ability to have your com-
puter exercise a time control over computer-
lzed functions.

A real breakthrough in terms of both price.and
performance, the Challenger 1P MF is the first
portable "mini-floppy", personal computer offered

n the industry for less than a thousand dol-
lars.

11

12

Personal Computer Breakthrough
The Ohio Scientific Chalienger 1 is a Drama-
tic Demonstration of Price and Performance in
a Single Package

Challenger 1 is the microcomputer that scored a
dramatic breakthrough in price and performance
at a terrific system price.

PRICE/PERFORMANCE LEADER
The development of the Ohio Scientific Chal-
lenger 1P marked a price revolution for micro-
computers. Consider the following features:

(1) Microsoft 8K Basic-in-ROM

(2) 4K RAM-Expandable to 8K on board

(3) Full 53 Key keyboard with upper and lower
case

(4) Elaborate graphic display capability

(5) Uses a standard cassette for input

(6) Uses a standard television with an RF mo-

dulator for video output.

A11 of these features makes the Challenger 1P

best buy for a beginner or hobbyist on a Timi-
ted budget wishing to get involved with micro-
computer, such as students + their educators,

and various other professionals,

ALREADY LOOKING AHEAD??

0f course, we are not beginners forever (hope
fully!!), What happens to the C1P then? Is it
obsolete? That answer is a definite nol!

Consider the specification facts on the expan-
dability of the Challenger 1P:

A fully expanded Challenger 1P can support
(a) Basic-in-ROM

(b) 32K of RAM memory

(c) Dual Mini-floppies

(d) cassette

(e) printer

(f) modem

(g) full BUS expansion capability via the
0SI 48 line BUS through which over 40
accessories can be added (A/D, D/A,
voice output, I/0 re memory, etc.)

A you can see, the Challenger 1P leaves more
than adequate room for expansion. Thus, the
wystem is not one you will have to 'get rid'
!l as you progress to more sophisticated com-
puter functions.

CHALLENGER 1P with Disk Capabilities

It you are familiar enough with computers to
realize the importance of disk storage, then
the Challenger 1P Mini Floppy is a prime con-
wideration.

It is the first microcomputer system to offer
lisk storage capability under $1000, another
hreakthrough. The C1P MF offers the advantage
ul using either Basic-in-ROM or Pico-Dos, a
tompact DOS. The unit comes standard with 12K
ol RAM.

Additional memory can be added anytime by simply
plugging in additional RAM into the socketed
memory board. Upon adding 8K additional RAM to
gel to 20K, you may run 0565DV3.1, a full-
fledged DOS allowing named program and data
files as well as random and sequential access
tapabilities to these files.

Superboard II: A Computer for the
Budget-Minded

“uperboard II is the ideal choice for the be-
dlnner who wants a full-fledged personal com-
puter for the lowest possible price. It in-

13

14

cludes a complete computey system on g hoard,
with full keyboard, video display, audio cas-
sette interface, 8K BASIC-in-ROM and 4K RAM,
A11 it requires for operation is 5V at 3 amp
power and your own (optional) enclosure, The
system can be easily expanded to include flop
py disk drive, which means when you're ready
to go on to more complex computer functions,
you needn't discard the existing equipment -
you simply add to it to get the system that
will do what you want it to do,

Challenger 4P: Color, Sound,

Exceptional Display

Like the C1P, the Challenger 4P is cassette-
based, with 8K BASIC-in-ROM and 8K RAM. But,
there the resemblance ends. For, the C4P fea-
tures a highly sophisticated video display
with 16 colors in both alphabetics and gra-
phics 32 rows by 64 columns of upper and lowe
case, graphics and gaming elements, plus an
effective screen resolution of 256 x 512
points. The result: over three times the dis-
play capability of the C1P as well as visual
quality and readability equal to that of the
finest color television set,

For voice and music generation and output, th
C4P has a 200-20KHz programmable tone genera-
tor and a DAC (companding digital-to-analog
converter) as well as, 2-10 keypad interfaces
printer interface (not wired to connector) an
AC Remote Control interface. It utilizes a mo
dular four-slot BUS architecture generailly
associated with more expensive computers,
which allows easy expansion up to 32K RAM and
two mini-floppy drives.

The C4P has a fully RF-shielded aluminium cas
with 2-step baked on enamel finish. It is
trimmed with solid, oiled walnut and die-

cast, chromed dress panels, Compare this

functional and stylized construction to
the standard plastic cases oh other personal
tomputers,

Challenger 4P MF: The ultimate

portable Personal Computer
fhis mini-floppy-based, premium portable is
ultra-fast, In fact it is two-to-three times
n. fast as many competitive models. And re-
member, the faster your computer can execute
Invtructions, the more elaborate the I/0
tan be, The C4P MF has more I/0 built-in
and ready to run than any other personal
tomputer in its class., That is, if you can
find one in its class. Regardless of price
you'll find none that even come close.

Aw if the C4P MF's speed isn't already su-
per-fast, with the addition of Ohjo Scien-
titic's GT option, utilizing a 6502C micro-
processor in conjunction with ultra-fast
nlalic memories, it nearly doubles its speed
ngain. The GT option allows your computer to
handle 1.2 million instructions per second,
average, as well as offering memory to ac-
tumulator ADD time of 600NS and JUMP exten-
ded of 900NS.

Ihe C4P MF has all the great features of the
AP plus a real-time clock and count-down
ttmer, modem interface, printer interface,
It parallel Tine for additional control in-
lorfaces, an accessory BUS for an external
Ak line 1/0 board, PROM blaster, analog data
module, or education board, and a Home Se-
turity interface for fire and intrusion de-
Inction and monitoring.

Ihe C4P MF comes with 24K RAM and a single
mini-floppy, and can be directly expanded

lo 48K RAM and two mini-floppies,

Another exciting feature of the C4P MF is its

15

16

Foreground/Background operation capability,
This means that your computer can be simul-
taneously monitoring home security and
handling appliance functions at the very
same time that it is being used for regular
basic programming,

Ohio Scientific offers a comprehensive Ti-
brary of both applications software and sy-
stem software for the C4P MF, Diskettes in-
clude games, personal, business, educatio-
nal and home control application programs
as well as a real-time operating system,
word processor and a Data Base Management
system.

The C4P MF 1is truly a remarkable, premium
computer - years ahead of the market. There
probably won't be anything like it for a
very long time.

Challenger 8P: Ohio Scientific’s
Mainframe Class Personal Computer

The Challenger 8P is an 8-slot, Mainframe
Class Computer with 5 open slots. This means
that it allows over three times the expansio
capabilities of the Challenger 4P for ad-
vanced home, experimental and small business
applications. The cassette-based Challenger
8P comes with 8K BASIC-in-ROM and 8K static
RAM. The 8P can be expanded to 22K RAM and
you have the option of adding a dual, 8-inch
floppy disk drive,

Not only does the Challenger 8P have all the
exceptional features of the Challenger 4P, b
in addition, its modular construction allows
you to easily expand your Challenger 8P to a
Challenger 8P DF system which represents the
highest state-of-the-art in personal compute
systems.

Challenger 8P DF: The Top of Line in

Personal Computers

Not only is the Challenger 8P DF the top of
thio's Tine, but it is the top of any line
nl personal computers on the market today.
Incorporating the most advanced technology
now available, the Challenger 8P DF offers
full capabilities as a personal computer, a
amnll business computer, a home monitoring
spcurity system and an advanced process
rontroller,

Ihe BP DF operates 2- to 3-times faster than
nther personal computers (except the C4P MF).
And with the addition of Ohio Scientific's

it option, your Challenger 8P DF can nearly
double its speed again.

Ihe 8P DF comes with 32K RAM (expandable to
Av). It features dual, 8" floppy disk drives,
which means you can store about 8 times the
Intormation of a single mini-floppy and ac-
reyy it many times faster. A1l the excep-
ttonal features of the Challenger 8P are
avnilable on the 8P DF. They include: color
?rnphics in 16 colors, effective screen reso-
ultfon of 256 x 512 points, programmable tone
snerator, D/A converter, keypad interfaces,
TnyuLiCk interfaces, AC Remote Control inter-
face. Plus: a real-time clock, modem inter-
fate, 16 parallel T1ines, excessory BUS, Fore-
?’uund/Background operating system and a truly
nntastic home control and home security sy-
ol

hio Scientific's Challenger 8P DF Home Se-
rurity system allows your computer to moni-
tor fire, intrusion, car theft, water levels
and freezer temperature, all without messy
wiring. When equipped with an optional Uni-
verval Telephone Interface system (UTI) the
(hnllenger 8P DF has the capability to dial
any telephone number (either rotary dial or

tuuch tone). Itcan respond to touch tone or
17

18

modem signals and can route voice to tape re-
corders, When equipped with Votrax Qﬁnwdu]e
or used in conjunction with an Ohio Scien-
tific CA-14A voice I/0 your Challenger 8P

DF can answer by touch tone, modem, stored
message or Votrax QD voice output, Equipped
with UTI voice output AC Remote, and the

home security system option, your Challenger
8P DF is truly "the home computer of the
future”" with an almost human-like capability
to communicate via phone lines and operate
and monitor typical functions in your home,

Also note that the Challenger 8P DF has a
universal accessory BUS connector accessible
at the back of the computer or you can plug in
additional 48 1ines of parallel 1/0 and/or a
complete analog signal I/0 board with A/D, D/A
and multiplexers.

Furthermore, the Challenger 8P DF with its
full size 8" floppy disk is compatible with
Ohio Scientific's advanced small business
operating system, 0S-65U and two types of
information management systems, 0S-MDMS and
0S-DMS. Since it comes standard with a high
speed printer interface, a modem interface,
53 key ASCII keyboard, and a 2048 character
display with upper and lower case, it is
ideally suited for business use and word
processing applications.

Hundreds of personal applications, games,
educational and business software packages
are currently available for use with the
Challenger 8P DF,.

The Challenger 8P DF is far and away the
finest personal computer available today.

jn.

fUAR

1/

AL

C1P Challenger Memory Map

1K
2K

3K
4K

8K
12K

16K
20K

24K
28K

ZERO PAGE

0130=NMI Vector,01C0=IRQ

0203 LOAD Flag

UNUSED

0000
00FF
O1FF

0220
0222

02FA

400
800

o0
1000

2000
3000

4000
5000

6000
7000
8000

BASIC
Worksp.

19

BASIC in ROM 4K

BASIC in ROM 4K

Fioppy PIA + ACIA

Video RAM

ROM

Floppy Bootstrap

65V Monitor ROM

ROM BASIC Support

20

9000
A0QO

cooo

D000

D3FF
DF00= Polled Keyboard

EQO0O

FOOO ACIA Cass.Port
F800

FBFF
FCOO0

FCFF
FDOO

FEFF
FFOO

FFFF

Table 1

A Partial List of OSI BASIC in ROM Scratch

I'asl Memory
IND(O1)
IND(06)
IND(08)
IND(OB)
M(OD) 13
M(oL) 14
M(OI') 15
M(11-12)
M(13-5A)
IND(/71)
IND(79)
IND(/B)
IND(/D)
IND(/F)
IND(B1)
IND(B3)
IND(B5)
M{It/-88)
M(Nnu-8A)
IND(BB)
M(ND-8E)
IND(BF)
IND(O1)
M(ui-94)

Initially, address of cold start
($BD11). Replaced by warm start
($A274),

USR INVAR address.

USR OUTVAR address,

USR program address.

Number of NULL'S selected (for
slow carriage return)

Terminal character count

BASIC terminal width

Arguments of statement such as
PEEK, POKE, GOTO, GOSUB, Tine
numbers, etc.

Input buffer.

Scratch pad address for garbage

“collection, 1line insertion, ‘etc,

Address of beginning of BASIC

code, ($0301)

Address of beginning of Variable
Table.

Address of first array entry in
Variable Table., If no arrays, end
of Variable Table.

Address of end of Variable Table
Lowest string address.

Scratch pad string address.
Address, plus one, of highest
allocated memory.

Present BASIC 1ine number.

Line number at BREAK.

Pointer to BASIC code for CONT.
Line number for present DATA
statement.

Address of next DATA statement
Address of next value after com-
ma in present DATA statement.
ASCII code for present variable

21

22

M(BC-D3) Subroutine: Points through code one
byte at a time, RTS with code value
in A and carry clear if ASC(0-9);
otherwise, carry set. Return A = 0
if end of 1line. Ignores spaces.

OMD)C3) Code location pointer for above sub
routine.

M(AF BO) USR input variable storage.

M(FB) MONITOR keyboard control flag. (=
0 for keyboard).

M(100-107)Storage of conversion of floating
point number to ASCII.

M(1FF) Top of BASIC stack.

M(200-20E)Temporary storage for CR simulator
subroutine ($BF2D).

M(212) CTRL C flag.

(=$01 if CRTL C off).

M(213-216)Temporary storage, keyboard pollin
program (#FDO0O).

TABLE 2
.1 BASIC Routines Needed for BASIC Renum-
bering

VA4 Print an error message from the mes-
sage table. Enter with X containing
the Tocation of the message relative
to $A164. Message terminator is ASCII
having bit 7 on.

tASAD BASIC line insertion routine. Enter
with Tine assembled in the line buffer
$0013-$005A with 00 as line terminator.
Also, character count must be in $005D
and the line number(hex) at $0011/12.

WA//1 tvaluate an expression whose beginning
address is in $00C3/C4. Use this sub-
routine to convert from ASCII to binary,
with the result appearing in the floating
accumulator:
$00AC/AD/AE/AF.

i/tn Convert fixed number in $00AD/AE to
floating number. Enter with the result
appearing in the floating accumulator:
$00AC/AD/AE/AF.

thAOn Convert binary value, such as line num-
ber, din floating accumulator to
two-byte fixed number and place in
$0011/12.

fhuni Convert floating number at $00AC/AD/AE/
AF to ASCII and place in string starting
at $0101, preceded by a space or minus

‘ »ign at $0100 and terminated by 00.

fA#I4 BASIC warm start. Prints "OK".

ABL | Prints message. Enter with ADH in Y,
ADL in A. Message is ASCII string en-

, ding with 00.

'¥WUbl Print the decimal integer whose hex

value is in registers A and X, for exam-

ple, a Tine number.

23

J0329A 39Sad
A0303A 39S3u

403239A 3dnaudjzul d[qeysew-uou

A40329A 3dnuauadjul a[gqeysew-uou

Kaepunoq aaddn 9oedsjuom Auaeaodwal 03 u43jurod
Aaepunoq J4addn aoedsjuaom Aueuaodwsz 03 dJd3utod
Aaepunoq admo| adedsyuaom Aaeaodwal 03 4djurod
Kaepunoq uaamo| 9dedsyuom Auaeaodwdl 03 43djulod
Aaepunoq uaddn adedsjuom 03 J43juirod

Aaepunoq uaddn aoedsjuaom 03 Jajutod

Kaepunoq JdmMo0| 9dedS}Ju0M 03 Jud3juiod

Adepunoq J4amo| 2oedsyJom 03 uajuLod

‘UddUIS Qpg 404 TO 03 39S

‘UddUIS Qpp 404 00 O3 23S - UDIUDS YY) 40 JZLS Saulja(
"y3bua| suL| padaLsap ayy ueys

SS9 QU0 03 33s - (lewLdospexay uL) yzbua| auL| sauljag
"U334D2S 03PLA OpG 40} (X3Y)Qp 40 03PLA Qvb 404 (X3Y)$p9
03 39S A[|eWAOU = JOSAND 4O uolL}Lsod dwoy sauljiag

NOILINNAS

TN PN TN NN T TN T T T T P T
O OHOHFROHFO O
4T JIrr JT JIT 4T 4T
Nt Nt vt st st et et "t "t vt et et

., Lsd
LSy
TWN
TWN

HMdW3I1
HMdW31
TMdWIL
TMdWIL
H2¥N0S
724N0S
124N0S
124N0S

171S
N3T

IWOH
138Y1

ad444
J444
g444
Y444
VEEE
6344
8344
£344
3344
G344
344
€344

2344
1344

0344
NOILYJ01

*sJudjuLod

JISYg pue suajaweded /] ULRIUOD YDLYM sSuoL3ed0| Auowaw S3ISL| a|qel SLy]

(s1e3ulod DISYE pue sieleweled /|) suoneso jo ejqe|

24

WwoJd 4 uuniay,

30 34e3Ss
J0 14e3S
~NOJ. 30 3jd4e3ls
=100, 30 3d4e]lS
NI, 40 34e3s
1Q/T J03

9Q 3SNW SauL3no4qns 3sayl ui

wv ‘suL3Inoa ,JAVS,

(
404 (ZAXM) uorzedo| o3 dunp

wv ‘auLnod ,avol.,

(
404 (ZAXM) uoirzedoo| o3 dunp

(2) sutinougns ,3-7041

403 (ZAXM) uotrzedso| o3 dwnp
(1) sutinouagns ,INd
404 (ZAXM) uorjeso| o3 dunp
(1) autranoa ,1nd
404 (ZAXM) uoL3ed0| 03 dWNC
NOILVYNVIdX3
suctiedc! Buimorioy sux 03
=222t LZIETIxe 22I7
eIz T EETIme LT

ine

- e T o oo -

i

UOLJONUISUL P3INJ3X3 4Se7 (1)

—~e
N ><

O>TO>RTO>ZTO>RTO>X

6444
8444
L4444
9444
G444
Y444
€444
¢444
1444
0444
4344
3344
(EEE
J344
4344

JAVS

N X<

avon

N <

J-TOYLNOD

N ><

1Nd1Lno

o~ o~ o~ o~

N X
< e o e O o O

LNdNI

(X3H)
SINILNOD

NOILVIO01 INIWILVLS

J1sve
Sayouedg JISYE ‘uoiiippe ul

12l
Ie” P

.ECO

|

25

26

Subroutine™ (RTS).

(2) The return point for this statement de-
pends on what action is required of BASIC.
If the external routine does not detect con
trol-C at the input terminal, or if it is
desired to bypass the control-C routine in
BASIC, execute an "RTS" instruction. If the
external routine detects an input characte
but does not test to determine if it is con
trol-C, do a jump absolute (JMP) to A636,
leaving the character in the accumulator.
Jump absolute (JMP) to A633 will cause BA-
SIC to input a character and test it entire
ly without outside support.

Two other important locations are:

0206 - Controls baud rate of CRT simulator
0 sets fast baud rate, 1 sets slow
baud rate. This location may be
changed under software control via
POKE command. It is also automati-
cally changed during LOAD/SAVE ope-
rations.

BD11 - BASIC cold start location.
2. The following source listing of the I/0

driver package contains the following us
ful subroutines:

STARTING ADDRESS DESCRIPTION

BEE4 UART INPUT routine

BEF3 UART OUTPUT routine

BEFE UART initialization ro
tine (1)

BFQO7 ACIA INPUT routine

BF22 ACIA initialization ro
tine (2)

BF15 ACIA OUTPUT routine

BF2D CRT simulator

(1) UART is set for 8 bits, 2 bits, no pa-
vity bit,

{#) ACIA is set for 8 bits plus 2 stop bits.
tlock is set for 16 mode.

27

28

Useful Subroutine Entry Points

A274
BD11
BF2D

FDOO
FCB1
FEQO
FEOC

FE43
FE8O

FE93
FF69

PAGE O

0000
O0O0FB
00FC
00FE-0

PAGE 1

0100-0
0130

01C0

PAGE 2

0200
0203

warm start for BASIC

cold start for BASIC

CRT simulator - prints char in A re-
gister to screen offset by cursor
(200 HEX)

input char from keyboard, result in
output 1 byte from A to cassette
entry to monitor, clears screen, res
ACIA

entry to monitor, bypasses stack ini
tialization.

entry to address mode of monitor
input ASCII char from cassette resul
in A, 7 bit cleared

convert ASCII hex to binary, result
A, -80 if bad

BASIC output to cassette routine, ou
one char to cassette, displays on sc
outputs 10 nuls of carriage return ¢
racter

HANDY LOCATIONS
USAGE

JMP to warm start in BASIC (4C/74/A2
cassette/keyboard flag for monitor
data temporary hold for monitor

OFF address temporary hold for monit

141 stack
NMI vector-NMI dinterrupt causes
jump to this point
IRQ vector

cursor position
load flag

L save flag

f0h CRT simulator baud rate - yaries
from 0 fast to FF slow

¢ Control-C flag

H input vector FFBA

A output vector FF69

{ Control C check vector FF9B

¢ load vector FF8B

{l save vector FF96

¢ 02FA unused

ARt ' and up to end of RAM is BASIC workspace

00 - D3FF Video refresh memory
FOO polled keyboard

fiB) - I'001 cassette port 6850
#00 IFFF Monitor EPROM

EQ" - BFFF BASIC in ROM

00 Floppy bootstrap

00 Keyboard input routine
0o Monitor

o BASIC I/0 suport

“IMI-FAST SCREEN CLEAR (without the USR
FUNCTION)
hale to be bothered with the USR screen clear
| van't remember it off hand and hate to lock
¢ up, Besides, it takes too much memory. This
ne ls fast, clears the whole screen in 2.16
#eand«, and easy to use.

80 FORX 1T029:?2:NEXT

(?) (C1)
L] r&RX 55168T055295: 110 FORX54147T7T054275:
POKEX,32: NEXT (54307 on some mo-
nitors) POKEX, 32:
NEXT

MORE USEFUL SUBROUTINE ENTRY POINTS

;90 Reset entry point
a Load flag routine

29

FF96 Saye flag routine
FF9B Control-C routine
FFBA BASIC input routine

PRINTER POKES

There are two handy locations you should know
if you are trying to use a fast cassette intae
face or a printer with a slow carriage return
In either case it is sometimes handy to put o
more nulls than the ten that BASIC allows. Th
null number is stored in 13. By POKEing the
number of nulls you want into 13 you can get
up to 255 nulls,

Location 518 is the baud rate simulator, It's
end effect is to put an interval between prin
characters. It can help if your printer has h
shake problems or if you just want to slow de
the print for emphasis. POKEing a number inte
518 gives you the interval.

A PARTICULARLY HANDY SUBROUTINE

BF2D is a real time saver if you are writing
machine code. It is a subroutine that prints
a character from the accumulator to the screQ
offset by the value stored in 200 (hex). It
also increments the cursor and can process a
carriage return so a lot of your work is doné
for you.

PRINT AT STATEMENT

E

0SI has a great BASIC but the lack of a PRINT
AT command makes it difficult to print score
and names and similar items where you want t
on the screen. You usually end up with a lon
series of POKE statements and you have to de
vide the score up into individual digits to
even that. There is a simple solution, Add t
subroutine to your program -

30 !

I ORY=1TOLEN(D$) ; POKED+Y ,ASC(MIDS$(DS$,Y,1))

NI XT:RETURN
tw POFI up any name, word, or eyen sentence
uh Lhe screen simply set the name equal to
#¥ and make D=equal the starting address on
the sireen, i,e.
upy "WINNER IS":D=54040:G0SUB5000

kWi vy should be done just a little different-
; You start at the second digit because the
BA4IC thinks the sign is the first digit in

he string and can set you over one space

#m where you planned. You may also want to
hlank the digit after the string to allow for

he po.sibility that the score may decrease
ey 1rom three to two digits). To use it you
33! fhe score equal to D$ and the final pro-
uel looks like this -

004 -4TR$(SCORE) : D=54040:G0SUB5000

WONOL ORY=2TOLEN(D$) : POKED+Y ,ASC(MIDS$(DS$,

YL 1)) NEXT

ROTOPOKEY 32 :RETURN

"OMI" POKES YOU SHOULD KNOW

altd in reading you may want to set the
Tﬂu length down to 32 on a C2 or to 23 on a
¢}, Unfortunately, if you set them down when
‘ar slart up the system you will be unable to
ab® Inpes. Fortunately, the line length is
lwred in location 15. You can reset line

Qnrlh by executing 100POKE15,32 (or any other

nymher down to as little as one) and then re-

t6t with 200POKE15,72 to record the program.

if you find it annoying to reserve space for
#) programs when you fire up the system

Y always forget to do it when I am using

he 1apid screen clear) you can set the memo-

iy spnce by POKEing the high order digit (in

WEY) Into location 134 and the low order digit

31

32

into 133, For instance, the 1line 100POKE
134,14 will reserye space for the screen
clear without resetting the system,

You can even make self starting BASIC pro
grams if you are willing to do a few addi
tional moments work when you make the tap
The flag for LOAD is in location 515, A 1
POKEd into that location turns off the To
mode. Therefore, to make a self startint
as soon as the program finishes reading o
the tape and while the system is still 1in
SAVE mode, type in POKE 515,1:RUN.

That command will record on the tape and
the program automatically when it finishe
loading.

SAVE can be turned off in a similar manne
POKEing a O into location 517,

EASY KEY DETECTION

If you are doing a one player game, you ¢
tect the control keys without either POKE
the keyboard or turning off the CONTROL C
The values for the shifts, rept, control,
esc keys are recorded continuously in Tloc
tion 57100, i. e. if you push the right s
a 3 always appears in 57100. To see how 1
works try this program
10PRINTPEEK(57100):G0T010

Then push the control keys one at a time,
is simple, fast, and allows you to keep t
CONTROL C function to break the program,

o

"UOLSUBA J3buO| ay3 uL adAy 03 340448

9y :p;oq °G PLNOM 3L 3@yl 3qnOp I 3ey3l 0S T) 3Yl UO [|3M Sund cowm;m>mw¢
9yl ;m>mzo:..wmﬁ¢m Pu® /STpG 03Ul 9 BULINOd PUR ‘GEE 03 0002 duL| utL

6€9 bulbueys ‘sueadde 71 943ymAUaAs 000T 03 gOpT an[eA ay3 m:?mcmpu zm

(p4eOqQuadng pue 1J) pueogq 009 @Yy 3L4 031 pabueys aq p|nod weuboud SLyyg

N0

NYNLIU:LXIN 0502
T+((A)A+XIV=((A)W+X)VNIHLSO<XA1:80L6=A404:LXIN 07102
T+((AYW+X)IV=C(A)W+X)VNIHLGECI>XH1:90LT=A404 0002
00h0LOD:1XIN:0=(X)V 0¢Hh

¢/ (2+X)INOINIHLEC(X)VHOZ> (X)V4]l 0Zh

2/ X+03N0ANIHLE=(X)VA I :h0LOLT=XUY04:LXIN 0TH
00029i1SOONIHLZH=(I+X)NIId41:h0L0LT=X404 004
OTENIHL,INOT,,<O>SVA I :$VLINdNI 0T¢
¢e="2¢="T¢="T-'T7¢¢’CS TS VLIVA Q¥v08d3dNS % TJ3404WIY 007
G3-'19-¢9-"1-1699’497¢9V1vd 0TI

H0GE€SG=0 LXIN (X)WUVIY:80LT=X404:(SOL)IVWIA 00T

P o *sbueud sul 33s ued nok 1eul 0s
z USLL=43U30 M3, 3.1 05 ThI- TUT vt L. L. _.e™ BLD 5.4 TLf.TEazuss
=T T mIos DL .FF.IF 3.l I.T3% WFLL . LSIM Z.F g2 -1 pz 13ED
SE . .TIF. BFLL I LIIM ITI CIaTIoZ s3e@l o7 LI 11 F e S

W s MO B =T T ot _ule

33

A LITTLE MORE LIFE?
If you have 8K and want to fill the entire screen on a C2, you can do
so and add a few frill in the process.
You will need 1ine 110, 420, 430, 2000, 2010, and 2050 from the 4K
program.

100 DIMA(1408) :FORX=1TO8:READM(X) :NEXT:C=5350L4:X=1
300 INPUTA$(X) :IFAS(X)OM"NYTHENX=X+1:G0T0300

310 FORY=1TO15:PRINT:NEXT:FORY=1TOX=-1:PRINTAS(Y) :NFYT
320 FORY=1TO15-(X/2):PRINT:NEXT

540 FORX=1T70192:POKEX+C+1407,161:POKEC=-Y,161:¢
350 FORX=65TO1407:1FPEEK(C+X)=42THENL=X:G0T0O37
360 NEXT:IFL<KTHENL=1

370 FORX=1LL2TO1ISTEP-1:1FPEEK(C+X)=U42THENU=X:G0T0N320

580 NEXT:IFU>1ILO7THENU=1407

390 X=INT(G/10):POKE55005,X+48:POKE55006,G~-(10*X)+L8:0=0+1
4LO0 FORX=1TOU:IFPEEK(C+X)=42THENGOSUB2000

410 NEXT:FORX=LTOU:IFA(X)=3THENPOKEX+C,b 42

2020 IFX>U-65THENU=X+65:1FU>1L08THENU=1408

2030 IFX<L+b65THEML=X-065:1FL<1ITHENL=1
(01

-XT

[

34

Ohallenger Superboard Introduction
#nw to wwitch it on and try it out

¢iter you have hooked up your C1lP to a +5Volt
fuuco supply and a modified teleyision set

Iur monlLor) you are ready to start your own
goailnmming. You must also install the cas-
1oeble recorder for saving and loading of

ad) programs. (See manual),

Qﬁgn Ihe powersupply is switched on, the mo-
pltur ncreen fills up with random characters.
&uu it 1+ ready for you to hit the BREAK key,

4t the bottom line of the screen you will see
'SQ fetters D/C/W/M.
vbu have only a cassette system, you now
hayd the choice between C = BASIC coldstart
M = Enter System Mo-
nitor

the Ietter W is for warmstart in BASIC and D
4led for loading the disk operating system
Frum fdivk drive A.

t s avsume that we want to start program-

i in machine language. The superboard
? lnv (resident in ROM) allows you to do
@ ftollowing:

t Lok at and input RAM Address (4 digits)
In hex XXXX

ok at and input RAM DATA (2 digits) in

1o XX .

hange from address mode to data mede (/)

‘hange from Data to Address mode (.)

tart a machine language program (G)

’ﬂ?d machine language program from tape

|

!a rluxnmp1e let us type in the following
81} machine language display program:

35

36

Mnemonic Form Machine Form

Address Inst. Operand Addr. Opcode Oper

0222 JSR FDQO Q222 20 00FD
0225 JSR BFZD] 0225 20 2DBF
0228 JMP 0222 0228 ca 2202

We will put the 1ittle program in unused
RAM space in memory page 2 (0222 - 02FA).
The starting address is 0222 Hex. We type M
for Monitor which leads us immediately into
the address mode or we can type a period (.
when we are still in the DATA Mode.

When the address mode is entered, you will
type in the address followed by the data to
be Toaded:

Address Data

0222 20 RETURN
0223 00 RETURN
0224 FD RETURN
0225 20 RETURN
0226 2D RETURN
0227 BF RETURN
0228 c4 RETURN
0229 22 RETURN
022A 02 RETURN

You will recognize that the bytes in the ma
chine version of our programs are interchan
For further explanation refer to your 6502
programing manual or 6502 instruction refer
card.

Our program uses two useful subroutines fro
the C1P operating system.

FDOO = Input character from keyboar
put result in accumulator (A

BF2D = CRT simulator. Prints char in
accumulator to CRT screen, off-
set by cursor (200 hex)

the Internal subroutines should be used as

whlen ns possible. Therefore the machine
fanynage programmer should first prepare a
tlal of all useful memory locations and sub-
tuul ines. Why should you write an ASCII out-
put subroutine by yourself, when you can call
#n wveon better one from the system?

fw atart our program we have to type in the
gbnrting address 0222 Hex. Therefore we go
Inln Ihe address mode and type in 0222 fol-
Hweil by a point (.) Now we stay in the address

audw and we can start the program with G.

i?r imogram allows us to type in letters and
aplay them at the screen. To stop the pro-
jram you have to hit the BREAK key. Restart
téh M and 0222 G.

¢ loop by typing A and starting the pro-
Fam by hitting the S-key.

!:u now can modify this program to escape
'

fur the modification you can use the CMP
pmmand (compare with accumulator).

P'tir writing and testing a program you want
aave on cassette, you may suddenly realize
¢l there is no machine language write routin

M WOM. There is a read routine, which you

¢h vlart in the monitor. You need only en-

#r the monitor with an M keystroke and fol-

i ft with an L keystroke to read tape in
I'u vwtandard format. There are,of course,

: road and write tape routines for BASIC

A KOM,

Ihe Knnsas City tape standard used by 0SI

e

37

38

is very reliable, but 300 Baud is not a very
fast rate,

Another slowing factor is that the 0SI tape
format puts three bytes on tape to record
one byte of data.

This brings us to an effective rate of 100
Baud, when recording machine language pro-
grams,

Now something in general about the audio cag
sette portition of the Ohio CIP system. The
Kansas City interface is really a modem

(FSK modulator/demodulator) and this may be
used to couple the computer:

|
i
1) To a cassette recorder 1
2) To a printer %
3) To a phone line 1
4) To a 2-way radio
The cassette interface consists of a 6850
ACIA which is programmed to write and read |
the Kansas City format. Refer to the 6850 J
X

ACIA data sheet for a background discriptio
of ACIA programming parameters.

The 0SI tape format mimics the keyboard as a
inputs to the monitor program. That is, eac
byte is entered as two hex digits in ASCII=.
code.

As described before, the monitor has two,
modes. The (.) period symbol puts it into aj
"read address" mode. Then the next two byte
are placed in memory at $FE and treated as ,
an address., The (/) = slash symbol puts th
monitor into the "accept text" mode. Then

each byte entered will be stored in tempo-
rary memory. When RETURN is received, the

byte is moved to memory at the address stor
in $FE. Then this address is incremented by
one so that the load process ratches along

in memory space. After all text is loaded,

i

wymhol puts the monitor back intg the
sddy vy mode, Inputting a new address with
+h keystroke followed, starts the program
st {hi. address,

"he following program allows you to write
#arhine language tapes in 0SI format,

He /71
M=1aN+15
lj=tihh 12:R=Q+1
HEM ACIA ADDRESS Q=61440 FOR 600 SERIES.
INIFUT "START TAPE AND WAIT FOR LEADER, TH
BN ML GYAS
#0 DATA us 48,50,50,50,47:REM.0222/
A DAIA u6,70,69,u8,u8,71:REM.FEOOG
 1ORI=1TO6:READC:WAITQ,2:POKER,C:PRINTCHR
ME gachXT
b h=hliG:E=S+N
¥ IM FORI=$0222 TO $02FF
B FHOR 1=S TO E
M (=PIFK(1):H=C AND 240:L=C AND 15
h H=H/16+48:1F H>57 THEN H=H+7
N I =1 +48:1F L>57 THEN L=L+7
f WAIT Q,2:POKE R,H
| WAIT Q,2:POKE R,L
WAITQ,2:POKE R,13
!i MUNT CHR$(H);CHR$(L);" ";

o ——

0 NEXT 1

8 FOR 1=1 TO6:READ C:WAIT Q,2:POKER,C:PRIN
él WoCe); i NEXT

 RFM FORMAT FOR TAPES IS:

& REM.HLHL/HLRHLR...HLR.HLHLG

HFM WHERE THE HLHL AT THE START IS THE S

1BRTINU ADDRESS,
) HEM HI BYTE FIRST, THE HLHL AT THE END 1
b THE I XICUTE

HFM ADDRESS AND THE HLR'S IN THE MIDDLE
ABE THF TEXT

O HEM BYTES. THE R BFEING A CARRIAGE RFTURM
 WrM THE ./G ARE THE SAME AS THE COMMANDS
tHE MONITOR

39

40

200 REM H AND THE L ARE ASCII

EX

DIGITS

205 REM OTHROUGH F.
210 REM FOR READ TAPE PROGCRAMS USE
215 REM WAIT Q,1:X=PEEK(R)

1014

The above program saves machine language
codes located in memory between address
0222 hex and 02FF hex on tape.

To change it for other memory locations
you have to change line No. 5, 1line No.
100 and line No. 116.

Example: Saving memory locations from
06FF hex to O7FF hex. In this case you
have to change the line numbers as
follows:

5 N=256
100 DATA 46,48,54,70,70,47: REM.06FF/
116 S=1791:E=S+N

Note:

|

CODE FOR THP

/

Before loading the program, you have to

protect your machine language area from

BASIC. In the above example type in
1790

for memory size.

|

(L]
Aty

8 ARt

1A

¥ AEEDT

| Aupn
Hipnhn?

EQUATES :

.o ws we we we

*.. —START:=$p20D

EHDADR=$P@ADF
GOADDR=$PPE1
WARMST=$FFFC
QUTFLG=$9205
OUTPUT=$FFEE
RETURN=$9D

v wr e

*=$9239

Mue we we

NTRY: CLD
LDA #$FF
STA OUTFLG
LDA START:+1
LDY START:
JSR ADROUT
LDA #'/
JSR QUTPUT

LOY 1599
DATAOU LDA (START:),Y

JSR DOBYTE
LDA #RETURN
JSR QUTPUT

INC START:

BNE CHKEND

INC START:+1

CHKEND LDA START:
CMP ENDADR
BNE DATAOU
LDA START:+1
CMP ENDADR+1
BNE DATAQU

LDA GOADDR+1
LDY GOADOR
JSR ADROUT
LOA #'G

JSR OUTPUT

LDA #$pp
STA QUTFLG

MACHINE CODE TAPE DUMP

“e wt wt ws we wo wo

.r we b wo

-

.

(CH-1P, C2-4P, C2-8P ROM BASIC)

START OF TRANSFER ADDRESS

END OF TRANSFER ADDRESS (NON-INCLUSIVE)
GO ADDR AT LOAD TIME ($FEP3 TO MONITOR)
JMP INDIRECT HERE TO ENTER MONITOR

(@9) SAYS OUT TO TAPE & SCREEN
QUTPUT ROUTINE (SCREEN & TAPE)

CARRIAGE RETURN CHR CODE

RST TO BIN MATH

OUTPUT START ADDR

SELECT DATA ENTRY MODE

RST FOR TRANSFER

GET BY INDIRECT

BYTE OUT TO TAPE

CR TO MOV TO NXT LOCATION IM MEM
BMP MEM PNTR

8MP PAGE PNTR

ALL DONE ?

NO-CONT
MAYBE SO

NOPE-CONT ON
OUTPUT GO ADOR TO TAPE

OUTPUT 'GO' COMMAND TO TAPE

3 RST CASSETTE OUT FLG TO VIDEQ ONLY

41

1529 9271 6CFCFF JMP (WARMST) 3 GO TO MONITOR
1539 9274 H

1549 9274 H

1559 9274 H

1569 9274 H

1579 9274 3 COMMON ROUTINES

1589 p274 H

1599 9274 H

1699 9274 3 WORD & BYTE TO ASCII THEN TO TAPE

1619 9274 H

1629 9274 H

1638 9274 AA ADROUT TAX 3 SAV A REG

1649 9275 A92E LDA #%. 3 SELECT ADDR MODE
1659 9277 2QEEFF JSR QUTPUT

1668 P27A 8A TXA 3 RESTORE A REG
1679 9278 A292 DOWORD LDX #$02 3 TWO LAPS 'RND
1688 9270 DPP2 BNE BYTOUT

1699 927F A201 DOBYTE LDX #301 3 JUST ONCE

1789 9281 H

1719 9281 48 BYTQUT PHA 3 SAV A REG

1720 9282 4A LSR A 5 MS NIBBLE FIRST
1739 9283 4A LSR A

1749 9284 4A LSR A

1759 9285 4A LSR A

1769 9286 2@92p2 JSR HEXOUT 3 HEX TO ASCIT THEN OQUT TO TAPL
1779 p289 68 PLA 3 GET A BACK

1789 P28A 299292 JSR HEXQUT s LS NIBBLE QUT
179p 928D 98 TYA ; DO OTHER BYTE
1809 §28E CA DEX s DONE ?

1818 928F DPFP BNE BYTOUT 3 NO-CONT ON

1829 9291 69 RTS

1839 9292 H

1849 9292 H

1850 9292 H

1869 9292 3 HEX TO ASCII THEN TO TAPE

1879 §292 H

1889 9292 H

1899 9292 299F HEXOUT AND #$pF 3 MASK QUT MS NIBBLE
1999 9294 9939 ORA #'9 3 HEX TQ ASCII

1919 9296 C93A MP #° ¢ 32317

1929 9298 9992 BCC 29 3 NO-SO OUT TO TAPE
1939 929A 6996 AF ADC #3906 s 'A - F' SO ADD 6+C=7

1940 029C 4CEEFF 9 JMP QUTPUT OUT TO TAPE

2P Extended Monitor Commands

HEMORY EXPANSION AND MODIFICATION COMMANDS

twmnorcial at(Shift P) NNNN - opens 16 hit
mmmi y location NNNN, 2PEM responds with "/CC"
whwto CC is the contents of location NNNN.

Funtents of location NNNN may be changed by

byplng in 8 bit (byte) hexadecimal data DD.

Al 1 lonal commands in this mode are:

LF) - (1line feed) increments to next location.

U nrrow) (Shift N) - decrements to previous
location

(") - prints ASCII or graphic character at
current location,

(i) - (carriage return) exits OPEN MODE,

il HiM, TO - Dumps a block of memory between

}h 11t hexadecimal addresses specified by

E"M and TO.

FitM, TO=DD - Fill memory block specified
My mildresses FRM, TO with hexadecimal data

ivien DD,

W NFW-'RM,TO - Move the block of memory bet-
#iy [RM and TO to a block of the same length
wxlnning at the hexadecimal address specified

v NIW,

| NFW=FRM,TO - Relocates a block of executable
gr-hline code maintaining code executability.
Himat Is the same as Move.

NUGRAM DEBUGGING COMMANDS
NNNN - 6502 MACHINE CODE DISASSEMBLER

fhis Instruction disassembles executable 6502
Mehlne code into 6502 mnemonic code. Dis/

fdaombly starts at the 16 bit hexadecimal address
pmi 1 f1ed by NNNN and continues for 24 lines -
iNMxlmum of 72 bytes. Non-executahle opcode

#fe n.signed a '"mnemonic' of ???. Disassembly

¥ bee continued in 24 line blocks by pressing
nafeed - (LF).

43

44

N HEX>FRM,TO - Searches memory block between
hexadecimal addresses FRM and TO for the data
string HEX. If a string match is found, the
2PEM enters, the commercial at 0OPEN mode and
all commands in the OPEN mode are available.
The maximum length of the HEX search string
is 8 bytes,

W ASCI1>FRM,TO, - ldentical to N search excep
the search is made for an ASCI] literal strin
match.

Bn,NNNN - Install breakpoint "n" at hexadecinm
address specified by NNNN. Up to 8 (n=1 to 8)
break points may be installed.

En - Eliminate breakpoint n.

T - Print table of breakpoint addresses. Nota
the address of a non-specified breakpoint
defaults to FFFF,

C - Continue prozram execution from last brea
point. This command MUST ONLY be used with
breakpoint entry into 2PEM,

| - Prints the address at which the 2P EXTENA
MONITOR was last entered by a break. The cont
of the processor registers and the stack-poln
location are also printed.

A;X;Y;P;K - These five commands print the
contents of the ACCUMULATOR, X INDEX, Y |NDE*
STATUS and STACK=-POINTER respectively. The
commercial at OPEN mode is enteres and the
contents of these registers may then be chan
prior to continuing execution of program.

AUDIO CASSETTE COMMANDS

S FRM,TO - Saves the block of data between ‘
hexadecimal addresses FRM and TO in the foll{g
checksum format: LEN ADD DAT CHK. Where ";"

|
!
{
i

maths the start of the record, "LEN" is the
length of the record (hex), "ADD" is the starting
ahlinyy of the current record, "DAT" is the data
In the record and "CHK" is Record checksum. The
Hhlput to the cassette stays on until an "L"
ewmand is executed.

loads into memory a block of data recorded
W the above checksum format. |If a checksum
@rtm s detected, "ERR" is printed. Stop the
#ddantte machine, rewind past error, replay
#nd type an "L" to re-enter load mode. Typing
ihe space bar will exit the Load mode.

V- Ihls command allows '"Viewing" of material
i the cassette with no memory modification.
yplng the space bar will exit the view mode.

AN T TONAL COMMANDS

ANNNN - Begin program execution at hexadecimal
Hlyans NNNN,

Wi,pr2¢+,-,%,1>=ANS - Four function hexadeci-
#! i¢nlculator. Where DT1 and DT2 are 16 bit
fta rflelds followed by an operator <+,-,*,1>
#hd ANS is the 16 bit result of the operation.

@ - Prints the overflow or remainder of 16 bit
Miltiplication or division respectively.

'IFNNICAL NOTES ON THE 2P EXTENDED MONITOR
‘h! /PI'M has been designed as a 6502 machine
hguapge programming design/debugging aid.

I, mince the 6502 is a hexadecimal number
sl processor, all numeric entries to the
M are in hexadecimal notation.

I8 the remainder of this discussion,hexadecimal

'mhoru will be proceeded by a "$" unless other/
Wism noted.

45

46

PROGRAM MEMORY UTILIZATION

The 2P Extended Monitor resides in approx,
2K of memory - $800 thru $FB7.

Additlonally, 48 Zero page locations ($D0-
$¢FF) are used by the 2PEM. There is also a
checksum loader used, for loading the 2PEM
at $700-%$EF. This is not used after loadin
is completed. So, this block is free for u
programs.

The 2PEM is normally entered at $800. This
causes the stack pointer to be set (at $1Ff
and the breakpoint registers to be initlal
Under certain circumstances, it may be des
able to re-enter the 2PtM without initiall
tion. This may be done at $81F.

Program Expansion.

There are three free command letters in th
2P Extended Monitor - J, U and Z.

In some advanced applications, a user may
desire an additlional function. This functl
must he a machine lancguage routine ending
a RTS. The function's call address is then'
serted into one of the following addresses]
J-$974; U-$98A; Z-$99L. |

For example to call a routine at $4L00 with}
$984 would be set to 00 and $98B to04,

PROGRAM QOPERATING CHARACTERISTICS 1

The 2P Extended Monitor is similar to ROM §
in that, once the Save on cassette command
been issued, all output is directed to the,
cassette as well as to the video monitor, *
condition is easily recognized by the relag
ly slow speed with which data 1s transferrq
to the video monitor.

the 5AVI function may be disabled by typing
i "1 or "V" followed by the space bar.

x\ﬁll /PEM commands using the "FRM,TO0" format,
'"10" Is non-inclusive. For example, if
@ unor wished to write 00 in locations $400
fu and including $4FF, the command "F0u40O,
#0=00" would be used.

A muat 2PEM commands, user prompting is auto-
Mtli. In the above example the "'" and "="
BFe output by the 2P Extended Monitor. How-
¥, In the case of the hex and ASCI!! string
dtthes, (commands N and W), a "™>" must be
#rnd by the user to inform the 2PEM that

M, 10" data is to follow.

legn! entries while entering an ASC!l string.

ah oerror is made, return to the command mode
{18 aicomplished by typing '"»'" followed by any
RHN hnx character.

l should also be noted that there are no

!r! /"M command mode is prompted with the

#haracter ":" (colon). If a command error is
H#, thce 2PEM outputs a "?" and re-enters
e vommand mode.

BATA HLOCK MOVES VERSUS PROGRAM RELOCATION

'DQ {I' IIxtended Monitor contains two very
§eful memory manipulation commands - Move
telocate.

hg Move command will non-destructively move
lock of data in memory without changing

Ay of the data. However, the Relocate command
\Mhin operands in order that they fit the

#8 to which they are being relocated. For
gmple, a program at $300 to $380 contains

A following code (all hexadecimal):

47

48

0300 A520 LDA $20

0302 206E03 JSRS$N36E
036E SDC6DO STA$DOCE
037F 60 RTS

How, if the command '"M0500=0300,0330" was
issued, the code would appear as follows:

0500 A520 LNA$20
0502 206E03 JSRO36E
056F 8DC6DO STA$DOCGE
057F 60 RTS

And, if the command "F0300,0380=00" was al
issued, the program at $500 to $580 would
not run since there is no subroutine at $%
However, if command $R0500=0300,0380" had
issued initially, the code would appear ag

0500 A520 LDA$20
0502 206E05 JSR$056E
056E 8nCe6DO STA$DOCH
057F 60 RTS

Note that the subroutine call at $502 was
changed to fit the program's new location,
However, if that subroutine had had an add
outside the range of the locatlion ($300 te
$380), it would not have been changed. Suq
was the case with the code at location $58

It should also be noted that not all proge
are directly relocatable. For example, a
program with data tables may not relocate
properly since the 2PFM's relocation routl
is 11kely to misread some data as executah
op-codes.

In both the Move and Relocate routines, c¢a
must be taken that the distance of a forwi
move is greater than the length of the orl
block. Otherwise, data in the original ble
will be overwritten.

We Nty BREAKPOINTS FOR PROGRAM DEBUGGING

As the name implies, a breakpoint is a point
phete the execution of running program may
te "lnoken". Using the 2P Extended Monitor's
kimakpolints, up to 8 breaks may be placed into
& propram prior to execution. Then, when the
:Hg'nm Is run and a breakpoint is encountered,
riﬁ /MM Is re-entered, printing the following:
iy{rnmmurcial at)NNNN

¢ x/cc Y/CC P/CC K/CC

'navu "n" is the breakpoint's number (1 thru 8),

JWNN |- the location where the break was en-

eMuniered and the rest are the processors
Jilnters and their contents, "CC", at the

ilme the break was encountered. These registers

#y o changed before continuing.

lw 11 lustrate the use of a breakpoint, con-
§Ider the following portion of a program:
!H B003 BCS$0355
by 4C8003 JMP$0380
by 200050 JSR$0500

l # breakpoint were installed at $350 -

I, 04%0", the opcode "BO0" would be removed
Ml saved by the 2PEM and the BRK code, '00",
Uil he installed at $350. Then, when the
Matam s executed, breakpoint 1 will be en-
?Onrud and the 2PEM re-entered responding

LK)

Mtemmercial at)0350
}) X/00 Y/u5 P/35 K/FC

di1lonally, breakpoint 1 will be eliminated,
WK code removed from location $350 and
® upcode "BO'M re-installed.

Elimlnnllon of the status register (P) discloses

49

50

that the carry flag Is set. The program
would branch to $355 and JSR$0500.

1f 1t would be more desirable to JMP$0380,
the user simply issues the "P" command and
changes the contents of the status register
to $34, clearing the carry flag. Now, when
the continue command is glven, the branch
will not be taken.

Breakpoint addresses and removed opcodes are
stored at Page Zero locations $E8-¢FF. Care
should be taken not damage the locations with
the program being debugged.

1f the 2P Extended Monltor is entered by a
BRK that was not installed as a breakpoint,
a "?" will be printed. The location of the
BRK may be determined with the "I" command.

2P Extended Monitor Command

S A ND

sanemee clal
i

0
b

A
fe
i
W
s
i
b

| K]
e
He
W
E

e
e
R}
il
iy
M
il

(2 R}

Reference List

FUNCTION

Open memory location NNNN

Print breakpolnt Accumulator

Enter breakpoint n
Continue from last breakpoint

Dump memory FRM,TO

Eliminate breakpolnt n

Fill memory block FRM, TODAT

Go at Address NNNN

Hexadecimal calculator

Print location of last brk entry
Print breakpolnt stackpolnter

Load memory from cassette

Move memory block NEW=FRM,TO
Number string search; Hex>FRM,TO
Overflow/remainder from Hexcal
Print breakpoint status register

Disassemble from NNNN

Relocate code NEW=FRM,TO

Save memory block FRM,TO

Print breakpolnt address table
View contents of cassette

Word string search;ASCIHI>FRM,TO
Print breakpoint X reglster

Print breakpoint Y register

Hemfu! Subroutines In 2PEM:

T
WL
By
Hhi)

Input to acc. with echo
Output character In acc.
Qutput byte in acc.
Output <(CR>, (LF>

COMMENT

(LF>Nxt;(up arrow)last
“"Pr.ASCI1;:/re-open

Enters {(commercial at>

Open mode

n=1 to 8

2PFH4 must have been entered
by break

Four function <(+,~-,*, />

Fnters (commercial at)
Open mode
Checksum; any key exits

8 BYTE Max.

Enters {(commercial at>
Open Mode

(LF> contlinues
Cassette checksum

Any key exits

8 BYTE max.

Enters (commercial at)
Open Mode

Enters (commercial at)
Open Mode

$853
$861
$AAC
$807

51

Points, 65VK Monitor

ADDRESS FUNCTION USE

$FEE9 INPUT ROUTINE RETURN CHR IN A FROM KEYBOARD OR
TAPE

$FEDA ROLL MOV LSD IN ACC TO LSD IN 2 BYTE
NUMBER $00FC+X X MUST BE SET BEFORE
CALLING

$FECA DIGIT OUTPUT LSH (IN HEX) IN ACC TO SCREEN
$DOC6+Y Y MUST BE SET BEFORE CALLING

$FEBO oul QUTPUT (X) BYTES STARTING $00FC+X
TO SCREEN STARTING $DOC6+Y X AND Y
MUST BE SET BEFORE JSR X DECREASES,
Y INCREASES

$FEAC oUTPUT OUTPUT ADDRESS DATA IN MONITOR FOR-
MAT ADDRESS = ($FF,$FE)DATA=($FC)

$FEQ3 LEGAL CONVERT CHR IN ACC FROM ASCIlY TO H4EX
IF CHR IS "0" THROUGH "9" or "AY
THROUGH "F".ELSE RETURNS (ACC)=%¢80

$FESO OTHER INPUT CHR FROM TAPE ANMD RETURN
CHR IN ACC

$FEOO START MONITOR START ENTRY POINT

52

L1l S31iNJ3X3 ANV NI W3ILSAS ONI1vd3do S1004d 1008 olLnv 0024¢
d4OLINOW Ol SNinl3d (0 avo)
NV dN 00¢Z$ OLNI OY3IZ ¥IVYl SAVO1 1009 TVANVW 9004$
(avoINn)
dv3iH AddO0T1d4 SAGVOTNN avaH Jdvo’NN 8804$
X » SN GZ°T = AV13Q 3Wil ‘0 = Q3INYNLIY
X 8 A “1S07T X ® A INILNOYENS AVIIA IWIL (LYW) AVI3IA IWIL 1634$
OOV NI d3IN¥NL3d 3LA8°3SI1Aa WOYd4 3JLA9 V SAvIY (av3y) 3ILAg Av3d J2604%
(LN1Y3S)
140d 3113SSVI SIZITVILINI LINI VIY3S 9yd4$
3dVl 0l 00V NI ¥HI SLlndino (HOLNO) 1NO VIJV 1804¢
(adrvis)
gudvodA3ad OLNI 20V 40 LINJWITdWOO 3JL1did JLIYM qUVO8A3IN 3904%
d3A¥3S3¥d S1 JJv *93Y-X 40
SINILNOO FHL NO 13S S3G0J NOILIANOD HLIM (agxxat)
Y3d-X NI (3INYNL3¥ Ld3IX3 3JA0GV SV JWVS avol quvogAdd 9204$
JIV NI 11 (agivan)
NYNL3Y ANV ddvOo8A3X J0 LINIW3ITdWOI SAvO1 avol dyvogi3iid 4004¢
isn NOILONNS SS3yav

>y demgaaayg iddey)-smpy Spuang

53

54

Superboard 11/C-1P Monitor Routiney
BASIC Support Routines

Adress Fupction Use o]

BFFFE TRQO VECTOR 6502 IRQ TO $01CO

8FFFC RESET VECTOR 6502 RESET TO RFF00

8FFFA NMI VECTOR 6502 NMI TO 20130

BFFF7 SAVE CMD SETS 1/0 TO CASSETTE OUTN'
JMP (80220) VIA A JMP (%#0220)

BFFFUu LOAD CMD SETS 1/0 TO CASSETTE INMH
JUP (8021€) VIA A JMP (3021E)

8FFF1 CBTRK-C CHECK RETURNS %03 IF CNTRL-C 1§
JMP (8021C)

$FFEE BASIC OUTPUT OUTPUT CHR IN A TO SCREHM
JMP (30218) OR SCREEN & CASSETTE

EFFEB BASIC INPUT INPUT CHR INTO ACCUMULATOR
JMP (20218) FRDOM KEYBOARD OR CASSETTI

g8FFO00 COLD START RESET ('"BREAK") ENTRY POIN
'D/D/W/MY

SUPERBOARD ~ C~1P MONITOR ENTRY POINTS
65 K POLLED KEYBOARD ROUTINF

Adress Function Use

gFDOO KEYBOARD RETURNS ASCIt OF CHR ENTEN
INPUT AT KEYBOARD. HOLDPS UNTIL {4

1S PRESSED.

Bringing up BASIC

TWﬁ vou have dabbled a little with machine
lanpnnpe programming, vou will be eager to
gt vy with full BASIC. |If your machine is
gqulpped with BASIC in ROM, it will not be
fieRanary to connect any additional devices
i grht to BASIC. Simply reset the computer
#hd type "C" in response to '"C/W/M?". The
gppiiter then asks "TERMINAL WIDTH?" to
aﬂrh you may also reply with a carriage re-
Win. The BASIC prompter, "OK'" will then
phmw up indicating that BASIC is directly

!anunlble. You can then proceed to the

Abit cample program in this section and the
AblC Operating Manual attached to the end
#f (his manual. You may then wish to connect
N nudio cassette interface, if one is pre-

f8nl In your system.

It vour computer is confligured for floppy
Hlnk, It will be necessary to connect a disk
i lve before you can bring BASIC in. The
pumputer must have at least 16K RAM, floppy
ﬁ‘-k hootstrap PROM (indicated by the message
W/M?'" when the computer is reset), and a

4/h floppy disk controller board present In
the computer. When the floppy disk controller
hward is present in the computer, it is usual-
ly the rear-most board in the computer system.
N‘lh the computer turned off, connect the
fihbon cable coming out of the rear of the
tloppy disk drive in one of the openings in
the rear of the Challenger and mate it with
whe of the connectors coming out of the

hack of the 470 Board.

Ihls should be accomplished such that the
rihbon cable falls Into the case instead of
sticking up out of it. The boards should be
mated tightly together and the connector
should be backed off about 1/8" to preclude

55

56

the possibility of the Molex pins touching i
the PC board foils on the A-12 adapter boa#n
of the cable. That is, you should be sure
that the Molex pins on the 470 Board are neo
touching the A-12 adaptor cable board. Then
make sure that all parts of the computer an
plugged into a common three wire grounded
outlet or distributor box on one circuit.
Then power up the floppy disk drive. Place:
a diskette with 0S-65D in the upper disk
drive with the label side up and the notchd
side in first, Follow the dialog and pro-
cedures on pages 1 - 4 of the 0S65D V9r510n
2.0 Manual, After you have obtained the
BASIC prompter '"OK", proceed with the examd
in this manual, if desnred

If your system is equipped with neither the
floppy disk nor BASIC in ROM, you must load
BASIC via paper tape or audio cassette. You
must have at least 12K memory to do so.
Paper tape versions of BASIC are specifical
designed for use with Teletypes while the
audio cassette version is for use strictly
with video-based computer systems. Follow t
instructions at the end of the 8 K Basic

on paper tape, Follow the |nstruct|ons in-
cluded here on the use of Auto-Load!™ audio
cassettes, and then proceed to the instruc=
tions for loading 8K BASIC audio cassettes
the end of the 8K BASIC User's Manual,.

This procedure is only necessary if you do
not have BASIC in ROM or disk BASIC.

Introduction to Small Computer

Software

In order for a computer to perform even

slmple operations, it obviously needs a

smans by which the user can communicate in-
structions to it. Any such means which con-
«lvls of a set of rules to convey information,
In called a computer language. The numerous
lanpuages in use today offer a wide range of
wpecific applications and varying degrees

nl understandability for the user. They can
movide direct communication with the com-
pmiter at the complex level of machine language,
nt cnable the programmer to use an indirect
sommunication by means of a higher level
lnnpuage which corresponds more closely to
human speech.

Machine level languages are really the most
practical device from the computer's point of
vlew, because when you use them, you are really
wpeaking the computer's own jargon, and are
thus making more efficient use of memory
space. On the other hand, when vyou use an
upper level language, every instruction you
plve, in what resembles "plain English', has
lo be converted into one or more separate in-
structions in a machine level language. There-
fore it is obviously less wasteful in terms

ot time and effort to write in machine langua-
ke, and skip translations from gther languages
altogether. The major drawback in machine
languages, however, is that they are difficult
for the average person to learn.

Machine languages consist of binary codes

used in all of the commands which are entered
by the programmer. These codes are 8~bit groups
of on-or-off switches, which in various com-
binations, serve as instructions for the com-
puter. Although the majority of users will have

57

58

no need or desire to learn these combination|
there are some who, for one reason or anothe|
will want to program thelir computer directly
Since it is quite troublesome to commit se=
veral dozen combinations of numbers to memor!
a system of abbreviations (mnemonics) has bhal
devised which exactly correspond to machine
language instructions, The program which
converts these mnemonics into machine langua|
is called an Assembler., By following the in=
structions provided with your computer, you
can make use of the Assembler and write a ‘
program in mnemonic code. This is directly
translated into the binary object code which
the machine understands., After you gain pro-
ficiency, you can even begin to use the
actual object code to do your programming,
examine and change memory locations, etc.,
and thus be in ever greater control of your
machine.

Upper level languages, in contrast to machin
level languages, are much easier for humans
to master., Nevertheless, every upper level
language has to originate at the machine
language stage, and usually represents a
lont, tedious effort on the part of the auth
or authors of that language. Probably the
most common upper level language is BASIC '
(Beginner's All1-Purpose Symbolic Instruction
Code). An 8K version of BASIC written bX 1
Microsoft, Inc. (i.e. it occupies 8 x 2 0 j
locations in memory) is used in all of 0S|
6502 computers.

Because of BASIC's popularity, simplicity,
and versatility, 0S1 has made it a standard
feature in its product line, either by
placing it in a computer's permanent memory
(also known as Read Only Memory (ROM), which
does not "forget'" once the power is turned o
or by reserving special tracks for it on

fluppy or hard disks. In addition, in 0Si
prinlucts, BASIC is always immediately avail-
ahle to use, because it comes up automatic-
ally the instant the computer is reset. Ther-
furr, the programmer is free of the bhurden
ut manually bringing in BASIC, which would
damand that he be thoroughly versed in the
rumputer's internal thinking processes and
mar hine language. The fact that BASIC comes
Wit automatically is very convenient for
smnputer programmers, most of whom probably
ave programs they would like to run or
wiite in BASIC.

fhere are a large number of publications
avallable which describe in detail the
emmmmands and functions of BASIC. While this
introduction can in no way duplicate such
#nellent manuals as Schmidt's outline series
Flosramming with BASIC (McGraw=Hill), it

sAn at least give you some insight into the
mathod for writing your own programs in
HALLC .

fimfer to the instructions provided with your
Indlvidual unit to bring up BASIC in the

4t Challengzer. Establish the memory size

ail terminal width for your particular pro-
atnn. When you see an 0K appear on your video
mltor or terminal, the computer is ready

tv “tart accepting BASIC commands from the
ksyhoard.

tvery statement in your program must bhegin
with a statement number. These need not bhe
lrpud in numerical order, since the computer
wlll automatically re-arrange them according
to statement number when you have finished
lyping the program. But they must be numbered
n Lhe same order in which they are to be
fun. In 0St's 8K BASIC for the 6502, a
varlable can consist of one or two charac-
lars. If longer variables are to be used,

59

60

BASIC will recognize only the first two ch
acters, The first character in a variable .
must be alphabetic. The second character,

present, may be either alphabetic or numar
Functions, commands, etc., already used by
BASIC must not be emploved as variables. |
order to set a variable equal to a desired
value, e.g., Z equal to 10, you use the LF
statement, as follows: ;

(1ine number >) 20 LET Z=10
Since LET is optional in 0S!'s 8K BASIC,
may also type:

]

i
20 Z=10 |
You may wish the value of the variable to
change each time you run the program, with
having to rewrite the whole program every
time. To take advantage of the option to
alter the values of variables, you make usg
of the INPUT statement, for example, as
follows:

10 INPUT A,B,C
20 LET X=A
30 LET Y=B+C

In this way you can cause X and Y to take .
different values each time the program is
run., Later, when you do run the program, ﬁ
will see a ? on the terminal. You then typ
the values for A,B and C which are relevan
to the particular program. If there are nq
other INPUT statements in the program, it
will begin to run immediately with the val
you have entered, unless some built-in co
prevents this. If the program contains ad
tional INPUT statements, BASIC will keep
asking you (by means of a ?) to input what
ever data it needs to run the program, unt
each INPUT statement has been answered.

It can be that a variable has a value which
In to change at a regular rate during the
rourse of a single program run. This will
fequlre you to set up a loop which makes cal-
vitlaltions using these increasing or de-
kirasing values each time a new value is
smployed. For this you need to use a FOR-
NI XTI loop. This loop begins with a FOR state-
ment and ends with a NEXT statement. The

FOR statement identifies the initial and
final values of the variable in question,

mntl includes the constant amount of increase
W decrease:

Ju FOR Z=10 to 20 STEP 3
b0 LET A=Z+(2%L)

/0 NEXT Z

3 (resumption of program)

htep 3 means an increment of 3 upon each pass
thirough the loop. Therefore, the above FOR-
NI XT lToop will be run four times, namely,
when 72=10,13,16 and 19. When the value of Z
wncerads 20, BASIC resumes the program by
poing to the first statement following the
FOR-NEXT loop. In addition to signifying

the end of the loop, the NEXT statement also
vrontains the variable identifying which loop
It terminates. As you may later discover,
{hi+ is most useful in nesting one loop in-
wlde another,

hbometimes you will want the program state-
mrnts to be run in a different order, if a
rortain condition is met. In order to change
{he order of execution, you may use the IF,..
10 statement, for example,

ot IF X=10 GOTO 150

10 (another program line)
Ih0 (another program line)
I LET Y=X+5

61

62

Here, the IF ... GOTO diverts execution to
a non-consecutive statement, line 150, oml"
ing 1lines 119 and 140, provided only that
value of X is equal to 19. If X is not equ
to 10, the program would resume with line
110, A simple GOTO command may also be em=
ployed without an accompanying IF, if no
condition must first be met.

An IF ... THEN statement is used to jump

to a statement other than the one directly
following. It can also be used to issue an
other statement allowed in BASIC. For exam

100 IF X>10 THEN PRINT "X IS GREATER THAN

This will cause the terminal to display X
GREATER THAN 10 only if X>10. The program!
then proceed as normal, with the next cons:
cutive line. If X<10, the program will, of
course, proceed as normal, ignoring the
PRINT command.

A PRINT statement will cause the terminal
display whatever follows. |f you type:

100 PRINT A

the value of some previously defined varia
A will be printed. If you type:

100 PRINT "A"
the simple letter A will be printed.

The END statement terminates the program a
allows you to run the program, change it,
or start to write a new program. As in the
case of the LET statement, the END stateme
is optional in 0S!'s 8K BASIC.

If you want to erase a program and start a
new one, simply type NEW and enter your ne
program,

HASIC is provided with a large number of mathe-
imitical functions, such as sine (SIN(X)),
square root (SQR(X)), and absolute value
(ABS(X)). These functions automatically cause
the computer to calculate the pertinent value
wlthout figuring by the user. For example,

in the following statements:

100 X=121
P10 PRINT SQR(X)

the value of the square root of 121 will
appear on the terminal when the program is
tun.

At any time while entering your program, or
nfter you have finished entering it, you can
115t all the statements up to that point by
typing LIST. You can thus list the whole
program, or by typing a specific line number
alter LIST, such as LIST 140, you can dis-
play just the one line. If you desire to see
w certain block of program lines only, then
you can specify the desired range, such as:

15T 100 TO 200

I you want to correct a line previously
typed, simply type the correction, using the
same line number. 1t Is recommended that

you number the program statements by jumps
ol 10 rather than consecutively, so that you
tan later easily insert additional lines if
you wish. To do this, type a line number
which falls between the interval where you
want the new statement to appear, and add
the missing line. If you want to delete a
line, simply type the line number, then
(return>. By using the LIST command, you

can easily verify any changes you have made.
Ihlis will cause every program line to scroll
up the terminal, with each line number in

63

64

consecutive order. |If you want to stop tha
scrolling, type Control-C, examine the 11§
ing to your satisfaction, then type CONT
(= continue), after you see BRREAK IN LINE
on the terminal.

The following example gives an illustratle
of editing nrocedures: Suppose you want to
modify the following statements:

90 INPUT A

100 LET X=2*A

110 PRINT "THIS 1S A PROGRAM. Y
120 PRINT "EXAMPLE"

If you want to insert a line Y=A between
lines 9" and 100, you could, at this point
type:

91 LET Y=A

If you want to delete line 110, simply typ
110, then <return>. If you want line 100 ¢
read LET X=3*A, simply type the correction
using the same line numbher. At any time yo
could confirm the alteration by typing LIS

Following these corrections, if you are
ready to run the program, type RUN <return
If your prosram contains any IMPHT state-
ments, you will now see a ? on the terming
Type in the data desired, as explained
above, and the program will run. Following
program execution, you can start over agal
by typing RUN, or enter a new program by
typing NEW,.

The following sample program demonstrates
the INPUT, LET, PRINT, GOTO and END state=
ments, the FOR-MEXT loop, and the IF ...

GOTO command, as well as the SOR function,

Publgmi Print the square root of a number;
nrease the number by five six times, and
path time print the square root. |f the lar-
gpat square root is less than twice the first
sitare root, indicate this. Otherwise, indi-
eAlr only the fact that the program prints
Ijlinre roots.

Atier the programmer has typed the above
progrom in BASIC, he will see an 0K on the
fsvtren, signifying that the computer is

waldy for the next command from the user.

It he wants to run the program, he types

MIN. The computer will show a ? on the ter-
mlnnl. The user types on the keyboard that
mimber with which he wants to begin the pro-
prtam. The six values (with constant incre-
mants, of 5, see line 40) will scroll up the
s+1een, each accompanied by Its square root.
It by chance you have made an error in
typlng (not including improper spacing), you
wll! probably see an error message on the
arteen. |f you do, simply edit the line con-
talning the error, as explained above., You
#an always run the program again by typing
MIN. Hlere are the lines of the program:

I INPUT A

1 LET Y=SQR(A)

0 LET Z=A+30

k) FOR X=A TO Z STEP 5

80 PRINT "THE SQUARE ROOT OF";X;"IS";SQR(X)

W) PRINT

1) NEXT X

Al IF SQR(Z)2*Y GOTO 110

U0 PRINT "THIS PROGRAM PRINTS SQUARE ROOTS."

iy GOTO 120

I PRINT "THE LAST ROOT IS LESS THAN TWICE
THE FLRST ROOT."

f#0 END

65

66

BASIC and Machine Code Interfaces

In the process of working on some utility
programs for 0S-65U, a very important point
came to light, That point being that the best
compromise between ease of programming and
speed of execution can often be obtained by
aBASIC/machine code combo. This article will
attempt to illustrate the mechanics of inter-
facing BASIC and machine code., There are se-
veral steps to the interfacing and they are:

1. Define the job to be accomplished,

2. Define the functions to be implemented in
machine code.

3. Define the functions to be implemented in

BASIC.

Create and debug machine code.

Debug the BASIC program.

Debug the BASIC/machine code interface,

SOV

The job to be accomplished:

Generate a random star pattern on the screen
with a super fast screen clear,

Functions to be handled in machine code:
Super fast screen clear

Functions to be handled in BASIC:
Generate random star fields

The machine code:

The machine must clear the screen as fast as
possible. This can be easily accomplished by
storing the ASCII code for a space into the
video memory. The video RAM resides from
$D000 for 2K ($DOOO0 through SD7FF). Therefore
the routine would be as follows:

In Tine 120, the accumulator is loaded with
the ASCII code for a space. In Tine 130, the
Y register is loaded with the number of pages
to be cleard (each page equals 256 memory lo-

ralions), In line 140, the X register is set
tv zero,

the 6502 has a form of addressing called in-
dexed absolute, What this means is that a base
address immediately follows the op-code. This
hae address is added together with the con-
tents of the X register to form the real ad-
Mess, So in line 150, the code STA SCREEN, X
rvally means store the contents of the accu-
milator at the address $D000 plus the contents
it the X register. The first time through this
loop, a space would then be stored at $D000+X
m $0000. The X register is now incremented
iy one in 1line 160. Then line 170 tests to see
It the X register has been incremented through
until it "rolls over" to zero (the X register
tan only represent up to 255, i.e., if X=255
and one is added to X, then X "wraps around"

to zero). Therefore, the inner Toop consisting
af lines 150 thru 170 clears one page of memo-
vy at a time. So how do we clear more than one
\mqe? We should simply duplicate the code in

ine 150 thru 170 eight times, (once per page),
hut that would be poor programming. 0.K., so
what arethe alternatives? If the inner loop is
examined closely, one can see that the only
dl1{ference between a routine to clear any of the
plght pages is the base address (SCREEN). There-
fore, by simply incrementing the base address
(YCREEN) each time we have cleared one page, we
tan clear the entire eight pages using the inner
loop. To implement this "clear screen" routine,
smme then only needs make a slight modification
lo the “clear page" routine. That is the func-
tion of lines 180 thru 200. Line 180 increments
or adds one to the page pointer (the high byte
nt screen, shown as $D0), The Z register is then
decremented by one in line 190 and a branch, if
not equal zero (BNE) is used in line 200 to
hranch back to the point called "LOOP". This
hranch occurs until Y=0 or all eight pages of
memory have been cleared., The final step in this

67

68

program is a simple "housekeeping" function,
Lines 210 thru 230 are used to "reset" the
base address "screen” to point back at the
beginning of the yideo memory, This is re-
quired because of the fact that "screen” 1%
incremented by this program and must be "raes
set" so that this routine may he used more
than once.

On to the BASIC program, As can be seen fron
the listing, the "star field" portion of th
BASIC program is very straightforward, The
FOR-NEXT LOOP wuses the RND (Random Number
Function) to randomly "POKE" a period onto
the screen. The BASIC program uses a simple
"FOR NEXT" LOOP to POKE random video RAM Tlor
cations with a period. The code responsible
for this appears as follows:

FOR X = 53312 TO 55231
POKE X + INT(RND(X)*63), ASC(".")
NEXT X

So much for the BASIC program. Now for the
BASIC/machine code interface. The first
question to be answered is how the machine
code will get into RAM, The easiest way to
accomplish this is by placing the decimal
values of the machine code program in data
statements. Then by using the POKE statemen
in a "FOR-NEXT" LOOP, the machine code can
be POKED into memory. A1l that remains to
be writtenis the statements that "POKE" the
USR vector to point to the start of the ma-
chine code routine. The program sequence wi
execute in the following order:

1) POKE the machine code program into high
memory. (This memory is "FRE-ED" by set-
ting memory size to 4050).

2) POKE the USR vector to point at the star
of the machine code program.

3) POKE the star field :

1) tlear the screen yia the USR function,
lyeo, X=USR(X)
i) loop back to number 3

#ne final note:
ihe wequence for the USR function is the
fwllowing:

{

— A T e T I a2
- -}

iy
/e

lhe statement X=USR(X)

is executed

Jump to the machine code program occurs

Ihe machine code program clears the screen
linally, a return from subroutine returns
sxecution back to BASIC

nopo
nopo
o
nope
nppo
popp
pppo
nopp
PFES
PFES
PFES
PFES
PFEA
PFEC
PFEE
PFF1
PFF2
PFF4
PFF7
PFF8
PFFA
PFFC
PFFF

A929
App8
A2pP
9DpPDY
E8
DAFA
EEFQQF
88
DPF4
ASDP
8DFPQF
60

; CLEAR SCREEN SUB

. EQUATES:

SCREEN=$DPpP

PAGONT=$08
SPACE=$29

*=$PFE 8

ENTER LDA
LDY
LDX
LOOP STA
INX
BNE
INC
DEY
BNE
LDA
STA
RTS

#SPACE
#PAGONT
#0
SCREEN,X

LOOP
LOOP+2

LOOP
#SCREEN/256
LOOP+2

69

70

REM BASIC/MACHINE CODE INTERFACE
REM

REM MEMORY SIZE MUST BE SET TO 4050
REM MAC CODE POKED INTO RAM

REM

FOR PTR=4072 TO 4095

READ MAC: POKE PTR,MAC

NEXT PTR

REM

REM POKE USR VECTOR

POKE 11,232: POKE 12,15

REM

REM STARFIELD CODE

FOR X+53312 TO 55231

POKE X+INT(RND(X)*63),ASC(".")
NEXT X

REM CODE TO CLR SCREEN

FOR TIME=1 TO 500: NEXT TIME
X=USR(X): GOTO 140

REM MAC CODE STORED IN DATA STAT,.
DATA 169, 32, 160, 8, 162, 0, 157,
DATA 208, 232, 209, 250, 238, 240
DATA 15, 136,208, 244,169,208
DATA 141,240,15, 96

(CA-15 UNIVERSAL TELEPHONE INTERFACE
w Iniversal Telephone Interface (UTI) proyides the
wamlest range of computer/telephone utilization op-
it cver offered in a single product, The UTI occu-
oiés one slot of a C8P, C2-0EM or C3 series computer
iml connects directly to a normal telephone Tine yia
+ 1t approved isolation module called a CBT, CBT!'s
pe available from many telephone companies on a month-
ia'hurge basis, however, Ohio Scientific also offers
#1'+ for user connection to telephone lines, The UTI

-an he connected in conjunction with one or more tele-
shime, on the line and can also operate as the only
feylce on the Tine, No manual intervention is requi-
‘@l Lo initiate or answer calls, The UTI is compatible

+tth Touch Tone or Pulse Dial (rotary dial) lines, The
', features are summarized below,

-mipiiter to telephone interface

Initiates connect

detects ring (incoming calls)

iletects dial tone

detects busy signal

automatic failsafe hangup after 90 seconds of
inactivity

initiates disconnect (hangups)

pulse dialer

touch tone dialer

iput to telephone multiplexer

nutputs touch tone

outputs 300 baud modem signals via on-board modem
with "originate” or "answer'" protocalls

outputs taped message with motor control signal
outputs audio from auxillary jack

outputs Votrax R generated synthetic speech when
Votrax equipped (also has amplifier and circuitry
Lo operate Yotrax stand alone)

71

72

Input from telephone multiplexer

- decodes touch tone signals

- accepts 300 baud modem signals yia on-board modem
in either "originate" or “answer” protocalls

- routes audio to auxillary tape recorder with motor |
control !

- routes audio to auxillary audio output

The UTI's abilities coupled with Ohio Scientific's
broad 1ine of computer accessories open up new areas
of computer applications utilizing "plug together pro
ducts", Here are just a few of the products applica-
tions,

v b e e e > = = = e = - - ———— o ——

-~ can operate as a conventional modem with hands off
operation

- allows OSI computers to be remotely timeshared eco-,
nomically

- can be used as the basis of computer bulletin board
services

- two UTI based computers can automaticaily interro-
gate each other for |
* remote process control !
* remote data acquisition

- when coupled with 0SI's security monitor it can pro
vide a complete security system
* monitor home, business, warehouse, vacation home,
boat, etc, '
* can notify any telephone number(s) with Votrax or
tape recorded message

Human_to_computer_communication

- touch tone decoder allows the caller's telephone tog
act as a {
"computer terminal" '
caller interrogation of security or systems status

- when used in conjunction with-the A.C. remote contrﬂ
and/or parallel I/0 it allows i

* caller control of home 1ights and appliances
* caller control of automated processes

when used with a remote rewind tape deck, endless

tape or A/D D/A system it can relay voice messages

* caller initiated playback of recorded messages

* caller stored message for relay to another num-
ber at another time (and/or attempted until mes-
sage gets through)

The UTI comes complete with documentation on how to use
rach feature as well as the following programs:

home monitor demo allows a touch tone equipped caller
to interrogate the AC-17P home security system sta-
tus and to send commands to AC-12P A,C. remote con-
trol (under 0S-65D)

automatic dial modem program allows UTI equipped
computer to function as a timeshare terminal with
hands off modem operation (under 0S-65D)

- timeshare user protocall for Level 3 system -allows
one partition (per UTI) of a Level 3 timeshare system
to be available for telephone communications (overlay
to 0S-65U Leyel 3)

- remote computer interrogation: demo software for two
UTI equipped computers. One machine automatically
interrogates the other, useful as the basis of re-
mote monitoring and process control systems,

73

NEW PRODUCTS FROM OSI COMMING IN MID 1980

- - (= . " W T = S - —— -

CA-20

through CA-25 This new family is based on the 16-
pin BUS connector on the back of C4P
MF and C8P DF products and used on the
CA-12 96 1ine parallel I/0.

Product Availability
CA-20A 8 Port Board April 1980
CA-21 48 Line 1/0 (from CA-12set) April 1980
CA-22 High Speed Analog I/0 April 1980
CA-25 Security and A.C, Interface April 1980
CA-20 8 Port Board with Calendar

Clock May 1980
CA-24 Interface Board June 1980
CA-23 PROM Blaster July 1980
Software
Process Control Basic June 1980
Security Basic June 1980
0S-Vocalizer I July 1980

0S-Vocalizer II July 1980

ROM-SUMMARY

I"ROMs & ROMs:

th A Serial Monitor

Y Video PROM Monitor for 440B Board

hHV2P Video PROM Monitor for 540. Board

hh-500F2 Floppy Disk Bootstrap Monitor PROM

(G4 Upper and Lower case and graphics character gene-
rator for 540 Video Board

hHAB 8K BASIC in ROM for Serial System & Support

| -PROM (You will still require 65A)

65VB 8K BASIC in ROM for Video Systems & Support E-
PROM (Designed for use with 440B ONLY--Still require
65V)

65VB2P 8K BASIC in PROM for 540 Based Video & Support
[-PROM (Designed for use only with 540, still require
65V2P).

75

76

RS-232 Interface for Challenger C-1P

Parts List

The following parts need to be obtained to
perform the modification. These parts can he
obtained from a general electronics supplier,

(Radio Shack, Lafavyette, etc.) at a nomlinal
If you have any questions, ask the
salesman.

cost.

Part #
R1
R2
R3
Ry
R5

R6

D1

T1

T2

S1

P1

p2

Part

470 resistor, 1/4 watt, 5%(Yellow,
Violet, Brown, Gold)
1 1]

10k "

IOK " " n

IOK " 1" "

4,7k " " (Yellow,
Violet, Red, Gold)

1K " " (Brown,

Black, Red, Gold)

1N91L4 Diode, silicon switching diode,
Radio Shack # 276-1122 or equiv.

NPN Transistor, gen, purpose amp and
high speed switch, Radio Shack #
276-2009 or equiv.

PNP Transistor, gen.purpose amp and
high speed switch. Radio Shack #
276-2023 or equiv,.

Switch, SPDT, Radio Shack #275-662
or equiv. 4
NB25S or other required serial intersl
face connector (buy whatever you need
to interface your devicel

12 pin male molex connector, .156 in,
o.c., 7 pin or more will work (same

kind that is used to connect video
and tape !/0 to the board)

Hisc. Solder and Soldering iron

Mlac. 22 ga. stranded wire or similar hook
up wire.

HISASSEMBLY

llsconnect the power cord, cassette leads and

the video lead. Remove the six screws on the
hottom of the case and remove the cover. Mark

the nylon molex connector on the rear of the
tlrcuit board with an identifying mark to facili-
lute reassembly. Unplug that connector and

the connector to the power supply.

lemove the screws that hold the circuit board
to the case. Remove the circuit board and place
It on a flat non-conductive surface,

LIRCUIT BOARD MODIFICATION

lefore you begin, do some reading and practic-
Ing of soldering techniques. This modification
tequires good clean solder connections.,

Refer to figure 1; it is a picture of the
upper center of the rear of the circuit board,
llse this figure as a reference in locating

the correct location of the six resistors, one
diode and two transistors. Solder points

A-T are identified in the figure. You can use
vheet 6 of the circuit diagram in the appendix
of your Users Manual as an information aid in
this modification.

Al six resistors are installed standing up; that

is bend one lead of each resistor 130 degrees,
(see figure 2).

77

Molex Connector

Figure 1

Resistor

circuit board
====

Figure 2

78

Part # Solder Points (refer to figure 1)
il
2
R3
Rh
RS
RG

Re=OmO>
LSRN
rIm oOw

“ N NN

lhe resistors are to be Installed as follows:

A. Bend resistor leads as mentioned above.
B. Insert resistor in top of circuit board.
Make sure the leads go in the correct

holes.

(. Solder the leads from the underside
of the circult board.

. Clip off the excess lead length.

lhe diode is installed as above except when
hbending the lead, be careful not to break the
rlass case. The diode is installed between
points "M" and "N". The end of the diode with
the stripe must be inserted at point '"'N",

The transistors have three leads: e, b and
¢c. (see figure 3) — flat

Figure 3

bo c
Install them about a quarter Inch above the
clrcuit board as follows:

Part # Lead Solder Point
T1 e 0
Tl b P
T1 c Q
T2 e R
T2 b S
T2 c T

79

The final step is to scratch out the circult
board surface wire on the bottom of the board
between points "U" and "V". Use a sharp knife.
Scratch out enough to make sure current cannot
flow.

CONNECTOR AND SWITCH FABRICATION

The first six pins on the molex connector, part
P2, are to be connected as follows:

R

IN # To locatlion

Pin # 1 of DB 25S connector, part #P1
PIN # 2 of DB 25S connector, part #P1l
Pin # 3 of DB 25S connector, part #P1
Pole of SPDT switch, part # S1
(generally center terminal)

Out 1 of SPDT switch, part # S1

Out 2 of SPDT switch, part # Sl

FWN -

oy

To wire this, cut six wires about 12 inches
long each. Then solder ends of each wire as
indicated.

ASSEMBLY

Mount the switch, S1, and the connecter, P1l, to
the back of the computer cabinet.

Plug in the new molex connector into the center
rear of the circuit board. Refer to figure 1
for locatlion of pin # 1,

Plug all other connectors Into the circuit boar
Reinstall the circuit board into the cabinet.
Reinstall the cablinet cover.

Reinstall all video and tape leads.

80

OPERATION

lhe installed switch is used to control
arriving data. In one position, data will come
In through your new RS-232 C interface. The
10AD command will allow the computer to re-
reive data.

tata transmitted through the SAVE command
will be routed to both the cassette interface
and the RS-232C interface. So, for example,
If you hooked up the RS$-232C interface to a
printer, whenever a SAVE was In effect, all
Information put on the screen would also be
printed.

lhe DB25S' connector as wired will have the
lollowing pin definitions:

Pin # Definition

| Ground

/ Computer transmits through this pin
4 Computer receives through this pin

“ome serial hardware may have different pin
definitions. e.g. pins 2 and 3 may be reversed.

lhe voltage swing of the transmitted signal
Is 0 to + 5 volts, Some hardware may require
negative voltage swing. To do this you will
neced to scratch out the surface wire on the
underside of the circuit board between points
"W" and "X" and add a negative voltage supply
to pin # 7 of connector P2. A standard nine
volt transistor battery tied between pins 1
and 7 (negative on 7) will do. Put a switch
on it to stop the power drain when not in
use, Out of four things | have tied the inter-
face to, only one required this modification.

82

600 Baud Cassette and Printer
Conversion for the C1-P and
PARTS Superboard

The parts list is short., You will need (1) a
DPDT switch, (type is not critical - chose for
size and price), (2) enough wire to run 6 ten
to 12 inch runs and (3) one .0L7 microfarad
capacitor.

You will need something to cut a foil path -

an Exacto knife or razor blade is best, a
soldering iron, solder, wirecutters, a screw-
driver and whatever hardware you need to mount
the switch to the case completes the 1ist (A
VOM is handy to have).

STEP 1 - DISASSEMBLY OF THE C1-P

Remove the six screws on the bottom of the cas
Remove the bottom and mark the connector at
the rear left edge of the case for easy re-
assembly., (I1f you don't mark it, you'll forget
that the blank pin is in the fourth from the
outside edge and won't know how to put 1t back
in.) Remove the six screws around the keyboard
unplug the connector to the recorder and TV,
and set the case on edge so that you can lay
out the circult board next to it with the

part side up,

STEP 2 - IDENTIFY THE PARTS

We need to find three chips and a capacitor.
Place the hoard so that the keyboard is to you
right and the cassette interface connector

is to your left. From that position, the
7415163 just to your side of the fuse is U559,
Mow look back at the metal can that holds the
crystal, look to the right, just past the smal

-

proto area, and you will see another 74LS163
nt the bottom edge of the board. That is U30.

Now verify that a trace runs between pin 14

ot U59 and pin 2 of U57. It takes off from the
top of the board underneath the chip at pin 14
ol U59 and runs through two plated through
holes to pin 2 of US7. IF YOU DON'T KNOW HOW
1) TELL WHICH PIN IS WHICH - STOP - GET HELP
WFORE YOU HURT YOUR COMPUTER !

Ihe final part we have to identify is C 11,

It is a .1 microfarad capacitor which sits at
the rear of the board (if you haven't already
ifone so, put the board back into the same
position 1t was to start - keyboard at your
1ight.) near the cassette connector (to your
left). You will see a pot next to the connector
and a .1 microfarad capacitor in the corner
made by the pot and a 74123 chip. Note that

one lead of the capacitor has two extra holes
ronnected to it by a foil run (see DIAGRAM '# 2),

O =
— +
Cl1
YT
[Juss exTra_T
HOLES
'j/l A AAA A
DIAGRAM #2
, [Jusr ’
¢
-74123
' PROTO
C Oa] oooooono
a POT 4 U30
e 4 | oooonoon
v CRYSTAL AREA
DIAGRAM #1

83

84

STEP 3 - COURAGE

Now we cut a foil trace. We have to cut the
1ine between pin 14 of U59 and pin 2 of US7,

]| suggest that you cut it between, but close
to, one of the plate through holes. The
closeness to the plate through will make it
easy to repair if you decide to go bhack to
stock conflgurations and by cuttings between
the holes, you leave one attached to each pin,
making it easy to attach wires to those pins.

STEP 4 - CHANGE CAPACITORS

Carefully heat and 1ift the end of Cl1 that ha
only one hole attached to it. Leave the other
end attached to the board. !n one of the plate
through holes next to the end you left attache
solder in one lead of the .047 MF capacitor,
Leave the other end loose for a moment.

STEP 5 - OPTIONS YOU HAD BETTER TAKE

Strictly speaking, you could skip this step,
but you could end pulling foil loose eventuall
We are going to run wires to the proto-pad
beside the crystal to prevent strain on the
foil runs. It doesn't matter which pads you
use (just keep track), but run a wire from the
1ifted end of C1l1 to one pad, from the free
end of the new .047 MF to a second pad, from
pin 2 of U57 to a third pad, from pin 14 of
U59 to a fourth pad, from pin 11 of U30 to a
fifth pad (note - a trace runs from pin 11 of
U30 under the chip and to a plate through
hole about half an inch to the left of the
chip. It is a hany place to put a wire, but
as with the other plate through holes, verify
with an ohmmeter first. If you can't verify
that you have the right one, attach to the
pad at the pin.), and from the hole vou re-
moved the lead of Cl1 from to a sixth pad.

“1.LP 6 - WIRE THE SWITCH

Wlre up the DPDT switch following D!AGRAM #3,
lhe switch is symetrical, so it won't matter
It you look at the diagram as though it were
from the top or the bottom. Wires should run
lrom the switch to the other hole in the

nppropriate proto pad. se minimum wire length to
the switch

300 BAUD

.1 CAP

re O O Pin 14 U53
HOLE YOU

REMOVED CAP

FROM O O PIN 2 U57
.047 CAP O O PIN 11 U30

600 BAUD

DIAGRAM #3

STEP 7 - THE HARD ONE

lhe hard part is often the mechanical place-
ment of the part. Install the switch in a firm
position. | used one of the circular holes

In the C1 case to hold it.

STEP & - MAYBE

lhe cassette interface is a little more choosy
nbout duty cycle on the 600 BAUD setting, so
that it may be necessary to adjust R57 to get
reliable reads. (That's the pot right next to
t11). This affects only receive, so you can
vkip this if you are using this only to inter-
face with a printer, Mark R57 where it is so
that you can always return to the factory
netting if you get frustrated. A little, let me
repeat - a LITTLE - fiddlin should get you

a setting that will reliabley read both 300
and 600 BAUD tapes.

85

HOW 1T WORKS

On the transmit end, we just moved up the
clock divide chain to the next higher step.
By going to pin 12 of U30 we could have gott§,
1200 baud, but 0S| systems do not read BASI(,
reliably at that speed. We changed the capa<
citor that determined the frequency of the ;
input clock (U69 and U63) so that it would
match the new output frequency.

!

+5 - 5 | 245760 Hz

¥ 4
“‘ - 380H LAJS7
U 59« 1232” S04z ol

|
U590
4

S

o

1 “&—(CS)GWHOHz 2

_(Corsonon: Lo

5
4 o ol e Is ©°

- s de
+5 IOE 1536042 — o

6 I
3«

Ao L e 817680 Hz

3 C9) 38402

2 g w}i2 4«1y 1920H

* o e i 9604

+59 IOPS
ET

UG ¢ (15

o _(c12) 480Kz

L
S b3

1 o] 13 2¢0mz
S «l2—wci 1204

ao L—(CIS) 60H2

||l

Some Real Products

A hasic system can be built from a case (size 12x
I/«??inches) , motherboard, and one of two configu-
taltons.
“02, 542, 540, (527 optional)cassette system
%05, 542, 54Q, 527 floppy 8"

o convert the cassette system into an 8" Floppy-505
"y»tem you have to exchange the 502 board with a 505
mard, or add a 470 diskcontroller board. The universal

| / 0 board Al5 is mounted in the cabinet of the C2

W system.

the C2 8P is housed in a full size case with an eight
»lot motherboard. The Challenger C2-8P or C8 is a full
wize computer like the Challenger 3, but has only the
002 processor instead of three processors of the Chal-
lenger 3 (6502, 6800, Z80).

n)? CPU Board: Contains the 6502 CPU, System Monitor,
ik BASIC in ROM, 8K RAM, Cassette Interface (serial
interface)

hi? keyboard : Keyboard polled, Audio Generator,
Ngital to Analog Converter, complete analog I/0
:mrtion for an audio cassette port so that.by simply
mving an ACIA or UART somewhere in the system, you
have a complete Kansas City audio cassette port.

New Features

Aidio OQutput

lhe 542 Rev B board contains a programmable devider
audio output. By specifying the contents of one re-
yister, the user can select the pitch of a continuous
lone. This tone will be output automatically by the
computer without any additional program intervention
until changed. One location specifies the frequency
and one bit of another location turns the audio out-
put on and off.

Ihe following pages specify the operation of the au-
dio output and include a sample program.

87

88

USE OF 542 REV B AUDIO OQUTPUT

The 542 Rey B keyboard has a programmable divider i
used to generate audio tones., The output frequency
determined by the equation:

Frequency Out = iglﬁg

where 1 is any integer between 1 and 255.

On power up of the computer, the tone is disabled.
Setting bit 1 of Tocation DEPPi., (56832:5), will

enable the output and clearing git 1 of %ﬂat loca-
tion will disable it, To enable the output simply:

POKE 56832,3

At this time whatever value was poked into Tocation
57089 preyiously will determine the output freque
cy, To disable output: POKE 56832,1

When enabling or disabling the sound output, care

must be taken as bit @ of this register also switch
the display mede. The following values poked into 1
tion 56832 haye the listed effects on the computer:

@ 32 character mode and no sound
1 64 character mode and no sound
2 32 character mode and sound
3 64 character mode and sound

Location 57089 as mentioned, determines the outpu
frequency using the equation stated previously. Bot
of these locations are write only and cannot be PEE
It is recommended that sound be disabled currently

dividing by 1, that is, POKE 57089,1 which outputs

49152 Hz and is not audible.

Cassette o@—
502
Audio <
DAC
542
Video 540
AL €
527
optional
A-15

89

Floppy @————
505

Audio -
DAC - - 1

Keyboard ——)

Video
AC 540
<4—1
1 x 527
or more
Al5

90

378Y)
qyvogAIx
03QIA OFS
378Y0 SLv

4v08 03AIA ObS

Qivod SLv

1IN3W3IV1d 3719YD

DA = 48

91

92

Sample Audio Output Program

9 REM SET OUTPUT = 49152
10 POKE 57089,1

19 REM ENABLES OUTPUT
20 POKE 56832,3
30 B=Y : E=255:D=10
39 REM GENERATE RAMP
40 FOR 1 = B TO E
49 REM POKE DIVISOR
50 POKE 57089,1

59 REM DELAY

60 FOR X =1 T0 D
70 NEXT X
80 NEXT I

90 GOTO 40

- - ——————— g - —— -

The audio output from the computer is compatible wi'
the auxiliary input of normal audio amplifier equip
ment. It can be directly connected to the audio in-
put jack on a standard AC-3P video monitor if desim

Software

- ——

Ohio Scientific has deyeloped and is currently de-
veloping several programs on cassette and diskette
which incorporate audio output., Projects include se
veral games which incorporate audio sound effects a
a musical composition system called "Music Box" whi
allows persons to compose musical pieces which the
stem then plays.

D/A Converter

The Mod 3 computer system also includes an 8 bit co
panding D/A conyerter for advanced sound and voice

put experiments, The companding D/A converter is ca
ble of producing elaborate voice and musical output
comparable in sound quality to a typical AM radio,

However, to accomplish this feat, the.D/A converter
must have the constant attention of the microproces

sor, This is typically accomplished by the use of

mnchine code or by assembler code subroutines inter-
faced by the USER function of BASIC. Thus, while the
romputer system - is generating complex audio outputs

hy the D/A conyerter, it cannot be doing other tasks.

the following page includes a simple program in ma-
thine code to generate a ramp, the simplest form of
midio DAC programming. Ohio Scientific is working on
wftware which will allow limited voice output and
romplex musical chord generation primarily on mini-
floppy disks.

—— B e e o e M v = b

Machine code routine which can be entered via the
o) monitor. (A11 numbers are in HEX)

Location Contents Comments

——— - - - - -

“tart 0300 E8 Increment X
0301 8E Store X at
0302 01 Location DFO1
0303 DF
0304 4c Jump back
0305 00 to start
0306 03

Ihis program continually increments the value fed to
the DAC by 1 from o to 255 (decimal) over and over,
producing the saw-tooth wayeform below. The ramp of
the saw-tooth is not straight because the DAC has
approximately a 1log response for improved audio dy-
namix range, Changing the increment X to a decrement
X would reverse the pattern etc,

93

54

D/A Converter Connections

The D/A conyerter is compatible with the auxiliary 1t
put of audio amplifiers and should be connected singi
larly to an audio input. That is, it should not be
tied together with the other audio output of the com
puter.

Note: The D/A converter shares the same register assf
ment with the other audio output so that the D/A cons
verter should not be used simultaneously with the
other audio output,

AC Control and Rea] Time Clock

The connector in the lower right hand corner of the
Mod 3 computer is the AC control interface connector,
This connector mates with the connector on the side
of the AC-12 remote control console, All software ant
documentation for this option accompanies the AC-12
remote control accessory package. On mini-disk systef
a real time clock is present on the 505 CPU board.
However, real time clock utilization is complex and
requires a special real time support operating systes
The support software for real time operation and tim(
of day maintenance is incorporated as part of the AC:
12 remote control accessory package,

Note: Support of the real time clock requires exten-
sive modification to standard 0S-65D V3.0 software,
Ohio Scientific cannot assist in the conversion of
this software package, If you are interested in uti-
1izing a real time clock, we recommend the real time
operating system which accompanies the AC-12 remote
control package.

The color option is an additional option aboye and b
yond those specified here. Please refer to the accom
panying color hook-up and operating instructions, if
your computer system is equipped with color.

~

lev.B = Color

W0 Board Video Board: (CA-11)

'he model 540 is used in all standard products. There
i, a black and white and a color version, The 540
hoard is a highly sophisticated yideo display device,
which is capable of displaying up to 32 rows of 64
tharacters symbols, graphics elements and gaming
rlements, The board supports a conventional ASCII
keyboard or a polled keyboard,

the display can be programmed for 32 x 32 or 32 x64
tharacter display capability, a unique feature in the
microcomputer world, The processor can access the
»creen memory by addressing the board in the range
11)000-$OFFF,

Mdditionally the 540 board contains a separate key-
hoard input port, which can be configured either to
accept the standard 7 1ine input ASCII keyboard or it
tan be confiquered as a bidirectional 8 1ine keyboard
port for the 542 board,

lhe 54Q board uses an extremely high dot clock fre-
quency of approximately 12 MHz, This was done to allow
for approximately a 30% oyerscan guard band on both
«ides of the picture such that all 64 characters can
he seen on normal teleyision sets with a normal amount
of overscan without requiring any adjustment of the ho-
rizontal width of the yideo monitor."

Ihe 540 board can utilize a standard 2513N character
qenerator ROM to provide 64 upper case ASCII characters
in conjunction with a 2K 3y 6 bit memory. It is also
wot up to accept Ohio Scientific proprietary 256 charec-
ler generator ROM, part No, CG-4,

A1 new boards now incorporate the CG-4 character gene-
rator., It contains 256 numeric, graphics and gaming
elements inclucing all 64 upper case characters and
letters, all lTower case alpha, a full set of graphics
and plotting characters and a full set of gaming ele-
ments including race cars, airplanes, tanks, houses,
trees and even the starship Enterprise,

Another added feature of the 540 for real hardware
huffs is that the character generator ROM has the same

85

96

pinout as the 2716 EPROM so that the ambition programs
mer could pyrogram in his own fonts, if desired,

The keyboard No. 542 can be easily connected to the
540 board. The monitor PROMs in the computer have to
be adapted to work with the hardware configuration:

SUPPORT EPROM CONFIGURATIONS

- - - ———

540 ROM BASIC WITH ASCII KEYBOARDS

Monitor 65V2P at $§ FEQO

Support 65VB 7,2 at $ FFQO ﬂ

540 Disc based with ASCII keyboard d

Moni tor 65V2P at $§ FEOO N

Support 500-F3 at $§ FFO0O I
i

540 ROM BASIC with polled keyhoard

.

Monitor 65VK at $ FEQO
Support 65VB7,6 at $ FFQQ

Support 65K at $§ FooQ !
540 Disc based with polled keyboard |

Monitor 65VK at $ FEQQ
Support 5Q0-F3 at $ FFOQ
Support 65K at $ FDOQ

In addition, if the polled keyboard is used, polled]
keyboard support PROM at $ FDXX must be added.

527 Static RAM Board (CM-9)

v = = ———

For our configuration 1 (cassette system) you don't
need a 327 RAM hoard, because you haye 4K RAM on the j
502 board and you can expand it to 8K on board very
easily, If you cant to go to the disk system you nee
the 527 RAM board and you also have to exchange the
502 board with a 505 board,

-

The 527 board may be populated as an 8K, 16K or 24K |
RAM board. It uses the industry standard 2114 statig
RAM chip.

tM.7 / CM-8 / CM-9 / 527 ADDRESSING

n

10

Bus

Component side up Connector

"
8

|

‘ Exploded View

o}

=

S o

O —

M‘g L

&5

e &

| — O Q

Y4 w2 [J—&°
5 O wO—23
e O s
7.0

97

Strapping for 527 (CM-7)
NOTE: The 527 mayhe populated as an 8K, 16K, or 24K
RAM board,

Strapping for 8K 527 board (CM-7)
* indicates jumper between row and column, For 1st

8K slot, 2nd 8K slot, etc,
X indicates don't care

98

WI | W2 | W3
$0000 YO I X | X
$2000 Y1 2 X | X
$4000 Y2 3 X | X
$6000 Y3 4 X | X
$8000 Y4 5 X | X
$A0000 Y5 6 X | X
$c000 Y6 7 X | X
$E000 Y7 8 X | X

e.g. to Jumper for 2nd 8K slot

Jumper Wl to Y1
W2-don't care
W3 - don't care

If you are using 8K on the CPU-Board you have to
move the first block to the second 8K-row,

Strapping for 16K 527 (CM-8)

I Indicates Jumper between row and column, For 1st
16K sTot, 2nd 16K slot, etc,
X - indicates don't care

Wi w2 |us
$oo00 | Y0 |1 X
$2000 | Y1 1 X
44000 | Y2 2 X
$6000 Y3 2 X
$8000 Y4 | 3 X
$A0Q0. | Y5 3 X
$c000 | Y6 X
$£000 Y7 X

Strapping for 24K 527 (CM-9)

I indicates jumper between row and column. For lst 24K

slot, or 2nd 24K slot,

Wl | W2 { W3
$0000 | YC | 1
$2000 | Y1 1
$4000 Y2 1
$6000. | Y3 | 2
$8000 2
$A000 2
$C000 | Y6
$£000 | Y7

99

The 0S148 Line BU

» Chailenger 1| CPU BASIC-in-ROM
6502 based CPU with serial 1/0
4K RAM. machine code monitor

e Challenger HI CPU has 6502A. 6800
and Z80 micros, RS-232 serial port,
machine code monitor

* 5602 multi-processing CPU
expander runs PDP-8. Z80 and

8080 code

* 16K static RAM (Uitra low power)

* 8K static RAM (low cost)
* 16K static RAM {low cost)

* 24K static RAM (high density)
® 4K static RAM {2102 based}

¢ 16K dynamic (ultra fow cost)
® 32K dynamic
® 48K dynamic (high density)

* 8K 6834 EPROM board

® 4K 1702A EPROM board

» Audio Cassette interface Kansas
City standard 300 baud

e RS-232 port board

¢ Combination audio cassette two

8 bit DACs, one fast A/D and 8
channet input mux

s Combination RS-232 two 8 bit DACs.
one fast A/D and 8 channel '
input mux

* 32 by 32 character video display
interface

® 32 by 64 character video display
interface

* 16 port serial board RS-232 and/or
high speed synchronous

¢ Parallel {Centronics) Line
Printer Interface
* 96 Line Remote Parallei Interface

® Voice 1/0 board with Votrax*
module

¢ Single 8~ fioppy disk, 250
Kbytes storage

¢ Dual 8" floppy disk. 500
Kbytes storage

* 74 Million byte Winchester disk
and interface

* 8 siot backplane board with
connectors

» Prototyping board

o Card Extender

e Can use four 2716 EPROMS
instead of BASIC or can be
configured for disk

* 1 megabyte memory man-
ager. software program-
mable vectors

* Runs concurrently with
another OS1 CPU

e 215NS access time
automatic power down
standby mode

o Expandable to 16K

e Can be expanded to dual
port operation

* 20 address bits

» Can be populated for
4K by 12 bits

e Uses 4027 RAMS

® 20 address bits

® 20 address bits

* 16 line paralle! port and on
board programmer
® 16 line paraliel port

* Expandable to CA-7C

e £xpandable to CA-7S
® Also Features 8 paraliel
110 lines

e Also features 8 parallel
WO lines

o Keyboard input port

* Upper/iower case graphics
and keyboard port

* 75 to 19,200 baud and
250K and 500K bit rates
individually strappable

* With cable

¢ Interface "'Front End™
remotable via 16 pin
ribbon cable

e Fully assembled voice
output, experimental
voice input

* Complete with operating
system software and disk
BASIC

* Compilete with operating
system software and disk
BASIC

¢ Complete with OS-65U
operating system

* Can be daisy-chained
to n-siots

e Handles over 40 16 pin IC's
* With connectors

C3-0

NA

CM-3
CM-7
CM-8

CM-9
CM-2

CM-4
CM-5
CM-6
NA
NA
CA-6C
CA-6S
CA-7C
CA-7S

NA
CA-11
CA-10X

CA-9
CA-12

CA-14

CD-2P

CD-74

510

560Z

520

525

527
420

530
530
450
455

430
430
430

430

540

550

470

470

+5/-9

+5/-9

+5/+12/=J

+5
+5

+5
+5

+5/+ 1§
+5/+ 18
+5/+ 18

+5/-9
+5/-9
+5/-9
+5/-9
+5/-9
+5/-9

+5/-9
+5
+5/-9

+5/-9
+5

+5/ -9

+5/ =

+5/ =

SALAP ySLp OT"

SALUD XSLp 03 =

JojeJedas eieq

J0je4edas ejeq

paeog Ja3depy 3sig

f

=
o
@]
[T e]
—

1;
"t
i
n

43 [043U0D
ASLp

p4e0q 509
J40

p4eoq 0¥
40

p4eoq 019

] m ——= 43| |0J43U0D %SLp 03
L 4
i M = 43 |043U0D YSLPp 03
.3
N ¢14-64
93 LUM
LeL4as
| pesy
(9) 19 IdW] LeLdas VIV 0589
] aAtug xsta i
B 8 Spuewwo)
(V) 16 Idu Aig .
] aAL4g ¥sid
| R
sng 3std

/8d4-089d PU®R /Y¥d-0Vd

101

102

The CM-9 or 527 board is a 24K, 2 MHz medium power
memory board. It is usable in computers with booster
supplies or high current switchers, (20 address bits)

R e L L e

C2-0EM and some timeshare systems, The board uses
4072 RAM chips.

- - —n - . - - - = - -

The 470 board is a remarkably simple yet extremely
flexible and reliable diskette interface. The 470 de-=,
sign philosophy is that all possible disk control fun
tions are performed via software, not hardware, This
yields an extremely intelligent but very low cost sy=#
stem. It mates with the 400 series backplane, The con«
troller could be used with any drive having separated
data and separated clock outputs but the software
would not necessarily be compatible.

The 470 also includes a real time clock, derived from
the crystal controlled write circuit,

Table 1. Floppy Disk Connections)
470 Board PIA Assignment Signal Name

F1 PB7 Head Load

F2 PB6 Low Current

F3 PB5 Select Drive 1
Fg PB4 Fault Reset

Fg PB3 Step

Fe PB2 Step In

F7 PB1 Erase Enable

Fg PBO Write Enable

Fg Write Data

F1o Separated Clock
F11 Separated Data
Fi2 Ground

F13 Ground

F14 .

F1s -5

F17 PA7 Index

1/0 Board

F
18
F19

F20
Fo1
F22
F23
Fog

PIA Assignment Signal Name
PAb Select Drive 2
PAS Write Protect

(optional)

PA4 Ready (Drive 2)
PA3 Sector (optional)
PA2 Fault
PA1 Track 00
PAO Ready (Drive 1)

wivled pair grounds should be terminated at the disk

ml Lhe G connectors at the 470 board. Power connections
an alternately be directly to the disk drives. When

wi drives are used, all lines except for Ready and Se-
wil are simply fed to both drives!

- ———— -

iy No.

!

LB

L}

M

-——— -

Description

WAIT, When pulled low by a system board,
causes processor clock to slow down to

speed of approximately 500 kHz. Used to
seryice slow memory and I/0 devices.

NMI (non-maskable interrupt). When brought
low, a non-blockable interrupt occurs, cau-
sing the processor to stop its operation

and seryice this interrupt, that is, go to a
specific memory location and execute an in-
terrupt service routine,

IRO (interrupt request). An interrupt that
can be masked by the processor. The proces-
sor can choose to ignore this interrupt un-
der program control. If the interrupt is not
masked, it will function as NMI above.

DD (data direction). When pulled low by a
system board, it changes the data direction
of the 8726 buffers on the CPU board, swit-
ching the processor from outputting data to
the bus to Tistening to the bus

103

Pin No, Description

B5-B12 Bidirectional, eight-bit data bus for
communication between the processor
and system bhoards,

B13-B16 Upper data bits on some systems,

B17 Optional reset line used to clear all
PIAs and similar I/0 circuitry in the
system.

B18 Spare

B19-B22 Memory management address lines (the

0SI system can address memory in 64K
blocks up to at least 768K),

B23 + 12 volt power connection,

B24 =9 volt power connection,

B25-B26 + 5 volt power connection,

B27-B29 Ground.

B29-B38 Ten low-order address lines,

B39 p2. Used to clock external circuits ar

external I/0 interfaces, such as the
A/D converter (see a 6502 data sheet fom
more details),

B40 R/W (read/write). Originates at the
microprocessor and specifies read or
write operations on the data bus,

B4l VMA (valid memory address). Only used
in conjunction with the 6800, The 6502
always has this line high.

B42 §2-VMA. Master timing signal for en-
abling memory and I/0 in the system, i
B43-B48 Six high-order address lines, Q

104

P thid g b
(T s

A
—
_—
—
-
—
b
—
L
2r

o x x
oA 0™ !
wow 3@ x> — > < €
o v wn Uirey o
c w» oo = x e
P 3 ® — o ® o o RO
e A4 O t o < N
bt -+ oo ~ @ 8 —o
(LI L] = o =z <
Che - — —
1 -
w o

A1l Connectors are Data Separator
12 Pin Molex § 0,50 each ™ P

Superbo II

ard

MPI or
Shugart
Floppy

ribbon cable for
Diskcontroller

Fan

Power Supply
125VAC 60Hz
Diskcontroller Board 5vDC/3A

with 24k RAM

[Scanned Matrix to

T additional keys (J4)

[NaNel--i--]
~N —

\

¥y -

vy
O OO
N »

N9

R=Row Number
C=Column Number

105

OHIO SCIENTIFIC C1-P MINI-FLOPPY
EXPANSION ACCESSORIES

No, Item

0 Challenger 1P with manuals, Demo program
tape, Available with 4K or no memory.

1 Model 600 Superboard with manuals, Demo
tape, Available with 4K or no memory

2 Model 61Q Mini Floppy Expansion Board (ex-
pandable to 24K), Available with 8K or no
memory,

3 Model 620 Ci1-P to 0SI 48-pin C3 Bus Con-

verter (optional),

4 5V 3A Power Supply (for either 600 or €10
Board), Fits cabinet, item 1Q directly.

5 MPI 4Q-track Disk Drive in Metal Cabinet,
with or without power supply (12V),

5a MPI 40 - track Disk Drive (no cabinet), In-
cludes data separator

6 Cable Adapter, 610 board to disk drive. In-
cludes interface schematic

Cable Adapter, 600 boad to 610 board
4K Memory (8-2114's)

8a 8K Memory (16-2114's)
9 Sprite Fan (Needed for 12K and up)
10 Challenger 1P Cabinet w. power cord and fuse

106

ELPACK Data Separator for MPl Model

tomponent Location diagram

Ihe data separator board is installed at connector
J5 on MPI 51 circuit board,

the connector is a 1Q pin Molex connector, The pur-
pose of themodule is toproyide separate Read-Data
amd Read Clock.

It is required in 0SI Systems. The data is recorded
in the FM Mode.

10P VIEW (Component Side)

E 74LS20

E74L500 " +0.001 uF Polystyrene
10K Ohms
74L5123 —
7438
+ W 10K Ohms
20ufF 15V
: connector

107

MEMTST

A CRUDE,» (BUT PRE-FREFPARED) MEMORY TEST ROUTINE

WRITTEN IN ASSEMELY LANGUAGE,

IT USES 0S65I'S STRING OUTFUT HANDLER ANLD ASSEMELER

AND WILL TEST ANY MEMORY ABOVE $3600 AT RATHER HIGH SPEED.

IT TESTS EVFRY FATTERN IN EVERY BYTE: AND DUTFURS THE ERRORS.
IT MAY DRIVE A PRINTER !JSING 0S65D‘S ‘10 02,03 PROVISION.

AND' TO SAVE EXCESSIVE FRINTING: YOU MAY SELECT (AT ASSEMELY TIM
THAT UFON HITTING AN ERROR IN A 256 BYTE PAGE, IT SKIPS OVER
THE REST OF THE FAGE. THIS ENAELES YOU TO LOCATE BAD OR SLOW
CHIPS WITHOUT USING WHILE REAMS OF PAFER.

MULTIFLE LOOFS ARE ALSO FROVIDED FORs ANDN RECOMMENLDEL.

FULL ASSEMBLY SOURCE LISTINGS, DISSASSEMBLED LISTINGS,
ANl SAMPLE RUNS ARE INCLULDEL,
THIS IS A QUICK AND DIRTY ROUTINE.

OK

108

Wrik. ARE THE INSTRUCTIONS FOR THE ASSEMBLY LANGUAGE
HiMORY TEST ROUTINE

v,

BOOT SYSTEM AND EXITs LOAD THE ASSEMBLER USING
THE ’‘ASM’ COMMANLD TO 0S65-D

TYFE ‘ 1LOAD MEMTST’ TO LOAD SOURCE LISTING
TYFE ‘110 02,03’ TU ENAELE THE SERIAL FORT

AT THIS POINT YOU MAY OBTAIN ASSEMELY LISTING
BY TYFING AN ‘A’ IF YOU DESIRE ONE

TYFE AN ‘A3’ TO ASSEMBLE PROGRAM

TYPE '/ {GO 3410’ TO EXECUTE FROGRAM

THE PROGRAM TERMINATES AT (365D, SO YOU MAY
RE-RUN IT BY TYPING SIMPLY ‘GO 3410

NOTE THAT THE ASSEMRELY PROCFSS DESTROYS TiE
SOURCE CODE: SO TO REASSEMELE YOU MUST RE-LOAIL
THE SOURCE FILE CALLED ‘MEMTST’.

THE ASSEMELY LISTING OF STEP 4 IS FULLY COMMENTELD

WANT MEMORY MAF OF INPUT FARAMETERS? Y

INGTALL NUMBERS USING YOUR EXTENDED MONITOR. OR
MOlIFY THE SOURCE FILE USING THE ASSEMELER’S EDITOR

8J41F = first PAGE to test in memory

must be } 36 to avoid over-writing 0S65D
and the m2mory test program itselfll

81427 = one 9reater than the last page to check

HAMFLE VALUES:
Hok TEST FROM LOWEST ALLOWED UP TO. ...
tresr 00+ 32K SET $341F=¢36 (AS 1S)

SET $3427=%80

trevees 40K SET $341F=$36 (AS IS)

SET $3427=%A0 (AS IS)

tireees 48K SET $341F=$36 (AS IS)

SET $3427=$Cv

PROGRAM FPRESENTLY SKIPS REMAINLDER OF ~AGE UFON
INDING AN ERROR. SEE YOUR ASSEMELY LISTING FOR
MUDIFICATION LOCATIONS., ALSO NOTE THAT IT IS

Tt LOOP PROGRAM INDEFINITLY AS NOTED IN THE ‘DONE’

ARASM

ROUTINE

109

FULL ASSEMBLY LISTING---~

oA

10

20

30

40

50

&0

70

80

0
100
110
120
130
140
150
160
170
18¢
190
200
210
220
230
z240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560

110

206A=
2A51=
2D73=

OOEE=
GOEF =
340fF =
340E=
3400=
340C=
340R=

3410

3410
3411
3412
3413

3414
3416
3419
341R

341E
2420
3422
3424

3426
3128

342k

342I

18
[a
B8
58

ASEF
8D0C34%
ASEE
8DOE34

A9P36
85EL

A00
85EE

ATFAQ
BLIOF 34

AQQO

A200

ORI I I BB I IE I 3333369 3 0 0
+ ASSEMBLY LANGUAGE MEMORY TEST ROUTINE

WITH 0865

LR IR TERTE TR . LI LI T

CRLF
0846503
STROUT

~

TADRLO
TADRHI
MAXPAG

NEIT

TEMP
TEMFPTO
TEMFPTL

~ e W

CLC

START CLI
CLV
CLI

’

BEGIN LDA
STA
LDA
STA

ETRETSR TR T 13

LDA
STA
LDA
STA

LDA
STA

-

LDY

-

Lox

o

EXTERNAL LABELS

$2D6A
$2A51
$2D73

nnwn

$0O0OEE
$Q0EF
$340F
$340E
$340D
$340C
$3408B

aonononou o

TADRHI

TEMPTO
TADRLOD
TEMPTL

336 3 I I U I3 I I I I I I I I I K I I I I A WA KA

8$36
TADRHI S
#$00
TADRLG

P

NEXT INSTRUCTION
L I AR e R R TR AR s L

¢EA0
MAXFAG

#$00 INI

%300

(USES 0S865%0'S OUTFUT HANDLERS, S0 DONT MESS

222X 22T RIS SIS ST a Y]]

#'RE-SET TO TEST FROM $3600 TO $9FFF#%

08465 ROUTINE
0565 COMMANLI LOOF ENTRY
0S65 ROUTINE

ZERO PAGE POINTER
ZERD PAGE FOINTER
U SET TO 1+MAXFAG TO TEST
CURRENT TEST VALUE »
SCRATCH
SAVE PAGE ZERD FOR RESTORE
SAME AS ABOVE

SET ORIGIN

INITIALIZATIONS OF POINTER®

PRESERVE PAGE ZERO

PUT FIRST FAGE AS OPERANL
NEXT INSTRUCTION

TART FPAGE

UT LAST FPAGE AS OFERAND IN

TY

70
“H0O
0]
HOQO
10
10
oo
el
()
Hih O
V4]
HB0
He0
700
/710
120
130
740
750
740
770
780
790
BOO
HWio
0o
B30
B40
Heo
HHLO
"o
311¢
B0
700
7o
0O
.30
740
WO
260
W0
$e0
HYRO
{000
folo
{020
1030
fod40
1050
1060
to/a
1030
{00
1100
110
1120
1130
1130

342F

3432
3435
3437
3439
343C

343E
3441
3443

3446
3447
3449

344C
344E
344F
3452

3454
3457
3459
345C
345E

3461

3464
3466

3469
346K
346E
3471
3473
3476
3479
347C
3470
3480
3482
3485
3488
348A
348n
348F
3492
3495
3498
3499
349C
349E

8EOE34

ADOE34
F1EE
B1EE
CDOE34
DO2B

EEOE34
FOO3
4C3234

c8
F0OO3
4C3234

AGEF
E8
ECOF 34
010

ADOC 34
85EF
ADOE34
85EE
206A2D

4CS12A

86EF
4C3234

AZ204
anoL34
ADCE34
Z29F0
200B35
20FF 34
D834
E8
ADOE33
Z90F
20FF34
oIB34
A20D
ADOLI34
29F0
200B35
20FF34
FODB834
E8
ADOD34
290F
Z20FF34

’
STLOOP

CONT

o

PADDR

STX

LDA
STA
LDA
CMP
BNE

INC
BER
JMP

INY
BEG
JMP

NEIT

NRIT
(TADRLO)»Y
(TADRLD)»Y GET RETURN DATA
NEIT ERROR? 7?7
ERROR BRANCH WITH BAD IN ACC.
GOOI* IN NEIT

NEIT
UFADLR INCR ADDR IF DATA LOOF DONE
STLOOP

INCREMENT ADDRESS

PAGE IF Y’S5=0 THEN INCR PAGE
STLOOF RTN TO TEST IF NO FAGE
INCR PAGGE IF NESS.

TADRHI

MAXFPAG
KLUGE

}mmmmmmmm e ammmme e EXITS HERE

LDX

AN
JSR
JSR
STA
INX
LDA
ANL
JSKR
STA
LDX
LDA
AND
JSR
JSR
STA
INX
LDA
ANL
JSR

TEMFTO RESTORE FAGE ZERD

TALRHI

TEMPTL

TADRLO

CRLF INSERT JMP REGIN AFTER HERE IF
YOU WISH REFETITION OF TEST

0S65013

TADRHI
STLOOP IFPAGE WITHINLIMIT THEN CONT

g Uty P ERROR PRINT ROUTINE

#$04 USE X AS STRING FOSIT FOINTER
TEMP FRESERVE BAD DATA FATTERN
NEIT

s$F0 SELFECT 4 MSR’S

SHIFT

ASC GOTO ASCII CONVERTER

FUNT, X FUT ASCII IN STRING AT PUNT
MOVE FOINTER

NEIT

#$0F SELECT 4 LSE’S

ASC

FUNT, X

#$0D MOVE POINTER

TEMF GET THE BAL! DATA FROM TEMF
#$F O

SHIFT

ASC

FUNT, X

TEMF
#$0OF
ASC
111

1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1440
1440
1440
1440
1440
144¢
1440
144¢
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1450
1460
1470
1480
1490
1500
1510

112

34A1
34A4
34A6
34A8
34AA
34AL
34B0O
34B3
34B4
34B6
34R8
34BR
34BE
34BF
34C0
34C2
34C5
34C8
34CB
34CC
34CD
34CF
34D2

3405
3408
340K
340C
3400
34DE
340F
34E0
34E1
34E2
34E3
34E4
34E5
34E6
34E7
34E8
34E9
34EA
34EE
34EC
34EL
34EE
34EF
34F0C
34F1
34F4
34F7

34r9

9DDa34
AZ214
ASEF
29F0
200B35
20FF34
9DD834
E8
ASEF
290F
20FF34
DNe34

200B35
20FF34
L8349

8COL34
20732D
29
20
20
20
47
41
S6
45
20
24
20
20

-

ra

41

54

20

24

20

20

20

20

Q0
206A20
ACOD34
ACOC

4C4C354

-

~ N

PUNT

w w W

STY
JSR

FUNT, X

s$14

TADRHI GET ERROR PAGE #
#$F 0

SHIFT

ASC

PUNT)» X

TADRHI
#$0OF
ASC
FUNT, X

PUT ALLO OF BAD DATA IN ACCUM
#$F O

SHIFT

[23=1.

FUNT, X

#$OF
ASC
PUNT: X STRING NOW COMPLETE

JUMP TO 0Sé5 STRING OUTPUT

TEMF PRESERVE Y FROM MOLIIFICATION
STROUT

+BYTE ’$ GAVE ¢ AT ¢ ‘20

JSKR
LDY
LDY

JMF

CRLF

TEMP RESTORE Y

#$00 REM*x»#x»x#%#MODIFIED TO GO TO
NEW PAGE FOLLOWING ERROR
DETECTION, LDELETE THIS LINE
TO RESTORE DETAILED CHECK

PAGE ALSO MODIFIELI AS AEROVE

1520 34FC 4C3E34 JMP CONT EXIT BACK TO TEST
15830 T T TS U RS-

1540 7 MAKE ASCII CODE OF HEX VALUE IN ACCUM.
1550 H

1560 34FF C90A ASC CMP s$0A CHECK FOR DEC OR LETTER HEX
1570 3501 9004 BCC STAY ERANCH IF DEC NUME

1580 H

1590 3503 18 CLC

1600 3504 6937 ADC =$37 CONVERT TO ABCDE OR F
1610 3506 &0 RTS RETURNS WITH ASCII IN ACCUM
1620 3507 18 STAY CLC

1630 3508 46930 ADC »$30 CONVERT TO 0 - 9 ASCII
1640 350A &0 RTS RETURNS WITH ASCII IN ACCUM
1650 35%0FB 4A SHIFT LSR A

1660 350C 4A LSR A

1670 3500 4A LSk A

1680 350E 4A LSR A

1690 350F &0 RTS

17Q0 +END

DISSASSEMBLY BY 0S65D EXTENDED MONITOR: oo

A3
JESI. - o

EXIT
02 TRACK(S)
AXEM

EM V2,0
133410

3410 18 CLC
3411 8 CLD
3412 E8 CLV 113

3413
3414
3416
3419
341E
341E
3420
3422
3424
3424
3428
3428
3420
342F
3432
3435
3437

3439
343C
343E
3441
3443
3446
3447

3449
344C
344E
344F

3452
3454
3457
3459
345C
345E
3461
3464
346&
34469
346E
346E
3471

3473

3476
3479
347C
347D
3480
3482
348%5
3488
3484A
348D
348F

3492
3495
3498
3499
349C

114

58
ASEF
800C34
ASEE
8[IOE34
A936
85EF
A00
85%EE
AQAD
8nOF 34
AQ0O
AZQO
8EOE34
ALIOFE 34
1EE
RIEE
CDOE34
DO2ZR
EEQE34
FOO3
4C3234
ce
FOO3
4C3234
AGEF
E8
ECOF34
010
ADOC34
85SEF
ADOR34
85EE
206A2D
4C512A
B&6EF
4C3234
A204
8non34
ADOE34
29FC
200R35
20FF34
D834
E8
ADOE34
290F
ZOFF34
Lri8A4
AZCD
ALOD34
29F0
200RB35
20FF34
LDB8R4
E8
AlODO34Y
290F

CLI
LDA
STA
LDA
STA

STA
LDA
STA
LDA
STA
LDY
LDX
STX
LDA
STA
LDA
CMP
ENE
INC
BEQR
JMP
INY
BEQ
JMF
LDX
INX
CFX
BCC
LDA
STA
LDA
STA
JSR
JMF
STX
JMF
LDX
STA
LOA
ANILi
JSR
JBR
STA
INX
LLOA
ANI
JSR
STA
LDX
LDA
ANLD
JSR
JSR
STA
INX
LDA
AND

$EF
$340C
$EE
$340k
®$36
$EF
®$00
$EE
®#$A0
$340F
#$00
#$00
$340FE
$340F
($EE)» Y
($EE) s Y
$340FE
$3469
$340FE
$£34464
$3432

$344C
$3432
$EF

$340F
$3464
$340C
$EF
$340B
$EE
$206A
2A51
$EF
$3432
#5504
$3400
$340F
#$F0
$350B
$34FF
$3408, X

$340FE
#$OF
$34FF
$34L18, X
#$O0
$340D
®$FO
$350R
$34FF
$3408, X

$3400
#$0OF

349E 20FF34 JSR $34FF
34A1 9DDB34 STA $34D8,X
34A4 AZ14 LDX #$14
34A6 ASEF LDA $EF
34AB 29F0 AND #$F0
34AA Z0OOB35 JSR $350B
34AD1 20FF34 JSR $34FF
34BO 90D834 STA $34D8,X
34B3 EB INX

34B4 ASEF LDA $EF
34B6 290F AND #$0F
3488 20FF34 JSR $34FF
34BE SDDBZ4 STA $34D8, X
34BE EB INX

34BF 98 TYA

34CO Z9F0 AND #3$FO
34C2 200B35 JSR $350F
34C5 20FF34 JSR $34FF
34C8 9DDA34 STA $34D8, X
34CB EB INX

34CC 98 TYA

34CD 290F AND #$QF
34CF 20FF34 JSR $34FF
3402 900834 STA $34D8) X
3405 BCOD34 STY $3400
3408 20732D JSR $2073
34DF 2420 BIT $20
340D 202047 JSR $3720
34E0 4156 EOR ($56+X)
34E2 4520 EOR $20
34E4 2420 BIT $20
34E6 202041 JSR $4120
34E9 54 7277

34EA 202420 JSR $2024
34ED 202020 JSR $2020
34FO 00 BRK

34F1 206A20 JSR $2LI6A
34F4 ACOD34 LDY $340D
34F7 AOCO LIIY #$00
34F9 4C4C34 JMP $344C
34FC 4C3E34 JMF $343E
34FF C90A CMP #3$0A
3501 9004 ECC $3507

3503 18 CLC

3504 6937 ADC #$37
3506 60 RTS

3507 18 CLC

3508 6930 ADC #$30
350A 60 RTS

350B 4A LSR A
350C 4A LSR A
3500 4A LSR A
350FE 4A LSR A
350F 60 RTS
G3410

$AA GAVE $8A AT $5433
$20 GAVE $00 AT $5%33
$AD GAVE $8D AT $56B1

SAMFLE RUN, THESE ERRORS FROM SLOW MEMORY
CONTINUESO'OOOOOOOOQOQOOOOOQOO

$ED GAVE $CL' AT
$21 GAVE $00 AT
$21 GAVE $01 AT
$41 GAVE $01 AT
$21 GAVE s$01 AT
$21 GAVE %01 AT
€560 GAVE $62 AT
$41 GAVE $01 AT
$20 GAVE $00 AT
$20 GAVE 00 AT
$40 GAVE $0C AT
$21 GAVE $01 AT
Ax

A*I0 02,03

EM

EM V2.0

1@342_. 10

3410 18 CLC
3411 L8 CLD
3412 ER8 CLV
3413 58 CLI
3414 ASEF LDA
3416 8D0C34 STA
3419 ASEE LDA
341ER 8NORBR34 STA
341E A936 LDA
3420 B5EF STA
3422 A900 LDA
3424 B85EE STA
3426 A9AO LDA
3428 800F34 STA
342B A000 LDY
3420+ A200 LDX
342F 8EOE34 STX
3432 ADOEZ4 LDA
3435 91EE STA
3437 BIEE LDA
3439 CDOE34 CMP
343C DOxE ENE
1 @341F

341F /36 DO

s 83427

3427 /AC E2
$G3410

$00 GAVE $FE AT
$00 GAVE $FE AT
$00 GAVE $FE AT
$00 GAVE &rE AT

116

$57B1
$8010
$8100
$830A
$8811
$8%00
€8A29
$8E4B
$9C71
€063
$FPEG6E
£9F61

CHANGE TO TEST FROM $DO0OC TO $EIFF

0800
$0900
$0ACO
$0BOO

1 LAVE $FE AT $DCOC
I GAVE $FE AT $DDO0OO
i GAVE $FE AT $LDEOQOQ
fur 1, AVE $FE AT $DFOO
vt LAVE $00 AT $EQQQ
1l LAVE $00 AT $E100

Wil REGARDING LAST TEST--SYSTEM HAS NO MEMORY FROM $D800 TO S$FFFF

117

118

0S| 65V Monitor MOD 2

The 65V Superbug Video Monitor resides in &
1702A occupying locations FEOO to FEFF. It
requires 256 bytes of RAM at location 0100
up and 5 bytes at the top of Page 0 (FB to
FF) and a 440 Video Board at DXXX with the
keyboard at DFOl. The PROM contains the IRQ,
NMI, and RST vectors.

IRQ = 01CO
NMI = 0130
RESET = FEOO

The program, when started, will set the stadl
pointer to 28, clear decimal mode, initialig
a UART at BFOO (used for the Audio Cassette
loader) and clear the memory space for the
video board (i.e. fills with spaces).
The Monitor displays the following on the
screen:

LLLL DO

i.e., location-space-space-Data. Its functiop
is much 1ike the keyboard/LED KIM-1 monitor,
There are two different command modes, the -
Address Mode and the Data Mode. Each mode h#d
commands specific to its function. 1

Commands

Address Mode Commands:

/ - Change to Data Mode ,

G - Go - - Jump to location seen on screen
execute program found there.

L - Transfer control to audio cassette. Thi
means that the audio cassette supplies
ASCIT commands instead of the keyboard.:
This command enters data mode and ignor
the keyboard and only Tistens to the au
cassette UART. To transfer control back
the keyboard, press reset or load OOFB

with 00. OOFB is a flag. If 00FB = 00,

will then accept commands from key-
board. Otherwise, commands are ac-
cepted from Audio Cassette UART.

hata Mode Commands:

- Change to Address Mode
M TURN - Open next address. In other words,
increment location pointer by 1.

It the 65V is in address mode, typing 0 - 9
m A - F will cause that number to be rotated
into the LSD of the location pointer. Typing
n 4 causes 0123 XX to become 1234 XX.

[t it is in Data Mode, the number is rotated
Into the data contents and memory is thus modi-
tfed. This permits the easy correction of er-
rors. If, for example, the user typed 0478

when intending to Took at location 0478,

would simply type 0478B.

A1 of the non-command keys and non-hexade-
timal characters are ignored by the monitor.

label Program Entry Points

VM FEOO - Restart Location
FEOC - Bypasses UART and Stack Poin-
ter initialization and the
clearing of decimal mode but
does clear the screen.

IN FE43 - Entry into address mode, by-
pass "initialization

INNER FE77 - Entry into data mode, by-
pass initialization

label Subroutines

NTHER FE80 - Input an ASCII character form
Audio Cassette UART

11 GAL FE93 - Returns stripped ASCII num-

ber if 0-9 or A-F. Otherwise
returns a FF.

119

INPUT FEED - Input an ASCII character from
keyboard,

Required Hardware

The 65V Monitor reouires as a minimum the
following hardware: an 0SI Model 400 board
with a 6501, 6502, or 6512 microprocessor,
1,024 words of RAM memroy located from 0000
to 03FF, and the 65V monitor itself. It also
requires an 0SI Model 440 Board propulated
for alphabetic display and keyboard input.
The 440 Video Board must be located at DXXX
which will automatically locate the keyboard
input at DFXX.

The keyboard must be a seven bit high true
ASCII keyboard with a positive or negative ‘
going strobe pulse at least 100 microseconds
long.

The 65V Monitor will additionally support
input from a generalized serial communication}
subsystem of an 0SI 430 board located at FBXN;
Specifically,.the monitor contains a load pros
gram for a 430 board based audio cassette ine
terface. The same program can be used with a §
430 board configured for digital cassette or
ASCII teletype input.

120

** 0SI 65y **

01 65Y is the property of Ohio Scientific Instru-

ments,
he duplication and/or distribution of this program
{ prohibited without prior written consent from

Onl,

121

122

65V Demonstration Program t

The following is a program which may be en«
tered using the 65V Monitor from the keyboapd
or audio cassette, An "*" indicates a retupf
key depression.

.0002 Loads the ASCII Message Starting at
Location 0002
/4F * 53 * 49 * 20 * 36 * 35 * 56 * 2F * 5F

.0200 Loads the Main Program at 0200 é
/A9 * 02 * A2 * 00 * 20 * 00 * 03 * A2 * Q0,
* 20 * ED * FE * 9D * 24 * D2 * E8 * 4C * 0

* 02 ;

.0200 Loads the Subroutine at 0300 to Qut=-%¢
put an ASCII Character String

/85 * 00 * A9 * 00 * 85 * 01 * AQ * 00 * Bl:

* 00 * C9 * 5F * FO * QA * 9D * E4 * D1 *

E8 * E6 * 00 * DO * F2 * E6 * 01 * 60

.0200G Loads the Starting Address of the Pr?

gram and Execute it. |

£

You should see the message "0SI 65V." on th

screen. Now, you may type any keys and they

will be echoed just below the message. Preg
reset to re-enter the 65V Monitor.

If this were entered off of the audio cas-"
sette, it would be self-loading and auto, |
starting. Since the cassette is in complete!
control, it can load the starting address &
execute the program without user interrup- ¥
tion.

Creating Data Files in BASIC

lloth 8K BASIC under 0S-65D and the new ROM version of
ik BASIC are capable of files based on mass storage
levices. 8K BASIC in ROM is capable of simple cas-
~rtte-based sequential files. The BASIC for disk is
+apable of sequential., random access, indexed sequen-
tial, and other advanced file structures.

let's first discuss why files based on mass storage
devices are desirable. The first obvious reason is
that we would like to store more data in the machine
than our RAM memory will allow, Secondly, we would
like to store information on a permanent basis so
that if we enter it into the machine once it is al-
wiys there, Thirdly, we would like to provide refe-
rence material or a library of data or information
for programs to act on. Files are a necessity for
applications such as small business programming,
lhere are also applications in personal and home com-
miting and educational computing which require the
w.e of data files,

the simplest file from an organization and performance
point of view is the sequential file, In this type of
lile, entries of variable length are simply made se-
quentially. To access any entry, the user must sequen-
tially read through the file until he finds it, Se-
quential files are fine for applications such as
miiling 1ists where one will normally want to output
the file in a sequential manner. However, they haye
extremely long seek times when the user is looking for
a particular piece of data, Manually operated audio
1assette systems are capable only of sequential files
lrcause the recorder must be advanced, or read, at nor-
mnl speed to get to the desired piece of data. For this
reason, cassette-hased files are very slow and not
really practical for any business applications on the
romputer,

It the data in a file can be formated in some manner
ad put in some order such that the position of the data

123

can be predicted by some mathematical equation, then
a random access file can be used. Random access files
are extremely fast because you can directly read the
data that you desire. However, in many cases it is not
feasible to proyide a logical, calculable organization
for your data file such as in business applications.
The net result is that random access files are fast,
but do not lend themselves to many applications while
sequential files are easy to use, but,very slow.

The index sequential file is a two-level file system
merging the features of random access and sequential
files. Index sequential files are most commonly used
in applications such as business computing. An index
sequential file is actually made up of two separate
files: one file with the indexes, and one with the
actual entries. An index sequential file works on the
same principle as a standard library. The user has a
catalog of available documents and the documents them-
selves, The catalog is the index, and the documents are
the actual data file,

The index file is typically a short sequential file

which has a key word entry followed by the index which
points to the larger data base. This index is then used
to randomly access the large data base. To clarify this,
consider the example of a student report card record.

Each student would have a group of entries (e.g., name,
social security no,, date of birth, etc.), followed by
the classes he is enrolled in and his grades for those
classes. The record for each student may contain thous
sands of bytes, Students may be placed in the file in
any order as they are admitted to and withdrawn from ¢
school, As a simple file, it would take an extremely 1
time to locate any student in the file because one. wou
have to search through a large data base to find a stug
dent's name, If the file were set up as a random acces
file, the entire file would have to be reorganized eve
time there was a new enrollment or withdrawal of stud
This operation may take several hours if the data base
particularly large.

The solution is an index sequential file. The index f‘I}
simply contains the student's name and the index which

124 ;

points to the location of his actual file. The large
data base contains the files. To access an individual
student's records, the student's name is typed in, the
index file is brought into memory, searched for the
index, and the index is used to pull in the student's
file,

There are more advanced file systems which utilize
the index sequential concept.For instance, it is pos-
sible to devise files which are both random access and
sequentially addressable. This can be accomplished on
an O0SI computer system by preloading the file with a
field of null characters. Then a random access file
with variable Tength entries can be accessed sequen-
tially if desired, There are techniques where files
are inverted, or the data in files are placed in dif-
ferent orders to allow easy sorting and merging and
accessing, However, the user would do well to master
the concepts of the simple sequential, random access
and index sequential file systems,

GUIDELINES FOR FILES WITH OSI BASIC

e - —_— . g T Y Y Y g = g T e = v = e g om -

Ns mentioned above, simple sequential files are pos-
~ibTe in ROM BASIC, Here are two routines that can be
incorporated into any program to write an array out to
a1 cassette and to read an array in from a cassette,
lhese examples demonstrate fairly well the capability
of the sequential file system in ROM BASIC. The re-
werved word SAVE switches are output from yideo dis-
play or serial port only to also include the audio
rassette, so that anything that goes out onto the
terminal will also go out to the audio cassette, The
reserved word LOAD switches input from being solely
from the keyboard of the terminal to being from either
keyboard or cassette, The first time the keyboard is
actuated by the user after the LOAD command is exe-
cuted, the input will reyert solely back to the key-
hoard,

In summary, the reserved word SAVE turns the cassette
output on; the reserved word LOAD turns if off and
turns cassette input on; and any intervention at the

125

126

keyboard by the user shuts off cassette input. Data
input and output to cassette.is by simple PRINT and
INPUT statements. It is important that the user re-
member to follow each data output by a carriage return
so it can be accepted by an INPUT statement later. It
is a good idea to prompt the user in cassette opera-
Ei?n of these routines, as in lines 500, 550, and 560
elow,

. o) = - = — e = ———— D W~ = == = =

Routine for storing an array

500 PRINT "TURN CASSETTE RECORDER ON RECORD."
510 SAVE

520 FOR X=1 TO I

530 PRINT T(I)

540 NEXT

550 LOAD:PRINT"TURN RECORDER OFF."

560 INPUT "TYPE ANY KEY TO CONT.";A$

Routine for recalling the array

1000 PRINT"TURN CASSETTE RECORDER ON."
1010 LOAD

1020 FOR X=1 TO I

1030 INPUT T(I)

1040 NEXT

1050 PRINT“TURN RECORDER OFF."

1060 INPUT "TYPE ANY KEY TO CONT.";A$

0S-65D BASED FILES

e v - ——— -

0S-65D allows full user data files in 8K BASIC and ma-
chine language programs, The file system is totally
open-ended, allowing sequential, random access, index
sequential, and complex file” structures, such as indi-
rect command files, and multiple files of different
length to be open at any given time. Because of 0S-65D
generality in having variable sector lengths and varia
numbers of files open at a time and total control of f
operations, it is both extremely powerful and very dif
cult to implement. The difficulty in implementation is
mainly due to the fact that there are virtually no err
messages or error traps for operator errors because th
are practically no illegal operations. In other words,

wimce it is possible to haye variable sector lengths
and any number of files open simultaneously, it is im-
pinsible for the operating system to determine whether
e user is attempting a legal or illegal operation
~immce yirtually any operation would be legal under
wme circumstances. For this reason, it is advised
that the beginner with 0S-65D confine himself to modi-
lying existing file-based programs until he gets a
qood understanding of what is going on and refines

his own personal programming procedures. Otherwise,

h will be constantly plagued with system crashes

and pissibly the loss of important data on diskettes,

Irom here on, we will confine our discussion to data
trles in BASIC on 0S-65D, A simplified picture of what
i~ required of a data file in BASIC in 0S-65D is that
the BASIC program performs conventional INPUT and QUT-
Il statements to a memory buffer. This buffer is pe-
riodically transferred to and from disk, It is possible
to have any number of these memory buffers existing
with different memory files present in them at any one
fime, limited only by the total amount of memory your
wyotem has. This discussion will limit itself to one-
md two-buffer systems, however.

(RIATING A FILE

Ihe procedure to create a simple file is, first, to
(reate a memory-resident file buffer. This is accom-
plished simply by allocating space for it at the top

ol memory when BASIC asks "MEMORY SIZE?" Secondly,

you must set the I/0 index pointer to the beginning

ol the file., Thirdly, you must, by use of the I/0 dis-
iributor, output the desired data to the file, Finally,
when you are ready, or that particular buffer is full,
you must initiate a transfer from the buffer to the
disk itself,

RIADING A FILE
Jirst you must create a memory-resident file buffer,

aain, by simply allocating space for it when the ma-
thine asks "MEMORY SIZE?" upon power-up configuration,

127

128

to memory. Third, you must set the input/index poin
(I/0 pointer) to the beginning of the file, or whera
eyer in the file you would like to gain data from. «{
And finally, you must by use of the 1/0 d1str1butorf
input to an INPUT statement from a file. €
[\

To implement a simple sequential file is extremely $
straightforward, because with sequential files, the
indexes on input and output simply move sequentiall
In 0S-65D, the disk indexes, or file buffer indexes
automatically increment after each character is out
puted, To implement a random access file, you must |
have a way of calculating the input and output in- |
dexes by some formula, An example of this is dis-
cussed at the end of this article,

Secondly, you must transfer data desired from the ds

To implement an index sequential file, two files ar
needed, an index file and a data file, It is possib
to have the index file and data file both utilize t
same buffer by swapping in the index when desired, &
then the data. However, with 0S-65D, it is fully pog
sible to allocate memory space for both the index f{
and part or all of the data files concurrently. Thu
extremely fast access to any block of data is possi
The index file is typically organized as a simple §
guential file, and the data file is organized as a
simple random access file, The index obtained from
index file is used to directly access data in the d
file, Of course, other, more complex file systems a
possible under 0S-65D. Some examples of this are in
direct command files which allow the disk file to a
as the executive of the computer system. Also, beca
of the multiple simultaneously open file capability
0S-65D, merges and sorts of multiple files are bdth
straightforward and extremely fast.

0S-65D Version 2.0 diskettes contain three examples
of data file-based programs in BASIC. A simple tele
phone directory program is located on track 18. It {
documented as Example 5 in 0S-65D Version 2.0 manual
This telephone program simply allows a user to ente
a person's name and telephone number and create a s

track or 3,000-byte lgng file containing these names
« disks, He can then at any later time go back teo
the program and call up a phone number based on a
prson*s name, This program is a good example of a
simple, single-track sequential file and of course can
i readily changed for multiple entries such as for
miiling lists where three or four entries would be
rmbined to form a record, such as a person's name,
«'reet address, city, and state, It has two limita-
tions, however. It does not have a delete function,
and it limited in size to be only one sector, that is
b to 3000 words. It cannot exceed one track on
length. A refinded version of the same telephone pro-
pram is located on track 44, This is an extension of
the simple telephone program which, again, can be
patily modified and converted for any application
requiring a sequential file. This program has a de-
lete function and is set up for maximum file length
of four tracks or 15,000 bytes. It can easily be
rhanged to utilize up to an entire diskette so that

« very large mailing list, for instance, could be
stored. To conserve space, the program is not listed
wre. Instead, we ask that you list the program on
hrack 44 in conjunction with this discussion. Make
wire that you have a standard Version 2,0 diskette.
the extended phone program is very similar to the
ariginal phone example except for the delete and
miltiple track capability, A delete is accomplished
hy replacing each entry, that is, name and phone
mmber, with the character S, so that if you search
tor S, you will find all the deleted entries. The
process of deleting an entry is to delete the old
sitry and place the new entry on the end, The pro-
gram is set up to start at disk file on track 72 and
mpand downward to track 76. The program can be ex-
panded to any length maximum by simply specifying the
variable II starting at some track lower than 72, It
scomplishes its multiple track nature by constantly
thecking for end of sector, which in this case equals
ane track in length, When it approaches the end of a
track, it transfers that track out, resets all poin-

lers, increments the track counter, and starts to fill

129

up the buffer for the next track. The program can be
directl]y conyerted to place the data files on disk drive
B by simp]y changing the variable DN from input and oute
put to driye A to input and output to drive B. With thi}
method, it will be possible to utilize an entire disk
as a file for this program.

Using anentire diskette as a file system, and assuming
approximately 60 bytes per mailing label, the user should
be able to place up to 3800 entries on a single diskettd.

The disk-based random access file demonstration pro-
agram is Jocated on track 42 of 0S-65D Version 2.0 dis-
kettes, and the data file, including data, is located
on track 43, Please 1ist the program on track 42 in cons
junction with this discussion. An operational printout
from the file is 1isted on p.7. The demonstration pro-
gram utilizes a 3K byte data file which stores a func-
tional déscription of the 7400 series TTL components.
The user inputs a 7400 series TTL part, of which he wan$)
a description and from the part number, the index or deg
cription's address is calculated so that the program
can virtually instantane isly obtain the desired data.
The data file provided contains descriptions of 7400
series devices from 7400 to 7450. To run the program,

be sure that you respond to MEMORY SIZE? with the num-
ber 16000 in order to allocate space for the disk buf-
fer and that you use it with a serial terminal or modis,
fy the I/0 to return control to a video system, if vide
is used. A sample printout is given on p.7. This simplq’
sample of a random access file can be expanded to any
random access application, ;

By utilizing a sequential file to obtain indices, such v
as the simple phone program listed in the 0S-65D manual
and using a random access file such as the 7400 series
reference file, one can construct a general purpose in
sequential file system which will access data as fast
any standard small business computer on the market tod
and significantly faster than most.

0S-65D places a lot of responsibility on the program-
mer's shoulders. However, if a program is properly de-

L s RS

i

130

wloped by using 0S-65D, it will achieve an extremely high
level of performance with a minimal amount of memoyy over-
hwad, We belieye this to be the most important gspect of
wall computing, That is, in applications situations

«ch as small business computing, the program must be
developed once, then used many times, It is not efficient,
m particular intelligent, to compromise the computer's
performance on a day-to-day basis for the sake of making
the task of a programmer a little easier, This unfortu-
nately has been the case on the few other small computer
wystems which offer true disk file capahility,

thio Scientific is in the process of developing resale
arrangements for several applications packages written
in 0S-65D. The software packages currently under de-
velopment include a word processor (now being utilized
In the production of the Journal), a complete mailing
list program (which was used to generate your mailing
label), a complete business package, including accounts
receivable, accounts payable, general ledger, inventory,
and income tax; and a data-based management system for
ine with user programs. We would be very interested to
hear any recommendations you might have for software
packages to use under 0S-65D. Please send your sugges<
tions to ELCOMP Publishing, Inc,

RUN
051 DISK BASED 7400 SERIES REFERENCE FILE THE AVAILABLE
OMMANDS ARE AS FOLLOWS - -

NiW
ADD
IND
"LARCH

I[F FILE INFORMATION IS DESIRED TYPE 'SEARCH' IN RES-
PONSE
10 THE PROMPTING 'COMMAND' PRINTOUT

INPUT COMMAND MODE
! SEARCH
INPUT 7400 SERIES PART NUMBER - E.G, 7400, 740
A, ETC.
1 7420
131

132

? 7420 DUAL 4-INPUT NAND GATES
? END

INPUT 7400 SERIES PART NUMBER - E.G, 7400, 740
4, ETC,
? 7450

? 7450 DUAL 2-WIDE 2-INPUT AND-OR-INVERT GATE
S
? END

INPUT 7400 SERIES PART NUMBER - E.G. 7400, 740
4, ETC,
? 7460

NUMBER OUT OF RANGE

THE AVATLABLE COMMANDS ARE AS FOLLOWS -
NEW

ADD

END

SEARCH

IF FILE INFORMATION IS DESIREL TYPE 'SEARCH' IN RES-
PONSE
TO THE PROMPITNG 'COMMAND’ PRINTOUT

(OPYING 0S-65D V3,1 MINI-FLOPPY DISKETTES ON SINGLE

v m v Tl W g

Miny people have run into the problem of backing up

their mini-floppy diskettes on a single drive system,

the following description should explain the proper
procedure for backing up one's software,

lhe basic scheme for backing up inyolves initializing

the new diskette and then transferring each sector from

the original diskette to the new diskette,
lo initialize a blank diskette:

|) Boot up under 0S-65D as one normally would.

') Enter the D.0.S. by exiting basic i.e. type exit
(CR?>

After entering the Tine above one should see a A*

on the screen,

i) Initialize the blank diskette by entering
IN <CR»
the question:
ARE YOU SURE?

will appear on the screen, answer this question by

entering

Y

when the diskette has been fully initialized the
computer will print

A*

to the screen

f) Insert the original diskette into the floppy drive

h) Type the following:
CALL @2¢p=13, 1 {CR?
this calls the disc copy utilities into memory

b) Now enter:
GO §2pp <CRD

A menu will appear on the screen. Select item num-

ber two (2) from the menu

133

7) Now type:
R4209p <¢CR?
this calls the contents of track Zero into memory

8) Insert the new diskette into the floppy drive

9) Now enter:
Wa2pp/220p,8 < CR>
At this point track zero has been placed on the new
diskette

The remaining steps concern themselves with 'CALL'ing
each sector on the original diskette into memory and
then transferring that sector onto the new diskette.

The commands used to do this are:

DIR TRACK NUMBER < CR >)
(TWO DIGITS)
CALL 429@=TRACK NUMBER, SECTOR NUMBER ¢ CR?
(TWO DIGITS), (ONE DIGIT)
SAVE TRACK NUMBER, SECTOR NUMBER=420@/LENGTH { CR)
(TWO DIGITS), (ONE DIGIT)

The DIR command is used to determine the number of secs
tors on a given track and the sectors length. The CALL
command is used to bring a sector into memory from the
original diskette, While the SAVE command provides a
means for placing the sector 'CALL'ed into memory on
the new diskette,

10) Insert the original diskette into the floppy drive;
q

11) Enter a DIR command for the track to be transferre
into memory. For example:

IF TRACK 13 CONTAINED 4 SECTORS EACH ONE PAGE LONG

THE COMMAND:

DIR 13 {CR)

WOULD PRINT:

TRACK 13

P1-1

p2-1

p3-1

pa-1

134

fhe first two digits tell the sector number and the
last digit defines the sector's length in pages

I

H))

From the information proyided by the DIR command
one should now proceed to 'CALL' each sector off
the track to be transferred to the new diskette
one at a time,

Using track 13 as an example:

For the first sector enter:

CALL 42¢p¢=13,1 <CR)»

This calls the first sector on track 13 into me-
mory

Now insert the new diskette into the floppy driye

Proceed by "SAVE"ing the sector to the new dis-
kette by entering:

SAVE 13,1-4208/1 <CR?

This saves the sector in memory to track .13 sector
one with a length of 1 page,

Step 10-15 should be repeated for tracks 1-13
and for any other tracks containing programs one
desires to place on the new diskette,

135

9- DIGIT BASIC VARIABLES

This article shall attempt to explain how
BASIC stores and accesses variables, There
are three types of variables in BASIC. They
are floating point, and string variables.
The three types of variables may be non-
subscripted, i.e. simple variables or sub-
scripted variables.

VARIABLE STORAGE

Diagram one shows where in memory variables
are stores. The BASIC program starts at the
address pointed to by TXTTAB. Simple variab-
les start just after the BASIC program. Im-
mediately following simple variables in me-
mory are array variables. Following the array
variables in memory is the free memory space,
After the free memory the actual string data
is stored.

TOP OF MEMORY

MEMSIZ (top of Memory)

String Data
is stored here

—+ —— FRETOP (First Free Byte)

Memory Free
for new strings

STREND (END of ARRAY
Descriptors)

Array Variable
descriptors
stored here

ARYTAB (Start of
Array Descriptor

Simple Variable
descriptors
stored here

VARTAB {Start 0;\§on7
Subscripted, j.e.
Simple Variable

Program Source Descriptors)

stored here
{Tokenized Form)

S Ve Ve W
|
|

TXTTAB {Start of
YWorkspace

DIAGRAM 1

BASIC PROGRAM AND VARIABLE STORAGE

DIAGRAM 1

VARIABLE DESCRIPTION

BASIC must have a way of "keeping track"
of all variables. In order to do this, BA-
SIC retains a descriptor for each variable
in the program. A descriptor contains, in
the case of numeric variables, the current
value of that variable. String descriptors
contain information on the length of the
string and it's location in memory.

Upon encountering a variable for the first
time, BASIC constructs a descriptor for that
variable. If the variable is a subscripted
variable, BASIC constructs an array descrip-
tor. New simple variables are tacked on to
the end of the other simple variables. In-
sertion of a simple variable requires that
the array variables first be moved to make
room. Subscripted variables are "tacked" on
to the end of existing subscripted variables.
Adding a subscripted variable decreases the
amount of free memory space. Because array
variables must be shifted upward to accommo-
date new simple variables, simple variables
should be defined early in the program. DIM
statements, when encountered, force BASIC to
set up an array descriptor large enough to
accommodate the size given in the DIM state-
ment.

SIMPLE FLOATING POINT DESCRIPTION

Simple floating point numeric variables have

a descriptor containing the variable name and
it's value. Diagram 2A shows the descriptor.

Two bytes are always reserved for the variab-
le name regardless of it's length in the pro-
gram.

Floating point numbers are always stored in
memory in a "NORMALIZED" form. "NORMALIZED"
means that the binary number is shifted to
the left until the most significant bit (MSB)
is a one. The fractional value's sign bit is
then placed into the MSB of the fractional

value,
137

The MSB of the fractional value is implied to
be a one unless the number is zero. A variabs=
le whose value is zero has it's exponent set
to zero. In all cases, the binary point is
implied to be to the Teft of the MSB in the
fractional value.

SIMPLE INTEGER VARIABLE DESCRIPTORS

A

- SIMPLE FLOATING POINT VARIABLE DESCRIPTOR
First character of name
Reserved for second character of name
Signed exponent with the sign bit complemen
Fraction value sign bit, MSB fraction valus
Fraction value
Fraction value
LSB of fractional value

Sign bit.-»
l SIMPLE INTEGER VARIABLE DESCRIPTOR
First character of name +$%$89
Second character of name +$89
I Sign bit, MSB

LSB

P - meaningless
P - meaningless
P - meaningless

Diagram 2B shows the format of a simple in-
teger descriptor. As with floating point va-
riables, two bytes are always allocated for
the name. BASIC requires a method by which
it may differentiate between floating point,
integer and string variables. The method
used is a simple one invoTVing the variable
name. Floating point names are not changed,
however string and integer names are affec- |
ted. Integer names always have $80 added to
the two bytes reserved for it's name. String
variables have $8p added to the second byte
reserved for the name. Integers are stored
in two's complement form with bit 7 of the

138 {

most significant byte reflecting the sign.
Integers are stored in two bytes with 15
bits reserved for the value, This limits the
range of an integer variable to be between
-32767 and +32767.

SIMPLE STRING VARIABLE DESCRIPTORS
Diagram 2C illustrates the format used for
simple string descriptors.

|

SIMPLE STRING VARIABLE DESCRIPTOR
First character of name

Second character of name +$8@
Length of string

Low address of string

High address of string

@ - meaningless

@ - meaningless

DIAGRAM 2

A string variable always has $8p added to

the secondbyte reserved for the name. String
descriptors, unlike numeric variable descrip-
tors, do not contain the value of the variab-
le. A string descriptor contains the length
of the string and a pointer to the actual
string data. Strings maybe located within the
actual program next or within the string space
stored at the top of memory. The location of
the string is dependent on how the string was
defined. If a string variable is equated to
string data within quotes, then that string's
descriptor would point into the program text.
A string variable equated to a CHR$, LEFTS,
RIGHT$, or MID$ function will create a string

139

140

in string space, INPUT statements will also
cause a string to he formed in string space,
If one string variable is equated to another,
that string's pointer may or may not point
into string space. Where the string descrip-
tor points to is dependent on where the strin
variable to the right of the equal sign is
located. If it is located within the program,
then both descriptors will point into the wor
space. If the string that is being equated to
resides in string space, then that string wil
be copied to the bottom of free space and the
second string's descriptor will point to the
copy.

ARRAY VARIABLE DESCRIPTORS

Diagram 3 illustrates the format of array
variable descriptors. The array descriptors
are basically the same as simple variable
descriptors. The differences are information
that defines the length of the array, the
number of subscripts and the maxi-um value
for each subscript, i.e. DIM A$ (29, 19)
would set the maximum subscripts to be 20
and 1 respectively. If an array variable is
encountered that has not been DIMensioned,
BASIC will default to a DIMension of 1@, In
other words the array will be set up as if

a DIMension of 1P had been executed. It is
important to note that DIM statements must
be executed to be effective. In memory arrays
are stored as sequential Tists. The formula
for accessing anarray entry is:

For a List Array A$ (N):

¢

Address Lengt% Starting
= N * +
of descriptor of descriptor Array addr(

e.g., N=50: Array data starts
at $6PPA

Address = (5p*3)+$60PA=$96+$6PPA=$6PA|

Multiple subscripted variables are slightly
more involved, Diagram 4 shows a string ar-
ray in memory. The array has been DIMensioned
to 2 by 3. The formula for calculating the
offset into an array to access a specific
variable is shown below.

Offset=Length of descriptor*(S1+((Slmax
+1)*S2))

Working through an example should clarify the
procedure. The example will use the array A$
(X,Y). The array has been DIMensioned as DIM
A$(2,3). The descriptor length will equal 3,
one byte for the string length-plus two bytes
for the pointer to the actual string data.
Since BASIC permits use of a subscript of
zero, there are actually 12 variables in the
array. The legal subscripts range from A$

(P, P) to A$ (2,3). We shall refer to the
first subscript as S1 and to the second sub-
script as S2. The maximum subscript for S1
and S2, as defined the the DIMension state-
ment is 2 and 3 respectively. The array is
organized with A$ (P, P) at the front and A$
(2,3) as the last entry. If subscript S1 in-
creases by one the offset increases by the
length of one descriptor i.e. by 3 bytes. If
S2 increases by one the offset would increase
by (Slmax+1)*3. This may seem a little strange,
so let's examine the array format a little clo-
ser, The first variable in the array is A$
(,0). The next variable is A$ (1,P). In
other words the array is in the order A$
(p,9), A$(1,0), A$(2,0), AS$ (P,1), A$ (1,1),

etc.

This then indicates that when S1 increases by
one, we are moving forward by one descriptor.
However, if S2 increases by one, we must move
past the descriptors containing the values
for A$ (9,S2) through A$(Slmax,S2).

141

142

Using the values in our example, the rela-
tive offset to A$ (2,3) would be:

Relative offset = descriptor length
* (S1+(1)*s2))

Relative offset=3*%(2+((2+1)*3))
Relative offset + 3*(2+9)=3*%11 = 33

Therefore, if one listed to access A$ (2,3)
one would set up a pointer to the start of
the array descriptors. Then the relative
offset would be added to the array pointer,
Next one would pick up the length of the
string and the two byte pointer to the ac-
tual string data. At this point we have all
the information required to access the string

‘data of A$ (2,3). Variable descriptors for

array variables with more than two subscripts
follow the same BASIC format. A generalized
form for accessing a descriptor of a variab-
le having N subscripts is shown below.
Relative offset + DL (S1+(Slmax+1)*S2+(S?2
max+1)*S3+......,)

Where DL is the length of the descriptor

S1 is the first subscript

Slmax is the maximum value of S1

S2 is the second subscript

S2max is the maximum value of S2

S3 is the third subscript

etc.

etc. ‘

vign bit

w
jn =
el

r:olv—t

OO
=
|

-

-0
Lg_li Q_lrf
w
o<
|<—+ ol
+ ®
]

b te]

|=
o+ ~<
o l+

©

I

|

]
O —4
@

k< @

JT1
|11
|1

2nd _CHR

Low Byte
High Byte

Low Byte __
High Byte

Next Value

FLOATING POINT ARRAY VARIABLE DESCRIPTOR

Name

Total length of array in bytes
Number of subscripts

Maximum subscript +1 (May repeat,
one for each subscript)

Signed exponent with sign bit complemented

MSB of Fractional value
Fractional value continued
Fractional value continued
LSB of fractional value

INTEGER ARRAY VARIABLE DESCRIPTOR
Name
Total Tength of array in bytes
Number of subscripts

Maximum subscript +1 (may repeat,

one for each subscript)
Integer in two's complement form

STRING ARRAY VARIABLE DESCRIPTOR
Name
Total length of array in bytes

Number of subscripts

__|Maximum subscript +1 (may repeat,

one for each subscript)
Length of string

Address pointer to actual string data

DIAGRAM 3

143

fop of Memory

l

Byte Strina
escriptor + 35
+ 6
+ 9y
+ 125

+ 155
+ 189

+ 219
+ 26

+ 30.}

1st CHR ($41) | Name

2nd CHR ($8@)

Low Byte (2@) {Total length of array in bytes

High Byte (9@)

(2) Number of subscripts

High Byte (@P)}Maximum value of subscript S1+1

Low Byte (93)

High Byte (@@)[Maximum value of subscript S2 +

Low Byte (§4)

A$ (2.2)

A$ 9)

AS (2,9)

(
(1
(
(

AS (2,1)

A$ (1,1)

A$ (2,1)

A$ (2,2)

A$ (1,2)

A$ (2,2}

AS (2,3)

A$ (1,3)

A$ (2,3))

ARRAY A$ (2,3) IN MEMORY

144

DIAGRAM 4

High-Resolution Display Conversion
for Challenger 1P

by Steven Chailfin

e CHALLENGER 1P (SUPERBOARD il) computer system is one of the best
mlues in hobby computers today. Its many outstanding features are

wll known. However, its low price has necessitated several design com-
smmises. One of these compromises involves the video display circuitry,
the advertised 32 x 32 format is actually onlty 24 x 24 ar at hest

1 x 26 on a standard television. Even if a high aquality monitor is

wed and the display slze can he increased, the BASIC in ROM will still
Hmit the line length to 24 characters.

tlling guard band clrcuitry would give a true 32 x 32 display on a
tundard television, but would be both expensive and technically diffi-
lt to implement. The most cost-effective solution this author has
lnund, and the one which is described in the conversion instructions,

s outlined helow:

|

Double the dot clock frequency. This has the effect of puttine out
twice as many dots per scan line (twice as many characters per line)

Since there will be twice as many characters per 1lne but the same
number of lines on the screen, and additional 1K of video memory must
be added.

) Associated circuit changes for memory decoding, synr pulses, etc.
V) A software patch so that BASIC will use the entire screen to display.

these modifications yield a 32 line x 6% character display. Since this
hrcuitry still lacks guard band capabllity, some characters are lost
wt! the screen due to overscan. However, the resultant 30 line x 50
tharacter display Is a vast Improvement.

it is assumed that the person undertaking this conversion Is familiar
vith such basic electronic construction techniques as solderine and
wading schematlcs. Components required for this conversion are:

QUAN DESCRIPTION

i 2114 or 2114l u450nS or faster RAM*

8.0 MHz crystal (actually, 7.8Gk32 is ideal)
7uLS163 or 74LS161 4 hit binary counter +
7415139 2 to W decoder (dual)+

16 pin DIP sockets

N e

*This is criticall! Don't buy slower (cheaper) RAMs as they
will not work.

+ Be sure to use the 7u4LS series, not the 74 series as these
are slower and may not work.

Also required: Model 600 schematic, solder F30 AUG wire wrap

wire, soldering iron, wire stripper, razor hlade
or X-acto knife.

145

These parts may be had for $ 40 or less, depending on how well
stocked your junk box Is.

The complete conversion instruction Is available from myself
or from Silver Spur at a cost of § 12.00. The crystal is $6.95,
from Silver Spur.

ftere Is an update of the CiP Video Hodification, contalining an im-
portant correction, as well as trled and true data for owners of
mini-floppy drives using the 0S65-D operating system.

1. Error in original instructions:
Instructions now Lelng malled out are correct, but some of the
original instructions fail to disconnect the old Sync one-shot
(U65). (U61 pin 11 to U65 pin 1). This trace is easily located
with an ohmmeter near U65. As | recall, it passes from pin 1, on
the component side of the board, beneath the body of UGS, to a
plated-thru hole ncar pin 7 of UG5. It is easily cut at that point,
Failure to cut this trace results in both UGl and 1127 (the new
chip you added) driving the Vertical Sync clircuit, This results In
a loss of Vertical Sync and your display will roll vertically for
ever and ever and...

2. Chanpges to 0S65-D for 52 X26 Video Display
Owners of mini-floppy C1P's: Take heartt!
a) You need not make the PROM change sugpgested in the modiflcatlon
instructions, though you may if you desperatly desire a neat D/C/W/M?
prompt on reset, or a.super convenient display from the PROM ('"M")
monitor,
b) Included herein are the necessary software changes for the 1/0
drivers in 0S65-D.
c) tf your memory s fast enoupgh and you got a 6502A 2 MHz processor
(or wanna spend 19 bucks and plug one in), then | enclose "he singlae,
simple, modification to the 0S! #610 Disk controller/memor, board.
d) Mine works, and at 2 MHz too. (Note: If you do not wlsh to run at
2 MHz, then just perform the original modification, complete with tha
1 MHz "step-down'", and keep your hands off the Gl0 hoard).
e) The Software modification is accomplished within the bounds of
track 0. Therefore, we load track 0 Into high memory, operate on it, §
place It on a fresh disk, using the TRACK 0 READ/VIRITE UTILITY on tra
13. The rest of 0S65-D is then duplicated onto this dlisk, and the alt
ations verified by booting this disk. Track 0 may then be loaded and
written onto all disks you wish to update to 52-character video. The
driver works with BASIC, the ASSEMBLER, and the EXTENDED MONITOR. CloM
ly, you could modify the operating system currently active in
memory using pokes from BASIC. In that fashion, the changes could easl
1y be Incorporated into BEXEC#*, In such a case, you would necessarily
adjust the HEX addresses glven downwards by thelr current offset of
$ 2000. Such an approach would be easy and safe for debuggineg a newly
modified machlne.

‘

P

146

(437T0Y1INGD ASt1d) dy¥vod 019

$301S IN3NOdWOJ °T 914

29, 01 ,Vv,

d3dWNr anNv
30vyL 1NJ N3IHL ‘ZHWZ
Iin Zin

‘3n08v 8, 01 ,V, WOYd

(Zd) %2072 WILSAS 4dI

LIN

.

81N

147

Video Update to 0S65-D, For C1PMF

VIDEO UPDATE TO 0S65-D, FOR C1PMF, accompanying 52 char.mod:
First commandment: Never write on your original 05-65N diskette!

Boot Disk

UNLQCK (CR)

EXIT (CR)

A*CALL P2pp=13,1(CR) NOTE: Operator entries are
A*GO p2 R underscored

- DISKETTE UTHILITIES -
1) COPIER
2) TRACK 0 READ/WRITE

22 (CR)

=TRACK 0 READ/WRITE UTILITY -
COMMANDS :

Rnnnn-READ INTO LOCATION nnnn
Wnnnn/ggegg,p-WRITE FROM LOCATION
nnnn FOR p PAGES WITH
g5gg AS LOAD VECTOR
E-EXIT TO 0S-65D
COMMAND?RL200(CR)

(repeat of above command listing by computer)
COMMAND'!L(CR)
A«EM(CR) (hoot extended monitor)
EM v2.0
:@u5AL (CR)
U5AL / 65 WB(CR) (changes this locatlon from $65 to
$u8.)
=ADDRLO of STARTCURSOR
(similarly, make the following changeas)
ADDRESS ORIGINAL NEW NOTE
45C3 D3 D7 = ADDRHI of STARTCURSOR
45C6 7D 7C = ADDRLO of ENDCURSOR
45CD D3 N7
45D5 D3 n7
45F8 1F 3F = test right 5 hits for G4 char.
tlne
USFD oL 07 = left overscan -1
4602 08 0C = lefteright overscan
4608 1F 3F
460A 1D 3C = fused char per 1lne+left overscan
L60F 07 OB = lefteright overscan -1
4616 D3 D7 !
461D n3 D7 !
U624 133 D7
4626 65 48 = APDRLO of START CURSOR
462A 65 48

148 ”

4630 n3 D7

4637 m 7C
¥63A D3 n7
4648 20 40 = scroll by 64 addresses
W649 D3 D7
653 D3 p7

502 put hex. equiv. of desired cursor character here!!
(See Character Graphlics Ref. Manual for favorite).

having made the ahbove changes,

:EXIT(CR) (NOW PUT A BLANK DISKETTE IN THF 'A' DRIVE....
BE SURE!!1)

A+INT(CR)

ARE You SURE?Z_ (THE blank disk Is now formatted)

A*GO _0200(CR)

- DISKETTE UTILITIES -
1) COPIER

2) TRACK 0 READ/UWRITE
YOUR SELECTION

?Z}CR)

- TRACK 0 REAND/WRITE UTILITY -

COMMANDS :

Rnnnn=-READ INTO LOCATION nnnn

Wnnnn/gegg,p-YIRITE FROM LOCATION nnnn FOR p PAGES
WITH ggge AS LOAD VECTOR

E-EXIT TO 0S-65D

COMMAND?V/4200/2200,8(CR)

(Repeat printout of above prompts, then:)

COMMAND?E(CR)

A*GO 0200(CR) (SINGLE DRIVE OWNERS OMIT BEGINNING HERE,

-DTSKETTE UTILITIES - AND INSTFEAD, "CALL"™ EACH TRACK, SECTOR

1} COPIER INTO MEMORY FROM ORIGINAL DISK, INSERT

2) TRACK O READ/WRITE THIS NEW DISK, AND "SAVF' THE TRACK,

YOUR SELECTION SECTOR FROM MFMORY ONTO THE NFW DISK).
(l.e.:

71(CR) insert old disk

-"DISKETTE COPYER - CALL 01,1=4200

FROM DRIVE (A/B/C/D)?A(CR) Insert new disk
- SAVE 4200=01,1/8

(put an old disk in 'A' NOTE THAT THE "SECPIR™ UTILITY WILL

0 DRIVE (A/B/C/D)?B(CR) GIVE YOU THE NEEDED DATA AS TO THF
STARTING TRACK?201(CTD # OF SECTORS PER TRACK, AMD THFE NUMRFR
INDING TRACK?E&IE@) OF PAGES LONG EACH SECTOR 1S),

READY?Y_ (CR) (FOR EXAMPLE, ON ORIGUMHAL SYSTEM DISK,

TRACK12 IS DIVIDED INTO & SECTORS, FACH
ONE PAGE LONG, WHICH MUST BE CALLFEP AND
SAVED INDIVIDUALLY).

149

A* (You have now created an 0S-65D disk which will hoot up
with the correct video driver intact)

To update an old disk (and I recommend that you keep your

paws off your original system diskette!!!}!) simply use the track

0 utility to Read track 0 into memory (R4200 is good) Then insert
the disk to be updated iInto the drive and type COMMAND?WL200/2200,8
(CR)

insert another disk to be updated and type
COMMAND/VW4200/2200,8(CR)

However | recommend against trying to update all your disks
until after you have produced the one tried and true re-make of
the system disk, and have demonstrated to yourself that is hoots
up correctly.

150

Program to Circumvent the
Garbage Collection Problem in
OSI BASIC in ROM Computers

IHE PROBLEM:

0St's BASIC in ROM computers have an error in the Garbape
tollection routine that severely restrict their use for pro-
rrams with string arrays, particularlty If concatenation of
wtrings is extensive,

Strings that are not defined between quotes in a BASIC statement

are stored in the "string space" at the top of memory. For example,
A$="A" is stored in the BASIC statement. lowever, INPHT R$ puts RS
In the string space with pointers to B$ stored in the BASIC variable
table.

On concatenation, say C$=C$+A$, C$ Is stored In string space.
Suppose we start inftially with C$="" and A$="A", We then execute
C$=C$+A$. C$ will hecome "A" and be stored in strins space. String
space will be "A", Suppose we execute C$=C$+A% again. Now €& is "AA"
and string space is "AAA". Two of the A's in string space are the
new C$ and one is the A left behind in forming the new C%, If we do
it agaln, C$ 1s $AAA" and string space Is "AAAAAA". In this example,
three A's in string space are for storing the last designation of

¢$ and the other A's are previous deslgnations of C$ which are not
removed from memory.

suppose the followinpg program is run.

70 C$="":A$="A!
50 INPUT K
40 FORI=1TOK: C$=C$+A$:NEXT

C$ is now K bytes long and take K hytes to store. However, we have
"used"™ K(K+1)/2 bytes of memory in generating and storinp €$. Thus,
the ahove program, If K=255(the maximum string lenpth), we need 255
bytes to store the final! C$ but we have tried to use 32,640 hytes!
Avaitable memory vanishes very quickly If a program contains repetit
operations of this kind.

A memory rearrangement is needed if memory Is to be properly uti-
lized. This is accompiished through the Garbage Collection)GC)
routine. This routine is called by BASIC when the strins space is
full. The GC relocates the valid strinpgs back to the top of memory
and defines new pointers In BASIC variable space. lsing the abhove

in

ive

numeric example, after GC Iz executed, 32,385 bytes of memory have heen

recovered for further use,

0SI's BASIC In ROM GC routine works fine for programs containing
numeric varlahles, string variahles, and numeric arrays. The ahove
program can he run on the smallest memory machine without a problem,
Hlowever, if the program also contains a string array, then the in-
ternal GC will not work properly. 1f, for example, we add the follo-
wing tine to the above program,

10 DHA 1$(6)

151

152

and K=255, the internal 6¢ will cause the screen to "pulse"
several times at a 1.6 sec. period as the 6 routine watlks
through memory. This pulsing Is characteristic of GC failure
along with a "dead” keyboard. fFxtraneous characters may show
up on the screen and the BASIC program altered. The execution
time without line 10 is under 2 sec. and exceeds 12 sec. with
1ine 10. If the program were entered exactly as written, the
pulsing may continue untll! the computer is reset. Even if the
program finally executes, C$ is not placed properly at the top
of memory.

A inore general program to demonstrate the GC prohlem is:

10 INPUT Q,K

20 DIM L$(Q)

30 FORI=1TO Q

U0 FORJ=1TOK: L$(1)=LS(I1)+CHRS(6H+J)
50 NEXTJ

70 PRINTL$(1), 1:NEXTI

Here a first order array with diminsion 0 Is estahlished,

Each element 1s formed from the ASC!I code starting at A and
contains K symbols. For K=26, each element of the array con-
tains the upper case alphabet in order. At the conclusion of
filling each of the array’'s (elements with K symhols the element
is printed followed by the element numher.

For an 0S) BASIC in ROM machine with 8K of memory, and K=26, the
program will run for Q¢=18, If 0 exceeds 18 the G routine falls.
Simitarly, if K=62, failure occurs for Q3.

This parbapge collection error is very trouhlesome for any
BASIC program that contains string arrays and does exten. ve
string manipulations.

CIRCUMVENTING THE PROBLEM:

tdeally, one would like to correct the errors in the ROM prosram.
One could reprogram a 2716 EPROM with the correct code and suh-
stitute it, after some wiring changes, for the incorrect ROM. This
Is not a simple solution to execute. There is, fortunately, a
simplier approach that is useful.

The enclosed listing is a BASIC program that, when run, places

a correct GC program at the top of memory, 1t protects the pro-
gram from being written over hy other BASIC programs, It also
sets USR function pointers so that the program can be called by
X=USR(X). Finally, it displays on the screen two useful pleces
of information. It provides a POKE statement that mav be nerded
to reset the USR pointers if they are changed hy another program.
It also provides, in decimal, the LOCATION of the GC progsram
called by USR(X).

The steps to use this approach are as follows:

1. cold start

2. Load the listed program,

3. Run the program ONCE. (Each time the prosram is run after cold
start "memory available' is reduced in Increments of the pro-

gram length) Run time is about 15 sec.

4. Record the POKE data and LOCATION data for future use.

S. Type NEW and LOAD the program to be run that contains
string arrays. .

6. Insert X=USR(X) in the program after each major concen-
tration to call the correct GC. Place the POKE statement
before this call if USR(X) is used elsewhere in the pro-
gram to be run.

A DEMONSTRATION:
Take the general program listed above. Add the following line:

60 X=USR(X)

This cleans up the garbage left after the completion of‘each
string array element, L${1). With thls addition, an 8K machine
with J=62 will now operate for Q=75 instead of % as before. For
J=26 the program will operate for Q over 200. Unfortunately,
after 50 or 60 elements are pgenerated, the program slows dovn
noticeably since the GC Is moving a large numher of strings. This
is the penalty paid for being forced to call the GC more fre-
quently than is necessary. It is hetter to err on the side of
conservatism because if the internal GC is triggered the program
bombs .

LIST

10 X=PEEK(133):Y=PELK(134)
20 L=256*Y+X:L=1-262
30 Y=INT(L/256) :X=1,-256*Y
40 POKE133,NX:POKEL134,Y
50 POXELll,X:POKEl12,Y
55 PRIUT"POKL1l,%;X;":";"POKL12,";Y
60 PRINTL; :A=45383:B=45644
70 K=L:FORI=ATOR
80 IFI<>A+34THLH100
90 1=K+146:GOTO230
100 IFI<K>A+5970IEN120
110 M=K+140:G0710230
120 IFI=A+G7TIIL.NPOKLL, 4:G0T0220
130 IFI<>A+U4THLIILG0
140 [1=K+209:GOT0230
150 IFI<>DA+137THEN170
160 =K+146:G0T10230
170 IFI=A+2167THENDPOKEL,2:GOT0220
180 IFI=A+217THENPOKLL, 24:GNT0220
190 IFI<>A+261THENZ10
200 M=K+4:G0T0230
210 X=PEEK(I) :POKEL,:l
220 L=L+1:NLEXT:PRINT"LOCATION® :L:}D
230 Y=INT(M/256) : X=}M=-256*Y
240 POKLL,Y:POKEL-1,X
250 GOT0220
OK

153

IMPORTANT ROUTINES
Floppy Disk Bootstrap FFQQ
65A Serial Monitor FEQO
65H CD-74 Hard Disk Bootstrap FDOO

. ROM BASIC Support for 540 Video
with polled Keyboard FF83

65VK Monitor for 540 Video with
polled Keyboard FEQO

65K Polled Keyboard polling Rou-
tine FDOQ

65AB 3.0 ROM BASIC Support for
serial Systems FFQO

68A2 serial Monitor for 6800
Microprocessor FEQQ

155

158

ATA SERIAL MONITOR

FEQO
FEO3
FEO4
FEOA
FEO?
FEOR
FEOC
FEOF
FELO
FE11

FE1Z
FE14
FE17
FEIR
FEIB
FEID
FELF
FE21

FE23
FE25
FE27
FE2%
FE2B
FE2D
FE2F
FE30
FE32
FE34
FE33
FE37
FE23A
FE3C
FE3F
FEA40
FEA41

FEA3
FE44
FEA&S
FE4?
FEAB
FEAE
FES1
FEZ3
FESS
FES7
FES?
FETB
FESD
FE&O
FEAL

FELS
FEA7
FEAA
FEALB
FEAE
FEAF
FE72
FE73
FE74
FE77
FE7A

ADCOFC
1A
S0FA
ADOLFC
297F

8DO1IFC
&0
2000FE
£o52
FO14
C?30
30FS
C?3A
300B
c?41
30ED
c?47
10E?
12
E706
290F
&0
A903
8DOOFC
APR1
BDOOFC
D3

78
A226
A
A?0D
200BFE
AP0A
200BFE
2000FE
c94C
F0O22
CI30
FO24
c?47
pona
AE2DO1
A
NE2NO1L
AC2901
AD2EO1L
a3
AD2FO1L
s
ADR2C01
43
AD2BO1
40
Z0C7FE
n2032

LDAit

FCOO

LSR-A
BCC FA

LDA#
AND#
FHA

LDA#

FCot
7F

FCOO

LSR~-A
LSR-A
BCC F?

PLA
STh#
RTS

FCO1

JSR FEOO

CHMP#

52

BEQ 14

CHP#

20

BMI FS

CMF#®

3A

BMI OB

CMP &

41

BMI EL

CMP#

47

BPL E9

cLC
SBCH#
ANDS®
RTS
LDAS
STA®
LDAS
STAs
cLD
SEI
LDXx#
TXS
LDAS®

06
OoF

03
FCO00
Bt
FCoo
26

oD

JSR FEOB

LDA®

oA

JSR FEOB
JSR FEOO

(o) o]

ac

BREQ 22

cHP®

50

BEQ 34

CHMP#®

a7

BNE D8

LDX#
TXS
LDX®
LDY#
LDA®
PHA
LDA®
PHA
LDA®
PHA
LOAR
RTI

012D
012A
0129
012E
O12F
o12c

012B

JSR FEC7

LDX#

o3

#FEOO#

&FEOCH

#FE3SH
#FE18#%
#FE32Z%
#FE18%

*FE18%

#FE77%
*FE2D#

#FEJAGH»

MK S e (B
-

g,

A3A SERIAL MONITOR

FE7C
FE7E
FE21

FER2
FE3Z
FEZA
FEZ3
FEZSA
FERE
FESD
FE®O
FE%2
FE?4
FE?4
FE??
FEYB
FE?E
FESF
FEA1L

FEA4

FEATS
FEA7
FEA?
FEAC
FEAF
FEBO
FERZ2
FERZ3
FEBS
FERS
FER?
FEBA
FERR
FEBC
FERE
FEC1
FECZ
FECA
FECH
FEC7
FEC?
FECC
FECD
FEDO
FED1

FEDZ
FED4
FEDA
FEDZ
FEDR
FEDZ
FEDE
FEEO
FEE2
FEE4
FEES
FEEA
FEE7
FEE®2
FEEB
FEED

AOOO
20BTFE
ADFF
Y1FC
c2
DOF 5
EAFD
BR
SOF1
ZOCT7FE
ANOO
AZ0OP
AP0D
200BFE
AZ0A
ZOOEFE
CA
FOOR
29E0FE
c8
DOF7
E4FD
AC?EFE
ANOOFC
4n
BOZE
EA
FO0UD
2012FE
0A

OA

0A

OA
S5FC
2018FE
18
73FC
FFC
L0
AZO1
20RTFE
CA
20BTFE
AO

12
ATZ0
CRzA
EBQO4
200EFE
50
AP04
SOF2
BRIFC
2Z9F0

200 FE
B1FC
290F

LDY# GO
JSROFEBS
LDA-Z FF
STA-1Y FC
INY

BNE F4&
INC-Z FD
cLv

BRVC F1
JSR FEC7
LDY# OO
LDX# 0%
LDA# OD
JER FEOB
LDAK OA
JSR FEOB
DEX

BER OB
J%R FEEO
INY

ENE F7
INC-Z FD
JMFP# FEPE
LDAR FCOO
LSR-A

BCS 2E
NOF

BCC DD
43R FE13
ASL-A
ASL-A
ASL-A
AZL-A
STA-IX FC
JZR FE1I®
cLc
ADC-IX FC
STA-IX FC
RTS

LDX# 01
JSR FERT
DEX

JSR FEB3
RTS

cLC

ADCH 20
CHMPH 2A
ECS 04
JER FEOR
RTS

ADCH 04
BCC FS
LOA-IX FC
ANDH® FO
LSR-A
LSR-A
LER-A
L5R-A
JER FEDY
LDA-1IX FC
AND# OF

+*FE7E#

4FE7Es

#FEACH

#FEFE

#+FEAQu

#FE?2#%

HFEDCH

#FEDSH#

BOTMTOWIT N
- < 2

o2

159

160

&5A SERIAL MONITOR

FEEF
FEF2
FEF4
FEF7
FEFS
FEFY
FEF
FEFE

2Z0D1FE
AFZ0
200RFE
60

40
03001
3GFE
001

JSR FED1 Qs
LDA® 20)
JER FEOR ~
RTS e
RTI e
STA-AX 0130 Q
AND-ZX FE j<lal
CPY# O1 @

ATH CD-74 HARD DISC BOOT STRAP

FDOO
FDO3
FDOA
FDO%
FDOC
FOOE
FD11

FD13
FDi4&
FD17
FDI?
FD1E
FDI1E
FLiz1
FD22
F11z24
FD27
FD2A
FD2D
FD320
FD?22
FD35
FDz8
FD3A
FD3D
FDAO
FD42
FDATZ
FDa2
FDAB
FDaC
FD4E
FD51

FO33
FDA
FD35?
FOSR
FUSE
FD561Y

FO43
FD&A
FDAR
FD&LE
FD&D
FD&F
FD71

FD73
FO75
FD77
FO79
FD7A

200CFD
AC1ISEO
2014AFD
ACISEOD
AT0O0
SDFFEF
AP00
2UFEEF
132
A207
A?00
208002
D00C2
cA
10F7
ADFFEF
2D00C2
ALFEEF
2D01C2
A%10
2C280C2
SpOzC2
AZ00
epozc2
20%3FD
AZO3
BOABFD
2C80C2
FDORC2
CA
10F4
2C80C2
A20
2no7Cc2
ADO7C2
30FB
AD12EO
AUFFEF
20B2
AD1ZEQ
4DFEEF
[0AB
AP18
2TFC
ATEOD
35FD
AZOE
8%FE
AR00
AA

Ag

12
71FC
004
ER
FOO1

12

cs
DOFTZ
EAFD
C&FE

JZR FDOC
JMFH# EOL18
J3R FD14&

JMF#
LDA#
STAH
LDAK
sSTAR
CLD

LDX#
LDAK
EITH

STA-AX C200

DEX

EO1Z
00
EFFF
o0
EFFE

07
00
C2%0

BFL F7

LDA#
STA#
LDA#
STAR
LDA#
BITH
STAH
LDA#
STA

EFFF
c200
EFFE
c201
10
c2380
c202
00
c202

J3R FD?2
LOX# 03
LDA-AX FDAB
EITH C220
STA-AX C202

DEX

BPL F4
BITH C280
LDA¥ 20
STAH# C207
LDA# C207
EMI FB
LDA# EO12
EOR#® EFFF
BEMI RZ
LDN# EOL3
EQOR# EFFE
ENE AR
LDAR 12
STA-1 FC
LDA¥ EO
STA-1 FD
LDA# OE
STA-1 FE
LDA% 00
TAX

TAY

CcLC
ADC-1Y FC
BCC 04
INX

BEG O1
cLe

INY

BNE F3
INC--Z FIL
DEC-Z FE

#FD1B#

#FD423%

#FDSh#

#FD1A#

#FD14#

HFOZa%

#FD344%

HFDOT7 105

oC

Lals}
Oz

161

ATVR 7.4 ROM BASIC SUFFORT FOR 340 VIDED W FOLLED KEYRBOARD

FFOO 2 CLD X
FFO1 A222 LDX# 22 "
FFOZz 9A X3

FFO4 2022FBF JER BF22 "y
FFO7 AOOO LOYH 00

FFO? 8C1202 STYH 0212

FFOC 8C0302 STYH# 0zZ03

FFOF 2C0502 STY# 0207

FF12 &Cos02 STY® 02056

FF13 ADEOFF LDAM FFECQ -e
FF18 200002 STA# 0200

FFIE A%20 LDA¥ 20)
FFID 290007 STA-AY 0700 W
FF20 970004 STA-AY DAOO v
FF22 9200D5 STA-AY D300 il
FF24 9900D4 STA-AY DAOO T
FF29 9900D3 STA-AY D300 S
FF2Cc 29200D2 ZTA-AY D200 R
FF2F 9920001 STA-AY D100 [
FF32 2?0000 STA-AY D0OO F
FF35 €8 INY H
FF34 DOES BNE ET #FF 1D+ PE
FF2R EB®SFFF LDA-AY FFGF Fe
FF2B FO04 BER 04 #FF 434 F
FF3Dr 202DEF JSR BF2D -7
FFAO R INY H
FF41 DOFS BNE F5S #FF 324 FU
FF43 20BSFF JSR FFE2 2
FF446 £74D CHFPR AD M
FF4a3 DOO2 BNE 02 #FFAD# F
FFan ACOOFE JMF# FEOO L
FFaD (%37 CMP# 57 1w
FFAF T0OOR BNE 03 wFFT44 F
FF51 4C0000 JMFP# 0000 L
FF54 (%43 CMFP® 43 Ic
FF35346 DOA3 ENE A8 #FFOO# Fo(
FF38& A%00 LDA¥ 0O)
FF3A AA TAX #
FFSB A3 TAY (
FFSC AC11ED IMF# BO11 L=
FF3F AR ? [
FF£0O 2F ? 4
FF&1 7 ? W
FFA2 2F A ? !
FF&43 ADZO3F ECR# 3F20 L Mg
FFé&A 00 EBRK

FF&7 Z0ZDEF 43R BF2D -7
FF&A 42 PHA H
FFAR ADOTOZ LDA# OZOT -
FFAE FO0O22 EER 22 #FFD24 F
FF70 4% FLA H
FF71 20135BF JSR BF13 7z
FF74 (50D CMFP# 0D I
FF74 DOILB BNE 1B #FFP24 F
FF72 Az FHA H
FF79 £A TXA

FF7A A3 FHA H
FF7B AZ0R LDX# OA "
FF70 A%00 LDA# 0O)
FF7F 2015FEF J2R BFID 7
FF32 €A DEX J

162

ATH CD-74 HARD DISC BOOT

FD2B
FDSD
FD?0
FD92
FD93
FD%7
FOo2
FD9B
FD?D
FD9F
FDA1L

FDAZ
FDAT
FDAS
FDA7
FDAA
FDAB
FoAC
FDAD
FDAF
FDR2
FDES
FDE7
FDBY
FDER
FOBD
FOEF
FoC1

FDC3
FOcs
FDC7
FoC?
FOCB
FOCco
FDCF
FDD1

FDD3
FDDS
FDD7
FOD?
FDDR
FooD
FODF
FDE1
FDE=
FDES
FDE7
FLE?
FDER
FDED
FDEF
FOF1
FDF:3
FOF5
FDF7
FOF®
FOFR
FOFD
FDFF

DOEF
CDI1SEE
Dog4
EC19EE
DOF?
£0
ADO2C2
o909
FooR
2904
corca
DOF3
&8

&g
AC14FD
&0

13

00
2507
20146FD
4CFCFE
z424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
zA2A
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
2424
7424
2424
2424
2424
2424
2424
7124
2424
2424
2424
2424
24AD

STRAP
EBNE EF #FD7C#
CMPH# EELS
ENE 24 #FD16%
CFX#% EE19
ENE F¢® #FDP04
RTS
LDA# C202
CMF® D2
BEQ OB #FDAA#
AND# C4
CHMP# C4
BNE F3 #FDPS#
FLA
FLA
JMFE# FD1S
RTS
BRK
AND-Z 07
JSR FD14&
JMP-IN FEFC
BIT~Z 24 #FDDE®
BIT-Z 24 #FDDOD4#
BI1T-2 24 #FODF #
RIT~-7 24 #FDE1#
B1T-Z 24 #FOE3#
RIT-Z 24 #FDES#
BIT-Z 24 #FLOE7#
BIT-Z 24 #FDE?#
EIT-Z 24 #FDEB#
BIT-Z 24 #FDED+#
B1T-Z 24 %FUEF %
BIT-Z 24 #FDF 1%
RIT~Z 24 #FOF Za
RIT-7 24 #FDF5#
EBIT-Z 24 %FLOF7 %
BI1T-2 24 #FLOFY#
EBI1T-Z 24 #FDOFE#
BIT-Z 24 #FDFD#
BI1T-Z 24 #FOFF#
B1T-Z 24 *#FEOL#
BIT-Z 24 #FEO3#
BIT~Z 24 #FEOQD#
EIT-Z 24 *FEOT7#
RIT-Z 24 #FEO?#
B1T-Z 24 #FEOB#
RIT~-2 24 #FEOD4
BIT-2 24 %#FEOF %
RIT-Z 24 #FEL1 14
BI1T-Z 24 #FE13%
RIT-7 24 #FE1Gs
EIT-Z 24 #FEL17%
RIT-Z 24 #FE] P
BI1T-Z 24 #FE 1B+
RIT-Z 24 #FE1D+#
BIT-1 24 #FE1F#
BIT-Z 24 #FE214#
BIT-1 24 #FE23%
RIT-Z AD #FDAE#

F3

163

164

ATVE

FF33
FFes
FF2s
FFa7
FFaz
FF2?
FF2A
FFSD
FF2F
FF52
FF>3
FF54
FF95
FF97
FFo9
FFor
FF2E
FFAO
FFA3
FFA&
FFA3
FFAN
FFAD
FFBO
FFB2
FFBA
FFR7
FFBS
FFBB
FFED
FFBF
FFC2
FFC4
FFC7
FFCo
FFCC
FFCD
FFCF
FFD2
FFD3
FFD&
FFDy
FFDA
FFDE
FFDC
FFDD
FFDE
FFOF
FFEO
FFE1
FFEZ
FFE4
FFES
FFE4
FFE7
FFES
FFE?
FFEA
FFEE
FFEE
FFF1

7. 4 ROM BASIC SUFPORT FOR

DOFA
&3

AA

A3

&0

Ag
CEO202
ARO0
&DOS02
63

A0

A8
A%01
DOF &
AD1202
DoO1%
A?01
£DOODF
2C00DF
S00F
AP04
8DOODF
2C00DF
G005
AP03
AC24AL
A0
2C0302
1019
AT0O2
2DO0ODF
AT10
2C.00DF
DooA
ADOOFC
AN
YOEE
ADOLIFC
4O
EEO302Z
4CEDFE
00

o0

00

00

00

00

00

40

aF
0100
03

FF

2F

00

0z

FF

2F
ACREFF
ACLTFF
4T99FF

BNE FA
FLA

TAX

FLA

RTS

PHA

DEC& 02032
LDA% OO
STA# 0205
FLA

RT3

FHA

LDA# O1
BNE F4&
LDA# 0212
BNE 19
LDA# O1
STA# DFOO
BIT# DFOO
BVC OF
LDA# 04
STA# DFOO
BIT# DF0OO
BVC 05
LDAk 03
JAMF# AL34
RTS

BITH 0203
BPL 19
LDA# OZ
STA¥ DFOO
LDA% 10
BIT# DFOO
BNE OA
LDA# FCOO
LSR-A

ECC EE
LDA# FCO1
RTS

INC# 0202
JMP# FEED
ERFE

BRK

ERK

BRK

ERK

ERkK

BRK.

RTI

-

ﬁRA~IX 00

aMP# FFER
IMP# FF57
JHUFH FF22

540 VIDED W

FF7F#

#FF2F #

#FFE7 &

#FFB7#

#FFR74%

#FF DA

#FFD3%

#FFED#

~ZIRARIT IV
N

A~mMIiDP~IOIT
<

t -
+ »

e~
>
®

-3

FOLLED KEYBOARD

&5VE

FFF4
FFF7
FFFA
FFFC
FFFD
FFFE

7 4 ROM BASIC SUFPORT FOR 540 VIDEO W

4C3FF
AC9AFF
2001
00

FE
£001

JMP# FFR7
JMF# FF2A
BMI O1
BREK.

CPY# O}

#FFFD#

orr

FOLLED KEYBOARD

165

6TVK MONITOR FOR 540 VIDEO WITH FOLLED KEYBDARD

FEOO A222 LDX# 23 "
FEOZ 2?A TX3

FEO3 D28 CLD X
FEO4 ADOLFB LDA% FBOA -t
FEO7 A%FF LDA% FF)
FEO? S8DOTFE STAR FBOS C
FEOC A2D2 LDX# D=2 "X
FEOE A9DO LDA# DO)F
FEIO 82TFF 5TA-1 FF

FE12 A%00 LDAd 00)
FE14 23FE STA-1 FE -~
FE14 €5FB <€TA-1 FB L
FEI3 A8 TAY (
FE19 A%20 LDAR 20)
FEIB ?1FE STA-1Y FE -~
FEID C8 INY H
FE1E DOFB ENE FB #FE1R# PL
FE20 EAFF INC-Z FF F
FE22 EAFF CPX-1 FF D
FE24 DOFS BNE F3 #FE1BR* FU
FE2A 8A4FF STY-1 FF

FE28 FO19 BE3 19 #FEA4A2% P
FE2A 20E%FE JSR FEE?) o
FE2D C92F CMP# 2F 17
FE2F FOILE REQ 1E #FEA4F # P
FE31L C%A7 CMP# 47 eci
FE33 FO17 BER 17 #FEACH P
FE33 C?AC CMPH AC IL
FE37 FO0O43 BEQ 43 #FE7C# PC
FE3? 2092FE JSR FE?3 -
FE3C 3R0EC BMI EC #FE2ZA# oL
FE3E AZ02 LDX# 02 "
FE40 20DAFE J5R FEDA -
FE4A3 ERIFE LDA-IX FE 1
FEAS 25FC STA-1 FC N\
FE47 20ACFE ISR FEAC o
FE4A DODE BNE DE #FE2A% P~
FEAC ACFEQO JMP-IN OOFE L
FEAF 20E®FE ISR FEE? | Sl
FEG2 C?2E CMF# ZE 1
FET4 FOD4 RER D4 #FE2A® PT
FES4A CoOD CMPH OD 1
FESS [DOOF ENE OF #FEAZ# P
FESA E4FE INC-Z FE F
FESC DOOZ BNE 02 #FEAO# P
FEGE E&FF INC-2Z FF F
FELO AQGOO LDY# 0O

FE6Z BIFE LDA-IX FE 1~
FELA &TFC STA-Z FC \
FEAL ACT77FE JMF# FE77 LW
FE6? 2093FE JER FE?3 -
FEAC 20E1 BMI E1 #FEAF % OA
FE4AE A200 LDX# 00 "
FE70 20DAFE JZR FEDA -
FE73 ATGFC LDA-Z FC AN
FE7S %1FE STA-1Y FE -
FE77 20ACFE J3R FEAC e
FE7A DODZ ENE D3 #FEAF % F5
FE7C @&5FR 2TA-7 FB C
FE7E FOCF BE® CF “FEAF % PO
FESQ ADOOFC LDAR FCOO -\

166

MONITOR FOR D40 VIDEQ WITH POLLED KEYBDOARD

4A
FOFA
ADOLFC
EA
EA
EA
2?7F
£O
00
00
00
00
C?20
2012
c22A
200E
c?41
300A
ce47
1004
ot
E?07
2?0F
&0
AR20
50
A203
AOOO
B3FC

ZOCAFE
[

AR20
s0CADO
ADRCERO
&0
220F

L5R-A

ECC FA
LOA# FCO1L
NCP

NOP

NP

AND# 7F
RTS

ERK

EREK

BRK

ERK

CHP# 30
BMI 12
CHF# 3A
EMI OB
CMP# 41
BMI OA
CMP# 47
BPL 04
SEC

SECH 07
AND# OF
RTS

LDA# 20
RTS

LDX# 03
LDY# 00
LDA-IX FC
LSR-A
L3R-A
LSR-A
LS=R-A

J3R FECA
LDA-ZX FC
JZR FECA
DEX

BFL EF
LDA# 20
STA# DOCA
STAR DOCB
RTS

AND# OF
ORA{ 20
CHMFP# 23A
EMI OZ
cLc

ADCYH O7
STA-AY DOCAH
INY

RTS

LDY# 04
AsSL-A
ASL-A
ASL-A
ASL-A
ROL-A
ROL-IX FC
ROIL-ZIX FD
DEY

BNE F2

#FESO%

#FEAD#

#FEALY

#FEAP%

“FEAP#

#FEBO#%

#FEDD#

H+FEEO#

4
4
-J
J
-J
)
e

3N

4]

PX

167

A5V MONITOR FOR 540 VIDED WITH POLLED KEYBOARD

FEE2 4O RTS e

FEE? ASFB LOA-Z FB A4S
FEER DO91 BNE %1 *FE7E#® P

FEED ACOOFD JMF# FDOO L]
FEFO A9FF LDAR FF)

FEF2Z g<DOODF STA# LFOO €

FEF3S ADOODF LDAR DFOO -
FEF8 40 RTS e

FEF? EA NOF i

FEFA 3001 BMI 01 *FEFD# 0

FEFC 00 BRE

FEFD FECOO1 INC~AX 01CO “~@

168

43K FOLLED KEYBOARD POLLING ROUTINE

FDOO
FDO1
FDO2
FDOR
FDO4
FLO4
FDO?
FDOC
FROE
FDOF
FDt1

FL:1132
FD14
FD14
FDL7
FD19
FD1B
FD1D
FDIF
FDz2
FD23
FD25
FD27
FDZ8
FD2?
FD2A
FD2D
FD30
FD31

FD32
FD23
FD37
FD32
FDz9
FD3C
FD3D
FDAO
FD43
FDA4S
FD4S
FDaA
FDAC
FD4E
FDAF
FO51

FDo2
FD>4
FD54
FD38
FDZA
FDSC
FOSE
FDAO
FD&2
FDA4
FDas
FD&2
FOAR
FDAE
FOI70
FD732

AZ01
anOODF
AECQODF
DOOT
0A
DOFT
FOS3
4A
F00%
Zh
E021
DOF3
A?LR
0021
20C2FD
o9
201302
OA

OA

OA

33
ED1302
201302
8A

4A
20C8FD
DO2F
18

?3
A01202
AR
B¥CFFD
CcD13502
D024
CE140L
FO2E
A0S
A2CE
cA
DOFD
83
DOF3
FOAE
201
FO33
AOOO
CR02
Foa7z
AOCO
Cez0
FO41
ATOO
2014602
S0502
AFOZ
2D1102
DOSF

TXA
PHA
TYA
FHA
LOA# 01
STa# DFOO
LDX# DFOO
BNE 073
ASL-A
BNE F3
BREQ 353
LER-A
BCC 09
ROL-A
CPX# 21
BNE F3
LDA# 1B
BNE 21
JSR FDC8
TYA
STA# 0213
ASL-A
ASL-A
SL-A
SEC
SBC# 0213
STA#R 02173
TXA
L3R-A
JSR FDCB
BNE 2F
cLC
TYR
ADCH 0213
TAY
LDA-AY FDCF
£MP# 0215
BNE 24
DEC# 0214
BEGR 2ZE
LOY# O3
LDX# Cg2
DEX
ENE FD
DEY
ENE F2
BER AE
CMP# O1
BERQ 3T
LOvY#H OO
CHF# 02
EBEG A7
LDY# CO
CMP# 20
BPER 41
LDA% 00
STA#k 0214
STA# 02175
LDA# 02
STA# 0Z14
BNE 2F

#FD13#

#FO0&#
#FDAALH
#FD1F3#

#FDOE#

#FDAO

#FD6LH

#FDLHBH

#FD754%

#FDAE#

#FDACH

#FDO4#

#FDBF #

#FDA7#

#FDA7 3

#FOIO4#

+~x

F5

F
HI

zn

169

170

AHTK

FD75
Fu7z7
FD7A
FD7C
FD7E
FDR1
FD24
FD=246
FD3?
FOSC
FD2D
FD3F
FD?0
FOoz
FU?4
FDo4
FD?%
FD?B
Fp?n
FORF
FDA1

FOiA3
FDAS
FDA7
FDAA
FOAC
FDAE
FUORO
FOB3
FOE4
FDR7
FI'BA
FLORE
FDRC
FDRD
FDEE
FDC1

FDC2
FDC4
FDCA
FDCS
FLOCA
FDCR
FDCC
FDCE
FDCF
FDD1
FID2
FDD%S
FOD7
FDDA
FDDC
FDDD
FDLDE
FOOF
FLEO
FDE1
FLOE?2
FDEA4
FLE&
FDE®

AZ?4L
CD1402
DOO2
A214
RE1402
2D1402
AR01
EDOODF
ADCGODF
A0
032
AA
2703
FOOR
AO10
AD1302
10o0C
AOF O
Doo2
[alelale]
€020
DoO02
AOCO
A1502
297F
CP20
F0OO7
2C1302
18
601302
801302
48

A3

L]

AA
AD1302
&0
Do?2
AO20
DODF
[alelez]
e8

oA
FOFC
40
DOBR
2F
20GAA1
312c
ADAEAZ
TA4R
]

LDX# 26
CHP# 02164
ENE 02
LDX# 14
STX# 0214
STAR 0214
LUA# 01
STA# DF0O
LDA® DFOO
L5R-A

BCC 33
TAX

ANDR 032
BEG OB
LDY# 10
LDA# 0215
BEPL OC
LOY# FO
BNE 03
LDY# 00
CFX# 20
BNE 0z
LDY# CO
LOA# 0217
AND# 7F
CMF# 20
BEG 07
STY# 0213
cLe

ADCH 0213
STA# 0213
FLA

TAY

FLA

TAX

LDA# 0213
RTS

ENE 92
LDY# 20
BNE OF
LDY# 08
DEY

ASL-A

BCC FC
RTS

BNE BB

?

JSR A15A
EOR-1Y 2C
EORS 424E
LSR-ZX 43
CLI

?

LSR-A

PHA

?

LSR-1 44
?

EOR# 55
EOR-AY G254
EOR-Z 57

FOLLED KEYBOARD POLLING ROUTINE

#FD7E#

#FDC24

+“FDIF#

#FDA7#

#FDA7

#FDA7 %

#FDR7#

#FDO5hA %+

#FDAT7 #

H#FDCAR

#FD3CH

MmO I ¥ LT ~T =z Ve~ | mr

B
Py

o,
MNE
Ve

4
G
FD
1Lt

YTR
EW

ATK

FLOEER
FLEC
FOED
FOFC
FOF2
FOF4
FDF7
FDFA
FOFC
FOFE
FDFF

00

o0
0oDOA4F
AC2E00
FF
2DBAZ0
BR?BRB7
B&RTG
B4RZ
B2
B1AD

FOLLED KEYECARD FOLLING ROUTINE

EREK

BRK

ORA¥ 4FOA
JIMF# O0ZE
?

AND# ZOBA
LDA-AY B7B2
LDX-ZY B3
LDY-ZX B3
?

LtbA-I1X AD

ro

-0
27
L-35]
43

1~

171

ATAB 3. 0 ROM BRASIC SUFPORT FOR SERIAL SYSTEMS

FFOO D2 cLD X
FFO1 A222 LDX# 28 “(
FFO3 9A TXS

FFO4 2022RF JSR RF22 "
FFO7 20FERE J5R BEFE “>
FFOA AGGO LDY# 00

FFoC 98 TYA

FFOD A20E LDX# OE »
FFOF 900302 STA-AX 0203

FF12 CA DEX .
FF13 10FA BPL FA #FFOF # z
FF1S BB7FF LDA-AY FFR7 °7
FF13 3004 EMI 0& ¥FF20% o
FF1A 2015BF JSR BFIS 7
FFID €8 INY H
FF1E DOFD BNE F73 #FF 153 Fi
FFZ0 2007BF JSR EFO7 ?
FF23 C?4D CMP# 4D ™M
FF25 DOO3 BNE 03 #FF2A% F
FF27 ACACOFE JIMF# FEAOQ Le~
FFzA C957 CHP# 57 W
FF2C D0OOZ BNE 03 #FF31# P
FF2E AC00GO JMPH 0000 L
FF31 C?43 CHP# 43 1c
FF33 DOCE BNE CB *FFOOH PK
FF25 A%00 LDA# 00)
FF37 AA TAX “
FF23 AR TAY ¢
FF3% AC11ED JMFH BO11 L=
FF2C oA AsSL~A

FF3D AF 4 [}
FF3E AE 4 K
FF3F ODFOBRE ORA#R EEFO F
FFA2 48 FHA H
FFAZ SE0AQ2 STXH 0204

FF4s AD1002 LDA# 0210 -
FFA4? [DOZ2 BNE 22 UFF D P
FF4B &2 PLA H
FFAC 2015BF JER BF1S ?
FFAF 48 PHA H
FF30 ADOG0O2 LDA 02075 -
FFS2 FO13 BEQ 13 #FFA2% P
FF55 &8 PLA H
FF36 20F3EE JER BEF2 D
FFS? C?0D CHP# 0D I
FFSB DOOC BNE OC #FFeon P
FFGD A8 PHA H
FF3E A20A LDX# oA "
FF&0 AFO0 LDAR 00)
FF&42 20F2BE JER BEF3 3
FF&T CA DEX J
FF&& DOFA ENE FA #FF&2s Pz
FF48 &8 PLA H
FF4% AE0A02 LDX# 0204

FFAC 40 RTS e
FF&D 462 PLA H
FFAE A% PHA H
FF&AF RAEL1102 LDX® 0211

FF72 DD3CFF CMP-AX FF2C 1<
FF7% DOOS ENE 08 #FF7F # F
FF77 €2 INX H

172

[
]
>
]

FF78
FF7A
FF7C
FF7F
FF31

FFa4
FFa7
FF2A
FFSE
FFSD
FFSF
FF?2
FF%5S
FF97
FF79
FF?R
FF¥D
FFAO
FFA3
FFAS
FFAS
FFA?
FFAB
FFAE
FFB1

FFE3
FFB&
FFB7
FFBS
FFB?
FFEA
FFBE
FFEE
FFEF
FFCO
FFC1

FFC32
FFC4&
FFCY
FFCA
FFCC
FFCE
FFCF
FFD1

FFDA
FFD&
FFD?
FFDA
FFDD
FFEO
FFE1

FFE2
FFE3
FFE4
FFES
FFEA
FFE7
FFE®
FFE?
FFEA
FFEB

"2 .0 ROM BASIC SUFFORT FOR

EOO4
D003
20AEFF
A200
SE1102
4CSOFF
ALOOFC
4A
013
ARO0
&U0302
ADOIFC
FOFOQ
297F
CR05
DOCF
Z0AEFF
ALO=202
FOEZ2
ADOSFB
AN
?0DC
ACEAEE
AR1002
AYFF
201002
60

43

2F

37

ZF
AD3FAD
00

FC

an
F003
ACI2AL
4C22AL
A8
A%01
DoOoO3
43
AY01
2D0302
AYO0
200502
2
20FERE
AC19A3
64

12

00

00

02

FF

3F

00

03

FF

3F
ACR7FF

CPX# 04
BNE O3
ISR FFAE
LDX# 0O
STX# 0211
P8 FF30
LDA® FCOO
LSR-A

BCC 13
LDAKR 00
STA# 0203
LDA# Froi
BER FO
ANLW 7F
CMP# 05
BNE CF
ISR FFAE
LDAR 0203
BEQ E2
LDAR FROS
LSR-A

BCC DC
-IMF# BEEA
LDAR 0210
EOR#® FF
S5TA# 0210
RTS

2
?

?

?

EOR¥ AD2F
ERK

?

LSR-A

BCC 03
JMFH AL33
JMPH AL2Z8
FHA

LDA# O1
BNE 03
FHA

LOA® O1
STA# 0203
LDA# OO
STAR 02073
FLA

-J3R BEFE
JMF# A319
?

cLC

BRK

BRK

%3) N g RV RV
x

JMFR FF37

SERIAL SYSTEMS

#FF31#

#FFAO#*

#FF27%

#FFACH#

#FF37+%

*FF37%

#FFC4#

#FFDb

LF
-\,
J

—_\
FE
FO

FE
-{
J

L.J>

INEND®

~-IW~ICr [
~ i
b

)

173

174

£GAR

FFEE
FFF1

FFFa
FFF7
FFFA
FFFC
FFFD
FFFE

2.0 ROM BASIC SUPFORT

ACAZFF
4CBDFF
ACCEFF
4CCTFF
3001
00

FF
[a{als}}

JMPH# FFA2
IMP# FFED
JMF# FFCE
JMP# FFC?
EMI Of
BRK

hrd

CPY# O1

FOR SERIAL

#FFF D4

>
[\
D
N

FEGO
FE10
FE20
FER20O
FEA4O
FEJ0O
FEAQ
FE70
FE&OQ
FEZO
FEAO
FEBC
FECO
FEDO
FEEO
FEFO

SERIAL

7€
FF
21

&0
35

1B

FF
23
a1

12
FE
3%
173
a7
20
FC
26

;OO

an
EO
7E
00

MONITOR FOR

a7
EC
EE
00
34
00
12
EZ
av
23
20
1F
c1

BA
04
04

24
21

21

0g
3%
8D
2D
7E
22

FA
52
as
20
a0
E1
11
FF
02
AL
)
24
24
OF
00
F7

00
01

FC
13
EA
SD
42
on
OF
30
07
2D
00
€D
7E
02
7F
7€

01
21
20
oC
42
=3l
20
26
37
E1l
246
CF

24
20
o7
B7
ag
2E
aon
39
Fé
A
02

7F
2B
39
1F
a3
oh
30
a4
Ft
00
B7
oA
c1
BO
Ch
FF

21

F4&
7E

34
14
OA
oR
A4
a0
2D
FC
20
B4
00
Ag

4300 MICRO FROCESSOR

7F
81
FF
£D
aD
2D
44
37
El
o0
B
z7
FC
F7
1F

27
39
A8
a7
ca
ZA
0%
A4
57
o8
26
ED
86
00
F7
EQ

Fi

2F
an
B7
a4
eD
Eé
a4
24
29
B1
FF
c1
47
01

175

176

Conventional Typewriter

This program provides a means of using the
0S1-65V when interfaced to a printer to be
used as a conventional typewriter and also
modify the text for a data file.

Consider the program as having two parts or
functions. The first part allows you to type
text in much the same way you would on a
typewriter, that is, without formatting
PRINT instructions in BASIC. You need type
only what you want to be printed.

After clearing the video screen, the program
starts by asking the user "CHARACTER WIDTH?",
This tells the program how many characters
per line to limit. The maximum width would
be determined by your printer or video dis-
play format. Next the computer displays the
line number of the text which you are typing.
An up-arrow appears on the screen (via a

POKE instruction in the program) indicating
where your line must terminate. This be-
comes a very useful feature. In the event
that the line-width is exceeded, an OVER-
WIDTH error message comes up and you are

free to rewrite the line. When the text in-
put has been completed, input a right-arrow,
which signals the program to jump to its

next section.The correct format is then
printed out on your display, following

which the screen is cleared. Next the pro-
gram lists three options. The first asks
"PRINT DATA"™ -- inputing a 1 causes the prin-
ter to turn on via a POKE instruction. The
correct text is then printed in correct for-
mat and the printer is turned back off via
another POKE instruction, The program now
displays the option list again.

The second option asks "FILE DATA" -- inputing
a 2 displays the message "SET RECORDER'.

At this point a delay loop in the program
allows you enough time to turn on the recor-
der in the record mode. %“When the loop times
out, each line of the text is preceded by
100X DATA'". Output to tape and display on
screen are as in the following condensed
example:

1000 DATA Now is the
1001 DATA time for all
1002 DATA good men

The line numbers are incremented, the word
"DATA" is inserted, and the text follows.

When inputing back from the tape, any program
could be written to use the data. The useful-
ness of the program should be readily apparent.

The third option asks "ADD DATA"™ -- inputing
a 3 allows you to continue with the text from
the point where you left off.

Note that some of the added features provided
in this program via the POKFE commands (e.g.,
screen erase and printer on-off at programmed
points) cannot he appreciated in the hard
copy printout.

General notes: a space inputed instead of
characters yields a blank line. The text is
lTimited to 256 lines of memory capahility.
The program will not recognize commas. |f you
type a line containing a comma, an error
message "EXTRA IGNOREN" will appear in the
succeeding line.

This same program can also he used on 0S-65A
(serial-hased systems) with the following
restrictions:

Mo up-arrow appears on the screen as a promp-
ter to indicate where a 1line should end.

178

The screen is not cleared at the start of
each operation (on video-based system the
clearing of the screen occurs as a result
of lines 60 and 300; on serial-based systems

these lines cause merely a triple-carriage
return-linefeed).

250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
Loo
410
L20
L30
LLo
450
L60
470
L80
490
500
510
520
530
540
0K

CONVENTIONAL TYPEWRITER

PRINT
PRINT "PROGRAM BY
PRINT "GARY SMITH"
PRINT ''4322 WATTERSON ST.
PRIMT "CINCINNATI OH 45227"
GOSUB 220
PRINT:PRINT:PRINT
INPUT "CHARACTERS PER LINE";D
1=256
DIMASC(T)
PRINT
FOR 1=1T0256
PRINTI
IFD=>25ANDD=<49THENPOKESL4149+(N=-25),94
IFD=>L9ANDD=<70THENPOKE54181+(N=-5n) ,ak
IFD=<22THENPOKESL4149+D,94
IFD=24THEMPOKES4148,94
IFD=23THENPOKES4172,94
INPUTAS(1)
IFLEN ((A$(Y)))>DTHENPRINT"OVERWIDTH":1=1-1
TFA$(1)=">"THEN260 R
NEXTI
FORC=53348T054268
POKEC,32:NEXTC
RETURN
POKE 64258,1
GOSUB 220
FORJ=1TO!-1
PRINTAS$(J)
NEXTJ
PRINT:PRINT:PRINT
POKE 64258,0
PRINTI=-1;"DATA LINESY
PRINT
PRINT "INPUT OPTION..."
PRINT
PRINT" 1=PRINT DATA"
PRINT™ 2=FILE DATA"
PRINT" 3=ADD MORE DATA"
INPUTE
PRINT
IFE=3THENI=1-1:G0T0210
IFE=1THENPOKEG64258,1:G0T0260
TFE<>1ANDE<KD 2THENPRINT"BAD IMPUT ?2":PRINT:GOTO340
PRINT"SET RECORDER"
NULL10
FORL=1TO01000:NEXT
GOSUB 220
PRINT *1000 DATA ";1-1
FORK=1TOt1-1
A=1000+K
PRINTA;"DATA ";A$(K)
NEXTK
NULLO
END

179

Hex Conversion Table

The following tables contain direct conversions b) decimal and hexadecimal integers. The tables cover a range betweesn
0-4098,g. To convert hexadecimal integsrs outside of this rangs to decimal integers, add a displacement from the following
list of displacements.

Hexadecimel Decimal Hexadecimal Decimal
01 000 4 006 1 000 126 976
02 000 8 192 20 000 131 072
03 000 12 288 30 000 196 608
04 000 16 384 40 000 262 144
06 000 20 480 60 000 327 680
08 000 24 576 60 000 393 216
07 000 28 672 70 000 458 752
08 000 2 768 80 000 524 288
09 000 36 864 80 000 589 824
0A 000 40 960 A0 000 666 360
08 000 45 068 80 000 720 896
0C 000 49 152 C0 000 708 432
0D 000 53 248 DO 000 851 968
OE 000 57 344 EO 000 917 504
OF 000 81 440 FO 000 883 040
10 000 65 538 100 000 1 048 576
11 000 69 632 200 000 2 097 152
12 000 73 728 300 000 3 145 728
13 000 77 824 400 000 4 194 304
14 000 81 820 500 000 6 242 880
16 000 88 016 600 000 6 291 456
16 000 80 112 700 000 7 340 032
17 000 84 208 800 000 8 388 6™
18 000 88 304 900 000 9 437 1.
19 000 102 400 A00 000 10 486 760
1A 000 106 496 800 000 11 534 338
18 000 110 502 C00 000 12 582 912
1C 000 114 688 D00 000 13 831 488
10 000 118 784 EQ0 000 14 880 064
1E 000 122 880 FOO0 000 16 728 640

For example: To convert 23A7,g to decimal,
1} Find 3A74g = 9361q from table
2) Add 200041g = 819249 from list
8192
+°'936
9127
thus 23A74¢ = 91274¢

180

To convert decimal integers outside of this range to hexadecimal integers, use the

Decimal Hexidecimal

MO O NBE NN 4 -

g§§888888888888888888888888

c3
DB
Fa4

8883882388388 22282883vmvonrwna
g8

For example: To convert 41,2364 to hexadecimal
1) Find 123649 =4D44g from table

2) Add 40,0004¢ = 9C404¢g from above list

9C40
+ 4D4

At114

thus 41,23610 = A1 14

3E8
700
BB8
FAQ
388
770
858
F40
328
710
E20

3E0
ABO
120
7C0
E60
500
8A0
240

$ali

ing list of di

Decimal

WL EeEWN

g§88888888888888888888888888
888888888888 888888888888¢88

Hexidecimal

O EuWNN = -

1E8
2DC
3D0
4C4
588
6AC
7A1

989
312

625
FAF

2C1
c4B
5D4
FSE
EBC
E1A
D78
CD6
C34
B892
AFOQ
A4E
9AC

480
6CO

B40

181

Hexadecimal-Decimal Conversions 0—-2FF

0 1 3 4 5 6 7 8 9 A 8 [of D E F
000 { 0000 0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015
010 } 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031
020 | 0032 0033 0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047
030 | 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063
040 | 0064 0065 0066 0067 0068 0069 0070 0071 0072 0073 0074 0075 0076 0077 0078 0079
050 | 0080 0081 (082 0083 0084 0085 0086 0087 0088 0089 0090 0081 0092 0093 0094 0095
060 { 0096 0097 0098 0099 0100 0101 0102 0103 0104 0105 0106 0107 0108 0109 0110 0111
070 | 0112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126 0127
080 | 0126 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143
090 | 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159
0AO | 0160 0161 0162 0163 0164 0165 0166 0167 0168 0169 0170 0171 0172 0173 0174 0175
0BO | 0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187 0188 0189 0190 0191
OCO | 0192 0193 0194 0195 0196 0197 0198 0199 0200 0201 0202 0203 0204 0205 0206 0207
0DO | 0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 022t 0222 0223
OEO | 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239
OF0 | 0240 0241 0242 0243 0244 0245 0246 0247 0248 0249 0250 0251 0252 0253 0254 0255
100 | 0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271
110 (0272 0273 0274 0278 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287
120 | 0288 0289 0290 0291 0292 0293 0294 0295 0296 0297 0288 0299 0300 0301 0302 0303
130 [0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 0314 0315 0316 0317 0318 0319
140 | 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 033t 0332 0333 0334 0335
150 | 0336 0337 0338 0338 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351
160 | 0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367
170 | 0368 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 038 0383
180 | 0384 0385 0366 0387 0388 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0399
180 [0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415
1A0 | 0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0420 0430 0431
1B0 | 0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447
1C0O | 0448 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0482 0463
100 | 0464 0465 0466 0467 0468 0469 0470 0471 0472 0473 0474 0475 0476 0477 0478 0479
1E0 | 0480 0481 0482 0483 0484 0485 0486 0487 0488 0489 0490 0491 0492 0483 0494 0495
1F0 | 0496 0497 0498 0499 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511
200 | 0512 0513 0514 0515 0516 0517 0518 0518 0520 0521 0522 0523 0524 0525 0526 0527
210 | 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0638 0539 0540 0541 0542 0543
220 | 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0856 0556 0557 0558 0559
230 | 0560 0661 0562 0663 0564 0565 0566 0667 0568 0568 0570 0571 0572 0573 0574 0575
240 § 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0588 0587 0688 0589 0590 0591
250 | 0682 0593 0684 0595 0596 0687 0598 0599 0600 0601 0602 0603 0804 0605 0606 0607
260 | 0808 0609 06810 0611 0612 0813 0614 0616 0616 0617 0618 0619 0620 0621 0622 08623
270 | D824 0626 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 0638 0638
280 | 0640 0841 0642 0843 0644 0645 0646 0647 0648 0648 0650 0651 0862 0853 0664 0655
290 { 0858 0857 0668 0869 0660 0861 0862 0663 0664 0665 0686 0667 06868 0869 0670 0671
2A0] 0672 0873 0874 0875 0876 0877 0678 0679 0680 0681 0882 0683 06884 0685 0686 0687
280 | 0688 0889 0690 0681 0692 0693 0694 (695 0696 0697 0698 0699 0700 070% 0702 0703
2C0 | 0704 07056 07068 0707 0708 0708 0710 0711 0712 0713 0714 0716 0716 0717 0718 0718
200} 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 :0732 0733 0734 0735
2E0 | 0736 0737 0738 0739 0740 0741 0742 0743 0744 0746 0746 0747 0748 0743 0750 0751
2F0 | 0752 0763 0754 0756 0756 0757 0768 0768 0760 0781 0782 0763 0764 0766 0768 0767

182

Hexadecimal-Decimal Conversions 300-SFF

0 1 2 3 4 5 6 7 8 9 A B C o] E F
300 | 0768 0769 0770 077t 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783
310 [0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799
320 | 0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 081t 0812 0813 0814 0815
330 | 0816 0817 0818 0819 0820 082% 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831
340 |1 0832 0833 0834 0835 0836 0837 0838 0839 (0840 0841 0842 0843 0844 084S 0846 0847
350 | 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863
360 | 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879
370 [0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895
380 {0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911
390 [0912 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927
3A0 | 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0342 0943
380 | 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959
3CO | 0060 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0872 0973 0974 0975
300 | 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0886 0987 0988 0089 0990 0991
3E0 | 0992 0993 0984 0995 0996 0997 0996 0999 1000 1001 1002 1003 1004 1005 1006 1007
3F0 | 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
400 | 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 103
410 | 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1060 1051 1052 1063 1064 1055
420 | 1056 1057 1058 105¢ 1060 1061 1062 1063 1064 1085 1066 1067 1068 1088 1070 1071
430 { 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1064 1085 1088 1087
440 | 1088 1089 1090 1081 1092 1083 1094 1095 1096 1097 10898 1008 1100 1101 1102 1103
450 { 1104 1105 1106 1107 1108 1108 1110 1111 1112 1113 1114 1116 1116 1117 1118 1119
460 | 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1136
470 1 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1148 1150 1151
480 | 1152 1163 1154 1155 1156 1157 1158 1169 1160 1161 1162 1163 1164 1165 1166 1167
490 | 1168 1168 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 118t 1182 N11&
4A0 | 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1198 1197 1188 1199
480 | 1200 1201 1202 1203 1204 1205 1208 1207 1208 1208 1210 1211 1212 1213 1214 1215
4C0 { 1216 1217 1216 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1228 1230 1231
4D0 | 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1248 1247
4E0 | 1248 1249 1250 1251 1262 1253 1264 1255 1266 1267 1258 1259 1260 1261 1262 1263
4F0 | 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
500 | 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1280 1281 1292 1283 1294 1295
510 { 1286 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
520 | 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
530 | 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
6540 | 1344 1345 1346 1347 1346 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 13569
550 | 1380 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
560 | 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1380 1391
5§70 | 1382 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 14068 1407
580 { 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
590 | 1424 1425 1426 1427 1428 1420 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
S5A0 | 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
5B0 | 1456 1467 1458 1459 1460 1461 1482 1463 1464 1465 1466 1467 1468 1469 1470 1471
5C0 | 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
SDO | 1488 1488 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
SEQ | 1504 1505 1506 1507 1508 1508 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
SF0 | 1520 1521 1622 1523 1524 1526 1626 1527 1528 1529 1530 1531 1532 1533 1534 1535

183

Hexadecimal-Decimal Conversions 600—8FF

0 1 2 3 4 5 6 7 8 9 A 8 C o] E F
600 | 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 15486 1547 1548 1549 1550 1551
610 | 1552 1553 1564 1555 1556 1557 1558 1559 1560 1561 1582 1583 1564 1565 1568 1567
620 | 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 15768 1579 1580 1581 1582 1583
630 | 1584 1586 1586 1587 1588 1589 1590 1591 1592 1593 1504 1505 1586 1597 1508 1599
(640 | 1600 1801 1602 1603 1604 1605 1606 1607 1608 1809 1610 1811 1812 1613 1614 1815
650 | 1818 1817 1618 1619 1620- 1621 1622 1823 1624 16256 1626 1627 1628 1629 1630 1631
660 | 1832 1833 1834 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
670 | 1648 1649 1650 1651 1652 1853 1654 16556 1658 1657 1658 1659 1660 1661 1662 1663
680 | 1664 1665 1668 1657 1668 1669 1670 1671 1872 1673 1674 1675 1676 1677 1678 1679
690 | 1680 1681 1882 1683 1684 1685 16886 1687 1688 1689 1690 1691 1682 1683 1694 1695
6AO | 1696 1697 1698 1699 1700 1701 1702 1703 1704 170% 1706 1707 1708 1709 1710 1711
680 | 1712 1713 1714 1716 1718 1717 1718 1718 1720 1721 1722 1723 1724 1725 1726 1727
6CO {1726 1729 1730 1731 1732 1733 1734 1736 1736 1737 1738 1738 1740 1741 1742 1743
8D0 [1744 1745 1746 1747 1748 1748 1750 1751 1752 1763 1754 1765 1758 1757 1758 1759
BEO | 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
6FO | 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1788 1780 1791
700 [1782 1793 1794 1795 1798 1797 1798 1798 1800 1801 1802 1803 1804 1805 1806 1807
710 | 1808 1800 1810 1811 1812 1813 1814 1815 1816 1617 1818 1819 1820 1821 1822 1823
720 | 1824 1825 1826 1627 1828 1829 1830 1831 1832 1833 1834 1835 1838 1837 1838 1839
730 | 1640 1841 1842 1843 1844 1845 1848 1847 1848 1849 1850 1851 1852 1853 1854 1865
740 | 1866 1857 1868 1869 1880 1881 1862 1883 1864 1885 1868 1867 1888 1869 1870 1871
750 | 1872 1873 1874 1875 1876 1877 1879 1879 1880 16881 1882 1883 1884 1885 1886 1887
760 [1888 1889 1890 1891 1882 193 1864 1895 1896 1897 1898 1899 1900 1901 1002 1003
770 | 1904 1905 1908 1907 1908 1900 1910 1911 1912 1813 1914 1915 19168 1917 1918 ‘M9
780 | 1820 1921 1922 1923 1924 1926 1926 1927 1928 1928 1930 1931 1932 1833 1934 1935
790 | 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1048 1947 1948 1949 1950 1951
7A0 | 1952 1963 1964 1955 1956 1957 1958 1969 1960 1961 1962 1963 1964 1965 1966 1967
780 | 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
7CO | 1984 1985 1986 1987 1988 1989 1990 1991 1982 1993 1994 1995 1996 1997 1998 1999
700 | 2000 2001 2002 2003 2004 2006 2006 2007 2008 2008 2010 2011 2012 2013 2014 2015
7€0 | 2036 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
7F0 | 2032 2033 2034 2035 2038 2037 2038 2038 2040 2041 2042 2043 2044 2045 2048 2047
800 | 2048 2049 2060 2061 2052 1063 2054 2065 2056 2057 2058 2059 2060 2061 2062 2083
810 | 2084 2065 2066 2067 2088 2068 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
820 | 2080 2081 2082 2083 2084 20856 2086 2087 2088 2089 2090 2091 2092 2093 2084 2095
830 | 2088 2087 2088 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
840 [2112 2113 2114 2116 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
850 (2128 2129 2130 2131 2132 2133 2134 2136 2136 2137 2138 2139 2140 2141 2142 2143
880 | 2144 2145 2148 2147 2148 2149 2150 2151 2152 2153 2154 2156 2156 2157 2158 2158
870 | 2180 2161 2162 2163 2164 2166 2166 2167 21688 2169 2170 2171 2172 2173 2174 2175
880 | 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
890 | 2192 2193 2194 2195 2186 2197 2198 2198 2200 2201 2202 2203 2204 2205 2208 2207
8A0 | 2208 22090 2210 2211 2212 2213 2214 215 2216 2217 2218 2219 2220 2221 2222 2223
880 (2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2236 2236 2237 2238 2239
8CO | 2240 2241 2242 2243 2244 2245 2248 2247 2248 2249 2250 2251 2252 2253 2254 2255
800 | 2256 2257 2258 2259 2280 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
8EQ | 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
8F0 | 2288 2280 2290 2291 2292 2203 2294 2285 2296 2297 2298 22989 2300 2301 2302 2303

184

Hexadecimal-Decimal Conversions 900—BFF

0 1 2 3 4 5 6 7 8 9 A B [o} E F
900 | 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
910 | 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
920 | 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
930 | 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
940 | 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
950 | 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2384 2395 2396 2397 2398 2399
960 | 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2435
970 | 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
980 | 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
990 | 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
QAD | 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
98B0 | 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2480 2491 2492 2493 3494 2495
9CO | 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
900 | 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
9EO0 | 2528 2529 2530 2531 2532 2533 2534 2635 2536 2537 2538 2639 2540 2541 2542 2543
9F0 | 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2656 2557 2558 2559
ADO | 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
A10 | 2576 2577 2578 2579 2580 2581 2582 26583 2584 2685 2586 2587 2588 2589 2590 2591
A20 | 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
A30 | 2608 2608 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
Ad40 | 2824 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
AS50 | 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
AB0 | 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
A70 | 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
ABO | 2688 2689 2690 2691 2692 2693 2894 2685 2696 2697 2698 2699 2700 2701 2702 2703
A90 | 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
AAO| 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
ABO | 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
ACO | 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
ADO | 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
AEO | 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2785 2796 2797 2798 2799
AFO | 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
800 | 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
810 | 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
B20 | 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
B30 | 2664 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
B840 | 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
B50 | 2896 2897 2898 2899 2900 2901 2802 2903 2904 2905 2906 2907 2908 2909 2910 2911
B6O | 2912 2913 2014 2915 2916 2917 2918 2019 2920 2921 2922 2923 2924 2925 2026 2027
B70 | 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
B8O | 2944 2945 2946 2947 2948 2949 2950 295t 2952 2953 2954 2955 2956 2957 2958 2959
890 | 2960 2061 2962 2963 2964 2966 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
BAO | 2976 2077 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
B8B0 | 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
BCO | 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
B8DO | 3024 30256 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
BEO | 3040 3041 3042 3043 3044 3045 3046 4047 3048 3049 3050 3051 3052 3053 3054 3055
BFO | 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071

185

Hexadecimat-Decimat Conversions CO0-EFF

] t 2 3 4 5 6 7 8 9 A 8 C o] E F
C00 | 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
C10 | 3088 3089 3080 3081 3002 3093 3084 3095 3096 3097 3098 3099 3100 3101 3102 3103
C20 | 3104 3105 3106 3107 3108 3108 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
€30 {3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3137 3132 3133 3134 3135
C40 | 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
C50 | 3152 3153 3154 3156 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
C60 | 3168 3169 3170 3171 3172 3173 3174 3176 3176 3177 3178 3179 3180 3181 3182 3183
C70 | 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
C80 { 3200 3201 3202 3203 3204 3205 3206 3207 3208 3208 3210 3211 3212 3213 3214 3215
C90 | 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
CAOC | 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
CBO | 3248 3249 3250 3251 3252 3263 3254 3256 3256 3257 3258 3250 3260 3261 3262 3263
CCO | 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
CDO | 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
CEO | 3296 3297 3298 3299 3300 330! 3302 3303 3304 3305 3306 3307 3308 3300 3310 3311t
CFO | 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3328 3327
DOO | 3328 3328 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
D10 | 3344 3345 3348 3347 3348 3349 3350 3361 3352 3353 3354 3355 3356 3357 3358 3359
D20 | 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
D30 | 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
D40 | 3392 3393 3384 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
D50 | 3408 3408 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
D60 | 3424 3425 3428 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
D70 | 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 345! 3452 3453 3454 3455
D8O | 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
D90 | 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
DAO | 3488 3489 3490 3491 3492 3493 3494 3495 3406 3497 3498 3499 3500 3501 3502 3503
DBO | 3504 3505 3506 3507 3508 3508 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
DCO | 3520 3521 3522 3523 3524 3525 3526 3527 3528 3528 3530 3631 3532 3533 356534 3535
CCO | 3536 3537 3538 3539 3540 3541 3542 3843 3544 3545 3546 3547 3548 3549 3550 3551
DEO | 3552 3553 3554 3555 3656 23557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
DFO | 3668 3669 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583
EOO | 3584 3585 3586 3687 3588 3589 3500 3591 3592 3593 3594 3595 3596 13597 3598 3599
E10 | 3800 3601 3602 3603 3604 3805 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
E20 | 3616 3617 236818 3619 3620 362t 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
E30 | 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
E40 | 3648 3649 3850 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
ES0 | 3864 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
EGO | 3680 3881 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
E70 | 3606 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711
ES0 | 3712 3713 3714 3715 3716 3717 3718 2719 3720 3721 3722 3723 3724 3725 3726 3727
ESO | 3728 3728 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 4743
EAQ | 3744 3745 3746 3747 3748 3749 3750 3751 3762 3753 3754 3756 3756 3757 3758 3759
EBO { 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775
ECO{ 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
EDO{ 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
EEC | 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 23818 3819 3820 3821 3822 3823
EFO | 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3836 3839

186

Hexadecimal-Decimal Conversions FOO—FFF

0 1 2 3 4 5 (] 7 8 9 A B [D E F
FOO | 3840 3841 3842 3843 3844 3045 3846 3847 3848 3849 3850 J851 3852 3853 3854 3855
F10 | 3856 3867 3858 3859 3860 38681 3862 3863 3864 1865 3866 3887 3968 3889 3870 38N
F20 { 3872 3873 23874 13875 3876 3877 3878 3879 3880 3881 13882 3883 3864 3885 3886 3887
F30 [3888 3880 3890 3801 3802 3893 3804 3895 3896 3807 3898 3809 3000 3901 3902 3VO3
F40 | 3904 23905 39068 3907 3908 3900 3910 3911 3912 3913 3914 3915 3818 3917 W18 W19
F60 | 3020 3921 3922 3923 3824 3825 W26 3927 W28 3929 3930 3931 W32 MW33 WM W35
FEO | 3936 3937 3938 3039 3940 3941 3042 3943 3944 3945 3046 947 V48 W40 3950 W51
F70 | 3962 3963 3054 3956 3956 3957 3958 3069 3960 3961 3962 3963 3964 3965 3968 3967
FBO { 3968 3960 3870 3071 3972 W73 W74 3876 3978 W77 3078 W79 W60 381 WE2 393
FOO | 38864 3986 3986 1087 3988 3980 3900 3991 3992 3993 3964 39056 3006 97 3068 3909
FAO | 4000 4001 4002 4003 4004 4006 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
FBO | 4016 4017 4016 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4020 4030 4031
FCO | 4032 4033 4034 4035 4036 4037 4038 4030 4040 4041 4042 4043 4044 4045 4048 4047
FDO | 4048 4049 4060 4061 4062 4053 4064 4055 4056 4067 4058 4060 4060 4081 4062 4083
FEO | 4064 4085 4068 4087 4088 4069 4070 4071 4072 4073 4074 4075 4078 4077 4078 4079
FFO | 4080 4081 4082 4083 4004 4086 4006 4087 4088 40U0 4000 4091 4002 4003 4004 4098

187

GRAPHICS MEMORY

CHALLENGER C4P

3 2
+0 +5 +10 +15 +20 +25 +30 +35 +40 +45 +50 +55 +60 +64
57716 57279
57280 57343
57344 57407
47408 57471
57472 57535
57536 57599
57600 57663
b
57750 57855
57856 57919
57983
57954 53047
58111
28117 58175
58176 58239
58240 58303
58304 wmwmw
6 843
mmwuw 58495
58496 58559
58560 58623
58624 58687
58688 58751
58752 58815
58816 58879
58880 58943
58944f 59007
59008 59071
5907 59135
5913 59199
£970 59263
+0 +5 +10 +15 +20 425 +30 435 +40 +45 +50 +55 +60 +64
POKE 56832,0 CHARACTERS=32 SOUND OFF B + W O INVERTED YELLOW 10 INVERTED PURPLE
POKE 56832,1 CHARACTERS 64 SOUND OFF B + W |1 YELLOW 11 PURPLE
POKE 56832,2 CHARACTERS 32 SOUND ON B + W |2 INVERTED RED 12 INVERTED SKY BLUE
POKE 56832,3 CHARACTERS 64 SOUND ON B + W |3 RED 13 SKY BLUE
POKE 56832,4 CHARACTERS 32 SOUND OFF Color |4 INVERTED GREEN 14 INVERTED BLACK
POKE 56832,5 CHARACTERS 64 SOUND OFF Color [5 GREEN 15 BLACK
POKE 56832,6 CHARACTERS 32 SOUND ON CoTor [6 INVERTED OLIVE
POKE 56832,7 CHARACTERS 64 SOUND ON _ Color GREEN FXAMPLE POKE 58270,13
*NOTE 7 OLIVE
COLOR GRAPHICS LOCATIONS ARE 3968 LOCATIONS BE- GREEN
YOND THE CHARACTER GRAPHICS LOCATIONS. EXAMPLE: |8 INVERTED BLUE
CHARACTER MEMORY LOCATION 54302 AND COLOR GRA- |9 8LUE
PHIC MEMORY LOCATION 58270 BOTH ADDRESS THE

SAME SCREEN LOCATION

IMPORTANT NEW BOOKS FROM ELCOMP

Order No. Price Title Review
150 $11.00 Care and feeding of The Eight chapters exploring PET hardware.
Commodore PET Includes repair and interfacing information.

Programming tricks and schematics.

151 $ 995 8K Microsoft BASIC Reference Authoritative reference manual for the original
Manual Microsoft 4K and 8K BASIC developed for
Altair and later computers including PET, TRS-

80, and OSI. OSI owners please take note!

152 $ 995 Expansion Handbook for 6502 and This is a revised, formal printing of our unique
6802 (S-44 Card Manual) S-44 card manual. Describes all of the 4.5 x 6.5
44-pin S-44 cards including RAM, ROM, digital

1/0, and MUX/A to D.

153 $14.90 Microcomputer Application Notes Reprint of Intel literature

154 $ 695 Complex Sound Generation New, revised applications manual tfor the
Texas Instruments SN 76477 Complex Sound
Generator. Circuit board available

155 $14.90 The First Book of TRS-80 Programs and applications ideas for the TRS 80

YRS BO 18 a tradamark of Tandy ¢ o

156 $14.90 Smali Business Programs Business Programs in BASIC for use o muost
microcomputers.

Available direct from us NOW. Dealers please contact us for starter stdck. Plans for either large or small dealershups

NEW: MONJANA/1 — THE USER-GUIDED MONITOR ROM FOR COMMODORE CBM

A well-documented, powerful new monitor ROM that any Commodore CBM user can plug into one ot the free
ROM sockets. At a price of only $98, inciuding an extensive manual, MONJANA/1 offers more user guidance

and debugging aids than any other monitor available today. It is indispensable for anyone intending to program
his CBM in 6502 machine language. (Trace, link, disassembler, dump, relocate printer option, line assembile. arud

much more.) Order No. 2001 rresterecs trade name o COMMOGDrE Busaess Min him, 11
Order No. Price Title Review
2001 $98.00 MONJANA/1 CBM Monitor installs in free ROM socket.

NEW: OURREDYSOFT CASSETTE SOFTWARE

3475 $49.00 Assembler for CBM (BASIC and Complete assembler including disassembly
machine language) and link. Cassette and manual.

3476 $69.00 Editor/Assembler in machine Fully screen-oriented, scrolling, fail-safe

language. operation.
3999 $34.50 BASIC with I/0O for TRS-80 Extended level 1 with /O and string handling
extension. Cassette and manual.

8094 $ 1.10 Blank Cassette (Quantity 1) Highest quality C-10 cassettes.

8095 $ 799 Blank Cassettes {Quantity 10)

809¢ $69.00 Blank Cassettes (Quantity 100)

3873L Schaefer Avenue Payment: Check, Visa, Mastercharge
Chino, California 91710 POSTPAID in US.A.
(714) 591-3130 California add 6% tax

PUBLISHING, INC.

