OHIO SCIENTIFIC 5607

coPYWRITE 197/
ALL RIGHTS RESERVED

THIS PACKAGE INCLUDES (IN ORDER):

*65607 INTRODUCTION
* THEORY OF OPERATION

* SCHEMATICS

#*

CONSTRUCTION GUIDELINES

*

SOFTWARE DOCUMENTATION

»

SOURCE LISTINGS

OPERATION EXAMPLES
PIA DOCUMENTATION
#

/-80 DOCUMENTATION
* 6100 DOCUMENTATION

N}SO fmo{wo(&% S60 &

Board |

INTRODUCTION

The 5682 is a totally new and revolutionary computer product. We
are inclined to call it a CPU Expander, or a computer lab on a board.
The 56872 has many applications. including the following: execution of
standard PCP-8, Z-88, and 8888 programs; investigation of microcoding
and multiprocessing: investigation of Z-28 andsor 6108 operation and
architecture; a building block for large. experimental multiple
processor arrays. Each of these applications lends itself +o further
discussion.

The 368Z Board utilize=s an Intersil €186 microprocessor, which is
capable of executing the standard PDP-8E CPU instruction set. It is
important that we state that it executes aonly +he CPU’s instruction
set, that is, it does not execute exactly IS0 inztructions that may be
found on warious PDP-2 configurations. Thiz is one of the main
reasons that PLHP-2-compatible microcomputers hauve not been awvailable.
even though the Intersil 6188 chip has been around for a long time.
This is because the PDP-8 uses what is known as microcoded IOT
instructions; that is, each peripheral interface must have the
intelligence approaching that of a conuventional CPU. For instance.
I/D0 devices can force skips, rotates, and other operations in the
accumulator, as well a3s prowviding data and other instructions to the

processor during IS0 operations. The Je8L overcomes these
difficulties by hawing the executive £502 proceszsor provide the
intelligence on all IS0 ingtructions. It does +this by actually

microceding the PDF-8 front panel. interrupt: and IOT instructions

We will discuss the concept of microcoding a little later. but what
this actually boils down +0 is that the S€@Z, in congunction with a
6502 microprocessor, can totally emulate the functicone of & PDP-8E
computer, allowing it +to run standard PDP-8 code without any
modification to that code at all. The PDOP-3 currently has +the
largest library of public domain software available in the world.
Ohio Scientific does not provide any standard PDP-8 softuare. We
suggest that the user become a member of DECUS, the Digital
Equipment‘s Users Group. There are thousands of programs awvailable +o
members of DECUS at simply the cost of duplication. o run on PDP-28 IS
and E-based computers. Softuware prouvided by Ohio Scientific in this
package should allow the user +o runm asny standard PDP-8 4K
Teletype-based program without any modification. By s=imply adding
entries to the IDT microcode table in the softuware. the user should be
able to emulate, or simulate. any =tandard FPDP-8 configuration.
including those using disk operations and extended memory.

The 3682 alsc utilizes a Z2-88 microprocessor Through this
microprocessor. it is. of course. possible %o run standard Z-8@
programs. The 5662 is configured o allow the user +o microcode
interrupt and I/0 instructionz on the Z-86 uvia the 5582 o that he
can simulate or emulate I0 ports found on other computer systems with
his standard 0SI computer system

The Z£-88 on the 5607 Board iz capable of running 088 code. I+t
does handle interrupts slightly differerntly from the 3038; however,
since the 3682 allows microcoding of IS0 and interrupt operations, it

is possible to configure the 5687 system +o exactly emulate standard
808@~based computers *to allow the coperation of 2828 programs without
any modification +to those programs

The field of microcoding, or microprogramming. is totally new <o
microcomputer users. Microcoding has really nothing to do with
microprocessors,; per se. It has to do with coding. programming. or
specifying the instruction set of a computer. That is, during the
initial design phases of any computer. and in some large computer
systems:, it is possible or necessary to specify or dynamically
specify the binary codes which perform certain operations. The
question is, what does the machine specify. and what exactly does it
do when it performs an RDD operation? The S6682 system allows an
elementary form of microcoding to be used with the 618090 and Z-80
microprocessors. This is possible because the 63582 system can have
complete executive control over the computer system. It can read any
signal line on either of +the processors, and can force certain
conditions. The use of microcoding is necessary for I/0 instructions
and interrupts on both the 2-88 and 6168 <tc¢ perform the desired

emulations, but can be utilized in other areas. To clarify this
application of microcoding. let ws consider a couple of specific
examples.

Take first the case of a £-88 processor executing a program and
encountering an INPUT statement. On the $S&682. normally configured.
when the Z-88 sees an IMPUT or OUTPUT statement. a signhal line on the
processor goes low, which stops its clock so that the Z2-88 is s+topped
dead with the INPUT instruction on its bus and the INPUT address port
on the low eight bits of its address bus. The €582 system processor
then observes this condition. goes to a tahle in its code: which
specifies what action to take (based on this input portd. obtains the
proper information. and shoves it into the Z-86. It then single-steps
the Z-88 out of the INPUT instruction. in which case., the machine
takes off at full speed again. - In this way, the 63588 system, by a
process of microcoding the Z2-88 instruction: has simulated or emulated
some standard 8880 or 2-88 I/0 port by utilizing the resources that it
has. For instance, an 2888 program may specify a Teletype port at
input port 28. and the user may have only an 0SI wideo board. This
can 2asily be accommodated by microceoding the input. In ancother
example, a 6188 is performing an I0T instruction to Teletuype. This is
more sophisticated. because the Teletype port must specify conditions
within the accumulator of the 6164 But the principle is the same.
The 6199 sees the instruction and its processor, and its clock
automatically stops, leaving the critical data and addresses on its
buses. The 63582 then reads these buses:, takes appropriate action: and
single—-steps the 6100 chip through the I0OT instruction: prowviding i+

Wwith information, and reading information from it 3s necessary. When
the 5180 has been clocked all the way through the instruction, the
machine takes off at full speed. Rlthough the microceded I/Z0

instructions themselves take much longer than normal instructions do.
their occurrence in programs is usually infrequent so that the actual
program execution takes only a fraction of a percent longer than it
would take with conventional I/O0.

All signal lines and the address and data lines of the 2Z-88 and
6188 are awvailable to be examined under program control by +the 6582.
The 2-880 and 61688 clocks are alsc single—cyclable by the &582 and the
machines are fully static. This allows a wvery elaborate and detailed
study of the 2-88 and 6168 on a8 cycle-by-cycle hkasis with complete
printout of all signal lines. This enables the student or engineer to
completely understand the operation of these processors: including
many subtleties which are not decumented in any manuals for either

processor. 2

The 5682 system can be utilized as & true nmultiprocessor. That
is, the 6582 executive can set up a task on the 6188 or Z2-88 and then
detach itself from it, so that the 6180 or Z-88 is running completely
by itself, independent of the &83582. which can then go on +fo another
task. Thus, in the S€0Z system: two processars can be running
separately and independently. Multiple 56@2s can be placed on one
6592 sustem, and 560Z2s can be placed on the system bus side of other
5602Z2s,; so there is really no limit %o the number »f processors or
‘amount of memory present on S68Z-based computers., allowing large.
multiprocessor arrays.

It is apparent from the above discussion that the 5682 is a
powerful research toocl. Several 5682s can be placed on an individual
computer bus, and 368Zs can be daisy-chained. It is also possible +to
cross—couple units with or without processors. That is, two S68Z
Boards can be populated to have portholes only with no processors
present, and be utilized between two computer systems as high-speed
portholes from one system to the other. Qther exotic multiple
processor arrays are of course possible by using the 5682 Board as a
building block with the standard 0SI system bus.

The 5682 output bus drivers are fully tristatable by an external
device. This is done specificslly so that other processors can be
present on the system side:. as well as on the executive (MOS» bus
side. This is of particular interest to 518 Board users, because the
519 software switch has a fourth position which can be utilized <o
control the tristate outputs of the 5682 It is therefore possible to
have a 516 CPU Board on the executive (MOS) buz side of a 5682 and to
have a 519 present on the system side. This means that it is a wery
straightforward operation to utilize a G602 Board as a porthole
between two 518 systems., or as an intelligent porthole with its ouwn
processor capability.

9682 CIRCUITRY

Since it has been stated earlier that the 5882 is an aduvanced
circuit for the microcomputer expert and enthusiast: heavy emphasis
will be placed on the theory of operation of the circuitry.
Construction guidelines will be clearly set down since any person
prepared to build the 5682 is expected +*o have ample previous
experience in both the construction of kits and homebrew circuits.

DIRGRAM 1 ADRESS DECODING AND ENRBLE CIRCUITRY

The 6582 executive side of the 5682 is referred to in all diagrams
as the MOS bus. The other side of the board, which minimally must
have 4K x 12 of RAM memory, is referred to as the system bus. There
are several signals which appear on both ends of the bus. such as
read/write. and these signals are labeled MOS readdurite and system
readswrite, accordingly. The SEOZ occupies a total of
4. 25K of memory address space in the executive system. 4K of thisz is
the system porthole; the other 2356 words are used to access the four
FIAs on the board. This 4. 25K address space can be placed on any 3K
boundary by selecting inverted or non-inverted AL13, Al4, and A1S wis
IC~FF and IC-R. IC-2 and IC-AA further decode Al2 through R9 to
provide four consecutive K for the porthole with the following 256
words for the PIRA. It is strongly recommended that you _Jumper your
board to conform to the 0SI standard of placing the porthole at E@B8.
which will thenh automatically place the PIARs at F280. This is a
convention utilized with all S56BZ2 soware. Address line AL2 is
provided inverted and non-inverted to combinational logic and mixed
with read/write and MOS 62. ¥YMAR to form the board ernables for both the
poerthole and the PIRs. The board enables are dialed or wired together
to form the Data Direction line for the MOS data bus. MOS 82. ¥YMA and
the MOS Data Direction are gated wia FIA signals for porthole
operation which will be discussed later.

DIAGRAM 2 DATA AND ADDRESS BUS

It is extremely important +that +the 35682 wuser become intimately
familiar with the subtleties and intricacies of the data and address
bus on the 5682 system. First, let’s consider the address which is
the lower portion of Diagram 2. The MOS address bus is presented to
the input of a set of four 741253 which can be enabled or disabled by
TOM-bar. The &582 system can coptionally prowvide addresses to the 5667
Board and beyond. The address bus goes to both the Z-88 and the &160
and is then passed ocut to 8795 buffers +to the system bus. The 8T95
butffers can be optionally tristated when used in congunction with an
additicnal 518 CPU on the system bus side, This is possible because
there iz a fourth position available on the =zoftuare processor select
switch on 518 computers. This feature allows a partially populated
5682 to be used as a unidirectional high-speed porthnle between two
518 computer systems. a feature uvhich is very valuable for
experimenation in computer science. The upper four address bits are
also passed through a four-line muliiplexer which can szelect four
address bits on the 8582 and the Z-88 systems on one side:, or:from
four PIR port lines on the other side. This feature allows memory

4,

management to occur with the 2-88 and the 6582 systems and allous
extended memory operations in 6188 or PDP-8 programs. The use of the
memory multiplexer enables the 6582 system to access any of 65K of
memory on the system bus side. while only addressing 4K of memory on
the MOS bus side.

Now on %o the data bus. There are four 8T26z on the MOS bus side of
the 568Z data bus. Two 8T26s are simply used to feed the four PIAs on
the board and utilize conventional O0SI system circuit technology.

The other two 8TZ26s feed the J60Z2°s data bus and beyond. This data
bus i=s fed to the Z2-80, the 6188, and optionally, onward to the system
data bus. The data bus is also connected to the PIRs. It is wvery

important that the user s system circuitry is properly functioning.
and that he is fully familiar with the circuits before attempting any
of his own software for use in controlling these circuits because
there are no less than five tristate devices which can provide signals
to this bus. It is not very difficult to attempt to get two <tristate

devices to output to the bus at the same time. 'If one of these
devices is an 8T26 and the other is a micro, you will end up with a
burned-up micro microprocessor. The output side of this has three

87265 to service the tuelve-bit wide £1803.

There are several subtle points about this bus. First of all, both
sets of 8T26s on the S568Z27s data bus have independently controlled IE
and DE signals. This means that these 8T26s can be set to input,
output, or totally tristate; that is, +these 8T26s are set up as
bi-directional switches with an off position so that sections of +the
bus can be %otally isolated from one another. One more important
feature is that the 7473 latch present on the system data bus allows
the 6582 system to latch in the upper four data bits from tfwelus bit
memory so that they can be read from a PIA port

DIAGRAM 3 PIA IMPLEMENTRTION

This simple diagram has extremely significant implications in the
operation of the 5602 system. It is wvery dimportamnt that +the user
become intimately familiar with the 6828 PIA zince it is +the heart of
the 566Z system. There are four PIAs present on the FC Board which
are selected by address A2 and A3 and decoded by IC-Z2 and IC-M. That
means that there are a total of twenty-four PIA control registers on
the board. which contreol sixty-four bi-directicnal I/0 lines and
sixteen interrupts. The standard syntax used for PIR lines used in
the system is AB throught A7 and B8 through BY on PIRA B8.1.2, & 3. s0
that 1A1 specifies pin 3 of the PIA at IC-%.

The 568Z software package includes a gereral purpose PIAR register
handler which is used commonly as a subroutine by other routines, and
would be wvery wvaluable to exercise in any portion of the 3S68Z Board.
Pin assignments are specified in the +table immediately preceding
Diagram 6. Each signal line will be discussed in detail later.

DIAGRAM 4 Z-3@ PINOUTS

The Z2-88 microprocessor has tristatable address data lines wuwhich

5.

are forced into tristate condition during reset. Thus., it is possible
to connect address lines AB through AL1S directly to the S6EBZ2 address
bus and data lines D8 through D7 to the data bus. Additional control
signals are connected through multiplexers to the system bus and PIRs.
These multiplexers are discussed later.

DIAGRAM 5 INTERSIL 6160 IMPLEMENTATION

The Intersil 6186 has a far different architecture than other
microprocessors such as the 2-88, 6880, and 6502. Thizs dis mainly
because it has been designed to conform as nearly as possible 1o the
PDP-8 minicomputer. It is extremely important that +the user become
quite familiar with the intricacies and +timing diagrams of the
Intersil 6188 in congunction with attempting to understand <the
operation of the system. There are quite a few subtleties involved.

First of all, the Intersil 6180 has a twelve-bit data and address
bus, which is time-multiplexed. During certain periods, +this bus
contains valid input or output data; at other times, it contains valid
address. These combinational data lines, DX8 through DX1ii, are tied
directly to the twelve-bit data bus of the 5c82Z. The upper four data
bits are also connected to a four-bit data latch, allowing eight-bit
processors to read the upper four data bits. Signal LXMAR is used <o
toggle the valid address into two hex D-flops, IC-HH and IC-GG. which
are then outputed to tristate buffers, IC-PP, IC-00. and IC~NN, which
are controlled by one of the system control multiplexers. The other
control lines are routed through multiplexers to both the system bus
and PIAs. Many lines required for the operation of the PDP-8 switch
register interrupts and IOT instructions are routed through the PIAs
s0 that the 06BZ can totally emulate the operation of the PDP-8E by
use of software.

DIAGRAM 6 BUS CONTROL

The major states of the 5682 Board are controlled by two 74153
dual four-to-one multiplexers. These multiplexers are controlled by
two PIA lines, referred to as CONPIR1 and CONFPIAZ2. The table near the
lower left corner of Diagram & specifies the states of the boards.
When both CONPIAL1 and CONPIRZ are high. the MDS buz is routed through
to the system. In this mode, the bus acts as a porthole. With
CONPIAZ high and CONPIAL low., the Z2-88 is selected; with CONPIRL high
and CONPIRZ2 low. the 6198 is selected: with both low., +the +third
processor is selected.

Let us study the operation of the two 74153s and the ¥4155 in -
detail. First of all, consider the top half of +the 744155 This
provides a low signal to one of four lines., leaving the other lines
high. These lines are TOM-bar.Z-88 Bus Request-bar, and 6188 Data
Regquest. These lines are then inverted or non-inverted as necessary
to the proper signals. This multiplexer insures that one and only one
device is operable and the other devices are tristated at any qiven
time. That is, the board can act as a porthole with the twa
processors tristated, or., with the porthole disconnected and either
one, but not both., of the processors enabled. The other half of the
741355 properly routes interrupts to the active dewvice.

The two 74153s primarily provide signals to the system. That is.
the processor selected control signals are routed to the system bus in
a form compatible with all 0Ohio Scientific system boards. First
consider the left side of the 741353, This multiplexer provides a
synthetic B82. YMAR. When the board is in the porthole mode, it is a
gated B2. VMA. that is, B2. VMA is only present on the system bus side
in a high or clock state when the 6582 is addressing the porthole.
Under normal circumstances., this is at E980 to EFFF. When the Z-80 is
selected, a pseudo-82. YMA is produced by gating 2Z2-86 MREG-bar with
Z-88 RFSH-bar. When <the 6108 is selected, we use an inverted
MEMSEL~bar. The right side of this is used to control one-half of the
output 8T26s on the 5682 Board. Remember that the 58602 can be the
source or the receiver of data i1in either direction. Therefore
particular caution nmust be taken with +this hardware +o prevent
disastrous conflicts. One~-half of the 8T26s are always controlled by
the system cards, Just as in any 0SI bus system:, so that when the &5@2
system is selected, system data direction is provided to both IE and
DE on the output 8T26és. When the Z2-80 iz selected, a common gated IR
and read—-data is provided from the Z2-80 because sometimes the Z-80
does not want data presented ta it. The 61080 does not normally require
gating of this signal line, but, it is optionally provided for anyone
who might reguire it by a jumper.

The 74153 ICYV is utilized to provide both system @2 and system
read/urite. System B2 is provided from the appropriate processor
clock signal., which may vary, depending on how the user has jumpered
the clocks. The right side of this is used to select read/urite which
comes straight from the read/write line or the Z-808 or 5108 read/urite
line. The <top half of Diagram 6 is +the all-important clock
generation circuitry for the 35692. The MOS @2 single cycle is then
put out to a 7493 which will provide clock signals diwided by 1.2,4.8.
or 16. Both the 6100 and the Z-88 can be run at 1MHz or 2 MHz. of
course. They can be run at higher speeds asynchronously. if desired.
The signals and clock frequencies desired are jumpered into 74157 for

each processor. The other side of the multiplexer is connected +to
the PIA. The select line is OR-wired %0 a large number of control
devices. In the simplest form of operation. the two control lines

(CONPIAZ and CONPIARS> are high so that the standard full-speed clocks
are routed to the processors. By bringing the select line CONPIRS
low. CONPIA3 can be used to single cycle the processors including the
system bus. This allows the 6582 to slowly read and write information
into twelve-bit 6120 memory. It also allows complete cycle-by-cucle
analysis of the operatin of both the Z-88 and the 61890,

The real power of the board, however. 1is realized with the
OR-wired control lines. These allow full microcoding of the 6168 and
2-80 instructions. Consider the case of an Intersil 6188 processor
running at full speed which encounters a switch register instruction,
In this case, it will bring line SHWSEL low. This will pop the 6108
clock signal over to single step which causes the clock to now come
from CONPIR3. Since both the 61880 and the Z-88 are fully static
chips., the Intersil 6188 will be locked in a SKWSEL dinstruction. The
6982 microprocessor can casually come in and read the condition of the
6198 single step . The 6382 can also ingect data, if so desired. onto
the 619098°s bus, which it will then read and interpret as a switch
register output. The 6582 will +then single~step the 6188 chip

throughout its SWSEL operation, until SWSEL gQoes high, in which case
the 6100 will take off at full speed again until it encounters an
interrupt, a switch register, or an IOT instruction which will allow
full microcoding. This will cause +the processor to revert
automatically to single-stepping, and thus permit full microcoding.
Since in any normal program. such instructions are only executed a
small percentage of the time, the total execution speed of a program
with wmicrocoding is only negligibly longer +than it is on a
conventional machine without microcoding. It is in this way that the
35602 system can emulate other machines such as the PDP~8E and +the
Altair 8888 completely--without any modification at all o user
software.

Please refer to the table at the end of Diagram 6 in conjunction
with this discussion. PIA-B, AB through A7, PIA-1i. AB® through A?. are
sixteen address lines which are directly across the address bus of the
system. These lines can read the address currently present on the
5682 Board. Refer to the software discussion for further details.
These PIRARs can force addresses on to the address bus. When forcing
addresses; extreme caution should be taken to make sure that all other
devices are in a tristate or read mode (rather than write mode) <o
avoid conflicts on the tristate bus and possible damage to +the PIR
port or some other part. PIA~1., PBB® through PB?, are the data bus on
the system and are directly across the 5682 data bus. They of course
can read data at any given time, and can write data. but again, care
should be taken to insure that other devices are tristated when a FPIR
is used to force data on the data bus. PIR-3. AB through A-3. are the
upper four data bits in twelve-bit systems. By presetting these four
data bits and executing a normal write operation to the S&8Z°s
porthole:; twelve bits will be loaded into system memory. PIA-3, PAR4
through PA7. are the corresponding data bites caming back from the 7475
address latch. By simply reading any system memory location with the
board set in a porthole status, the 7475 will automatically latch the
upper four data bits which can be read wvia these PIA ports. Any
attempt to output data on these four PIA ports will cause damage to
that PIR since it will be in direct conflict with the output of the
7473, PIR-8B, PBB through PBa2, are Z-288 control signals which are
useful primarily for educational use of +the Z-80 and S080. These are
available for classrcom and industrial research on the Z-88 and 82809
processor. They can also be used to microcode certain instructions
such as interrupts. PIAR-8, PB3 through PB7?. are the all-important
memory management lines. PIAR-8., B3, is the strobe, or enable, for the
memory management. When this line is brought low, *the four address
bits specified by PIAR-8. B4 through BY. are brought out on address
lines 12.13,14,&15. Some address must always be specified with 6100
systems, and it may be desirable to zpecify the upper address with
Z-80 systems. It is always necesary to specify the memory management
address when uwtilizing +the porthole. PIA-2, PAA and PAL1l, are
additional signal lines on the Z-80, which are provided primarily for
research and educational applications for the 2-88. PIA-2, A2 through
B?. are all control lines on the Intersil 61860, Some are available
for only educational and experimental purposes while others are quite
nhecessry for normal operation of the system. Refer +to the softuare
discussion and source code for applications of these lines. PIR-3, BoA
and B1, are the two processor-—select, or CONFIAL and CONPIAZ lines.
which specify tha mode or state of a board. PIA-3, B2 and B4, operate
the single-step run multiplexer and can force any processor in the
single-step mode and single-step machine. PIA-2, B3: is the 6168 run
halt, which specifies run or stop operations on the 61a@8. PIA~3. BS

through B7.

are important

2-88 control lines.

SUGGESTED METHOD FOR BUILDING YOUR 56@Z2 SYSTEM

The 5682 is an extremely complex subsystem. It is extremely
important that you have a good understanding of what is going on
before you attempt to construct and use the board since it is quite
probable that you could have fully operaticnal hardware and not know
it because of operator error. The 56BZ has been called a computer lab
on a board, and rightiy so. It is extremely powerful and has broad
applications and uses which haven”t even been thought of yet. But
because of this, it will demand your best effort. No one can simply
stuff up the PC board from the parts overlay without a fundamental
understanding of ‘the principles. I+ is very important to work in an
orderly. step-by-step process. This is particularly important because
of the large number of tristatble, bi-directional dewices on both the
addre=ss and data buses. Anybody who attempts to simply stuff up the
board and apply pouwer to it will most likely burn out several parts
It is. therefore, imperative that you build the unit and test it in
stages to preclude the possibility of destroying expensive components.

Here are the recommended steps. First of all: learn how your 0Ohioc
Scientific ¢582~based system works. Look at some schematics, follow
the descriptions in the 408 or 308 manuals; dizscover how the data
direction line., B2. YMA. and other critical control signals interact
with the boards. Secondly, learn how to read and understand the 6582
Assembler code. The S6BZ operating system is specifically written in
simple-to—follow linear code without many of the tricks of the trade
involued, so that with a cursory knouwlege of the 6502 assembler, you
should be able to follow and successfully modify the 5682 operating
system to suit your needs. Third, Carefully study the 3602 circuits
and try to understand what each IC is present for. Look up the PIA in
a Motorola M68BB Manual and be sure you understand how it works.
Carefully study the 616@ and Z-88 descriptions and review some of the
larger medium~scale pieces on the board, particularly the operation of
8TE6s, 74153s. and 74157s.

You should how be ready to start on the board. First build up the
four PIAs Just as an accessory board to your existing O0SI system.
Then test these PIARs in conjunction with the procedures outlined in
the 560Z software description. Become somewhat familiar with the 366Z2
menitor so that you can set any PIR lines that you desire to input or
output high or low. Next set up a 4K porthole . Ferform both manual
and automatic operations via the monitor so that you can understand
how the porthole woarks.

Now you should be ready to attack the microprocessors. First
install the Z-8@ followihg the instructions on both assembly and
testing and finally bring up the Intersil 6108, At +this point, you
should have understanding of the 5682 system capabilities and should
be able to proceed with the emulation of the POP-2 and common 8880
systems as well as dewvising and executing original experimentation in
computer architecture. The DOhio Scientific’s Small Systems Journal
will carry reqular articles on the 5682 subsystem

10.

CONFIGURING YOUR 5682 SYSTEM

The 5682 system minimally requires a standard Ohio Scientific
system wutilizing a 488, 568, or S19 CPU Board with a 6582
microprocessor and at least 4K of main memory. The 35682 Board is then
-plugged into the MOS bus. Then a minimum of 4K of memory must be
added to the system side of the bus, which should also include pull-up
resistors so +that a full or partial backplane board should be
utilized. This minimal system can be made to work with either uviden
or serial port on the MOS side. Houwever, the system we recommend is
the system that we use in development work with the 35682 system. that
is, a Challenger II disk system with a minimum of 16K RAM on the MOS
bus side, and a minimum of 4K x 12 on +the system bus side. This
Challenger II system should be equipped with disk:. and can have any
kind of terminal as its console terminal. However, we we recommend
that the the console terminal operate at a high baud rate, such as our
video display: or 2489 baud or higher CRT terminal; and that the
system should also have a teletype port on a 438A or 430B. located at
FBXH. The use of teletype here may seem strange:. but makes sense.
because almost all PDP-8 software is written for teletype systems and
comes from the Decus Library on conventional paper +tape. Thus the
system that we primarily support is a 16K Challenger disk sustem with
an additional teletype port on a 438A or 438B Board. a 56082, and 4K x
12 RAM on the system bus side of the 568Z. The software provided here
is designed to operate on this system under the 05-63D Disk Operating
System. The software listed in this manual is provided in object code
form on all 0S-65D diskettes. Version 2. 8 and higher: for your
conwenience. Therefore if you have a disk system with a 2.8 disk, or
newer, the software is already on the disk, eliminating your need to
enter it. If you do not have or wish to use a teletype, we strongly
urge you to use an additional port such as a video tferminal as your
control terminal for the 356862, It can be very confusing and difficult
to use the same terminal for system control functions as well as the
568 Board, particularly since you have two independent machines
running when the 5682 is up. The next-best thing ta a teletype would
be a video board or RS-232 port and a high-speed paper tfape reader
since you would need some way to get standard Decus Library PDP-8
programs into your machine, if you desire to use the 6188@. This will
require that you modify the input and output routines in the 5SéBZ

1.

MOUNTING

The 568Z Board can be mounted in slot No. 1 of a Challenger system
where the floppy disk normally goes, You tThen have room for an
additional small backplane board to be plugged into the system side of

- the 5602 and extending backward into the case. Be careful not <o

overload the system as there is only enough power to handle eight
slots. The 35682 would account for one slot, and any board plugged
into its system bus would account for an additional slot. The best
way to obtain +the bhackplane for this is to0o buy a conventional
backplane board and shear., nibble. or saw off a portion of the
backplane containing two or more slots and pullup resistor area. You
would then install normal pullup resistors on this system bus as you
would for any O0SI system. '

There is no real limitation to the number of boards you place on the
system bus side except for power and space requirements. You may have
any nhumber of boards up to the standard bus limitations including
dedicated I/0 ports on the system bus side. and up to 63K of RAM which
would allow you a world” s first (since the normal PDP-8 can have a
maximum of 32K, If more than 4K x 12 of memory is anticipated in a
normal Challenger configuration., it is recommended that you place the
560Z in the main Challenger case and run its system bus side out wvia
ribbon cables to an additional backplane board in another Challenger
case sao that you can power as many boards as desired in a 35682
subsystem.

The 56BZ, as stated elsewhere, has a fairly opan—-ended
architecture so that many exciting experimental configurations are
feasible. For example, it is possible to place a 518 CPU Board on the
system bus side of the 5682 as well as have CPU boards on the MOS bus
side. This allows interesting confiqurations; you can, for instance,
use two 5682 Boards +to tie two 3518 systems together with full
band-width data channels. 35687 Boards can also be daisy-chained or
cascaded and addresses can be strapped so that signhals can propagate
through levels of 56872 Boards. All of this is fairly esoteric, but it
is directly possible with virtually no foil cutting or circuit
modiiri~atinn, allowing totally new and unexplored computer
configuraiions.

12.

AALIODYD TNUNI ONY 340030 S333QQY - T WRDVIQ

Rl

S43dWNE SSRQQY

Yy

4 9991 O (Zv9)
WNZD QL YWAZE SOW
19 < AN | 99 1 O
ABD <}
R
(Zv4)
o%mwz - < Y70 S0W 23
< ¥ SOu
o<l
1 4 .
(434409 VIR Vid) higl Al - -
HY < i] a0
T19YNT 9218 o 00 -
el %l Sl 9
09
)

(ST Nid) f
(1M v 0w | 3Q

159 Y amid)
Tawiozls | IR

9

vl

7

o——< 0. Gy

o 0 pa X1
43-1

- JlY

> A el

” a0

< oV

2 5049

SOW

il
O,Z

>
\)L\

nos MOS DATA BUFFER Y5 DATA BUFFER qye

; {(-B,1 IC-G, K, 0 .
318726 12,14 12,14 13
By L B
o] (6B Fau 2l 106

L s *]
P S ; :
3 s 24 24 3
3 12,14 12,4 13
kg Larares 2
DY 10 9,“ 2,1 o 10 D7
[3] 24 2.4 1 153
13 8T26 ;TIZ.M Il,l4:: 8T2.6 13
£ [510 1-0 H
s 2 ol
3[s |28 : Mo oVke
i3 12,14 " 2
J ?g-zue’ 5T s | 1475 5| RS
) 9.0 lCN o
1
PIA DATA BUFFER i i r)
1C-A, b AL l A %A
D7 D@ &126 D@ 03 Pl Pl 2 =
ENABLES ™= N - & on
PIA DATA BUs T0 #-30(DIA.4), 6100 (DlA.S), o - >
AND PIA3 (TARLE 1) L-Z“ §

BUFFERED ADDRESS LINES -

TO PAG, PIAL (SEE TABIED) ok
AND TO Z80LDIA A M0 EIDIAS) oo Z f opTionAwY auT

< s 2= o AND JOMPER TO

l# MW N M6 B AN M ==55 SE ~ UNUSED BUS PIN.
s %J l 1YYy ¥ 51
A » ZD 3 4 2 g_ilé)g

7 w—t2l74]25 |2 a i3

ﬁs»-—i—ncp" 4| 195 sﬁg
A8 > S 8 12| [C-DD o LIy
4O 23 G N
AL e 7405 |2 = s AL
AZ. | g 5 ‘C'Y 8 ‘: ;AZ
P 1 msjﬁ
Ay —] 7825 " 2 UL g
Ally. m—51 |C-EE 1 - é ALY
Al w2 —; e s %Al
Alz w—=t 3 2 2 A >-Al12
AIZ 2] 74125 1" sy e EIR s
iy —] | uTE] |.RR 6 7 Al4
A15 > Ed § 57 10 9 0 15 +’—AI5

DIAGRAM 2~ DATA AND ADDRESS BUS FF' "

Vs (Al F—o
’ iPAw _Q_AZ 29 :(PR?ZO) Vee
PAL ROA |38 polumper e
4‘pA2 m 57| COPT&;s MO
51 PA3 RIY (22— MDSAY Rl R?1
< PA4 CRS1 PE— MOCAL
LIPAS Reset 2% ”‘o_l
A | —2PA wole Y o —— b
s LA e DL & ;
L PRy 2 ¥
Bo | PRI PIA D3 0
|.<_ \Z PE)Z D4 19 > P\A DATA %US
L 3! PR3 ns | (SEE DIAGRAM 2)
5 41 PR4 DG
51PR5 D7 2)
*1PRG E P2— MOY 02-VMA (B4D)
\ g PRT 31 &
o—=2{CR1 3L :
(PROT03 o 19 CBZ CSQ 22 BE
Veo —24Vee RIW & ‘
11
"
PIA LOCATIONS: T_00 ' PIANG
1LY IC-C 5 s L
AT 1C-S MOS AL @0 .@—DPIM
PIAL L . . 5
PIAS [c-F MO A3 @c ,O@DP;AZ
-2 M ,,‘O()—Do—o PA3

DIAGRAM 3 - PIA

PIA SELECT CIRCOMRY [CM (8

IMPLEMENTATION

15.

PIAL

‘7

24

PIAL
CLOCK GEN.

DATA BUS

(PIND- PAS
(PING)-PA4
(PINT)-PAS
(PN8) -PR6
(PIN9) - PAT
1C-CCPINT)

'y

(SEE DINGRAMZ) | Vec

IRG. DEMUX {C-X

Y

(PIN B)

SYS NMI 8D

PIAL
NAD

(PINI2)-PB 2.

bs A3 s ¥=¥e b |3 (5 |s |= [s |° [® |~ o o |o [u |* |-

All
AlZ

A3
Al4
AlS
CLOCK
D4

D3
DS
D6
Ve
D2
DT
D&
D1
INT
NM|
HALT
MREQ.
10RAL

ALD

Hi>

—

DIAGRAM 4- Z-80 PINOUTS

PIAL (PIN9)-PA2

« (PIN3)-PAL

FIRYL (PIND) -PAQ

PIAG (PINOS) -PAT

t {PIN®) -PAG
(PINT) -PAS
(PING) - PA4
(PINSY-PA?
(PIN4) - PAZ,
(PIN3) - PAL

PIAGT (PIN2) - PA

GND

IC-J (PIND)

PINL (PINT3)-PB3

~

=

~

~
=

-
<

>
=

PN (PIN) - PB4 —

3 IR DEMUX . L
ok ICX (PINTD

(PROTO)
PIAL (PIN15) - PBR

SBCSS GV (PIN12)
PIAL (PIN16) - PBG

16.

g100 (1¢-T

V(,(, "' VC(. DATAF
e-X (PROTONY RUN INTGNT
) W SJDMANT CPSEL
Ltlioe—4 DMRID FINIL
10K ~ CPREQ {FETCH

PAE 4 RESET Cz

IRQ DEMUX IC-X(PING) 2 TNTREQ €
s PBY 24 XTa _To
PB4 <2 £ LXMAR TWSEL
W WAT DEVSEL

PRLS Y XTs LINK
SBCSS ICV-[-(PINLY XTe i
CLEGEN. ICTS | (PN 9) S 08¢ OUT Dhio
GND "4 0% IN GND

! DXe DXo

7 DXI DX8

8 DXZ DX?

i D¥s D¥e

F’% D¥a D¥s

] W
\C-11
NOTES ¢

L 6100 Do COREESPONDS TO
0T Du 5 EC. DXo IS
HIGH ORDER BIT.

2. ON 6100 PINOUTS, PA AND
PB NOMRERS ARE REGISTERS N
PIA2. REFER TO DIAGRAM 3
FOR PIN NUMBERS.

3.0N 781747s, PINO 18Q0CK

INPOT, PIN 1 (NOT SHOWN)
1S ‘CLEAR’ INPUT PULLED UP

THROUGH

1K RESISTOR.

4. \(-GG JHH - 14114,

1C- NN, 00,

PP - 74125

- AB

40 pa2

= 0 Bis

2 pp3

- 2104 @» ~ MEMSEL - T PA4

% png

55 pp7 eIl Il

g1

>Pp2

2R3

5 pB5

°pp T

Lﬁ

28

27 &
—D D

ket D] olz 9 I\(J

25 2 ICHH - \cPp L8

¥ 1l

23 5 10 5 W _

2 = - I LT

| 4
ikl \CHY e LY
13 ,
< A
3 \ . \.0(4
i CH 1c0L—"8
. is 5 \4(*
- i cool—e
o 3

7 12 |\B(‘

d C6E 100 L0
i o Zl\‘</
2 \EC 1C00L—"3
s ape]
jd I-66 ICANL—8
13 2 5 \4(0
il 66 e L8
: 2 2 N
& GGG (NN
“D ale e N
iifg 66 ICNL-73

DIAGRAM 5- G100 PINDUTS AND ADDRESS LAICH

g =
(SEE DIAGRAM Z)

b
=

=
—

A2

A3

A4

AS

AT

(SEE DIAGRAM 2)

A8

AS

ALY

All

17.

Vee AAAA R2

JUMPER EACH FOR DESIRED
2A 4
3k 1Y & M0S CLOCK
NS |,
or7 Bt INPUT A 5|
L s <] 52 21 e 28000
21 ROw | 5y Ic-CC
3| R0 o] 3 32—t 6100 CIDK
& 2144 2
5| 4y 4§ g P ek
S
B -
e CONPAGRNISIEP) ——F
S 93 E] ST
) = S
5 | l; = (A
o 2 B ch%_ GENERATOR 18157
'} L D4L>H>comA©
il 2BCSS of
«-—Y =
N | W ([=
e - & L S =<=35
c:) > o | = M =
4,5 00 '
,lf,-J c|35]4}13 T n.nz 13 ¢ 5| 4] 3 o] uliz| 13
74153 s 74153 s
[C-BB 'I'* |C-V 14
2 7 .
. /77 i
L e 7 s [np2 ;
coNPmG) L2 sys Rik
. KAC (25)
2 5[IC-58
CONPIAD B»
_ 292 — SYS 07
(C-W (4 I(-88 el
DRUICE SELRCT " et —&> V3 8T
|| SEIeT (> > 315 02V
oo} TIC AND IRQ DEMUX -k %
0|1 ©100 ; = A A =
10| 280 Bﬂl& jé‘% N= g g
11| MOSBOS ICW 1 'z % . NIR | BE * 3 82 Sxtzt §
Y3 RASH-—0T >0 e 2
2t ;
6 e
bl : D3
DIAGRAM G- CLOCK GENEEATOR IC-X MOS NNl a——o—o = SYS NI
AND RUS CONTROL 74155 ZOMe QXN

: ?1p 5%'31?

PAD
PA1
PA2
PA3
PA4
PAS
PA6
PA7
PB@
PB1
PB2
PB3
PB4
PB5
PB6
PB7

*See Selection Table, Diagram 6.

PIAD

IC-C

A

Al

A2

A3

A4

A5

A6

A7

Z-80 RFSH p.10
7-80 INT p. 11
Z-80 TORQ p. 12
MM STROBE (CONPIA6)
MMi 2

MM 3

MM14

MM15

PIAl
IC-S
A8
A9
A10
ATl
A2
Al3
Al4
Alb
D@
D1
D2
D3

D5

D7

PIA2
IC-U

WR p.22 (Z-80)
MREQ p.19 (Z-80)

DATAF p.40
CPSEL p.38
WMEMSEL p.37
IFETCH p.36
RESET p.7
SKP p.35
NTREQ

*.
4

PIA3
IC-E
DA8

DA9

DA19
DA11
DA12

DA13

DA14

DA15

*PROCESSOR SELECT
(CONPIAT)

*PROCESSOR SELECT
(CONPIA2)

CLOCK MODE SELECT (RUN/STEP)
(CONPIA3)

6100 RUN/HALT (CONPIA4)

STEP (CONPIA5)

M p.27 (Z-80)

RESET p.26 (Z-80)

BUSAK p.23 (Z-80) °

19.

158

424

¢18

14

000

Ny

an

@

1)

%))
S

TR %

1000 o.u.o
~3 +
= WQM“ S334W0e =
% 91 00 *M - 300 m =)
@H—< o ° q x (WW)
€6l AR G21bL o0 |
) (dd) 1® 0 () ! |
' ITO = oo =
T IED vOb. bLTpL) PRl 5 | o N
(L0, M %
ha
/7 ©-)-0 T
X _m w_v_ . , R 3 =
S I Y <| [§] |[&
m—4 (gt (V) (7) (AP 4
— — D
e > (2 Vid) ey | v = = =1
= = 0289 0019 7289 sl [T 3]
4 o Vi y “
(" =< Q) @) t)
©0-)-0 Ay - - 70-0-0 O.o.o - 0-)-0
AAgad me—od. (l—4 () —4 e 90 4.
= (INN-281D0 /000 = |z Mm L
= S
Wy -~ : _ w4 o4 ™" 23
(N) “ 2 «
00 At
[[| —-=
52| 9 R =] [
68| ~ S N N
Q 9239 73-2 2289 (D)
0L0%d \ -
A x '
(3) (Q) % b
i o %
)) e (l—d
0)0 o-)0

153

A

£ld

19

20.

560Z Construction Notes

The Model 560Z should be constructed in four complete sections. These are:

I. PIAs
II. 4K Porthole
I11. Z-89
IV. 619D

A1l steps must be done in order, except that either III or IV may be omitted.
Complete each step and thoroughly test it before proceeding to the next step.

We strongly recommend socketing all parts. This will aid immensely in
troubleshooting and bringing up the board. As a minimum, the four PIAs and the
microprocessors should be socketed. _

The first and most important construction step is to inspect the board
thoroughly! The Model 560Z is a dense board; narrow traces and close spacings
sometimes result in broken runs or foil bridges between runs. These can be
seen most easily by backlighting the board with a strong source such as a desk
lamp, and inspecting both sides of the board carefully. Foil bridges can be
scratched out with a sharp razor; open runs can be touched up with a soldering
iron. Be thorough! A few extra minutes now may save an hour of troubleshooting
and a blown part later.

Prototyping area is available in the upper right hand corner of the board.
It will support one 40-pin microprocessor, or two 16-pin packages for custom
modifications to the existing circuitry. A number of unused gates are located
in various places; consylt the table on page- .

Connect together the power bus 1ines on both backplanes. Using 18-gauge~"
wire, jumper +5V, -9V, and ground across the back of the board.

I. PIA

1. Install eight Molex connectors, four each along the right and left board o

edges.
2. (DATA BUFFERS) Install (diagram 1 + 2)

1C-A 8726
8T26
74090
7404
7419
7404
7420
7494

;gNﬂUOF"I

Install diode Dt.
3. (PIA) Install (diagram 3)

IC-M 7490
IC-C PIA
E PIA
S PIA
U PIA

R1/Cl1 form an automatic power-on reset circuit. This may be omitted in
lieu of connection to a system reset 1ine on the backplane. One of the
bus 1ines must be dedicated as a master reset line (preferably B17).
Then install jumper J3. Install capacitors C2 and C3.

4. Install seven bypass capacitors near the circuits just installed.
II. Porthole (diagrams 1 + 2)
1. (Buffers) Install

J o
IC-B% 8726, 4

1/ 8126
G/ 8726

K- 8T2%

PY 74125

Y. 74125
EE- 74125
MM 74125
DD/ 8795 .
LL 7 8195 !
SSY - 8T95

RR - 74157

Install diode D2 and R5.””
2. (Control Logic) Install
ic-v/, 74153 - '~

Bev. 74153
W 74p4

X. 74155

3. Install the remainder of the bypass capacitors (11 capacitors).
IIT. Z-80 (diagram 4)
1. (Control Logic) Install

1Ic-d4 7409
ccv 8T95
Jd - 74157 -
KK 7494
Q 7493
%L g 7o Y D D

4 - .
Install diodes D3, D4, D5, and R2 and R6. Install jumper J1 from—
IC-J pin 9 to the pad near IC-BB which runs to IC-BB pin 12. Install
Jumper J2 from IC-J pin 8 to the pad below IC-II which runs to IC-II

pin 12,
2. Install clock jumper (see diagram 6) from IC-QQ to IC-JJ, pin 6.

i

DA’fA

De£S
N

FE

sult diagram 6, and select the appro riate pin of IC-QQ for the desired A
DrAGHA

clock speed. 7T@AcE [FxisTS or~R/) SPEFO
3. (Microprocessor) Install the Z-80 at IC-D
IV. 61pp (diagram 5)
1. (Control Logic) Install

IC-11 7404 ¢
1C-KK 7404
j 3 .' ii
Install R3, R4, and diodes D6, D7.

A
A
"6

22.

2. (Buffers) Install

IC-GG
HH
NN
00
PP

0
N

74174 §
74174

74125 4
74125 4
74125 J
8726 J
7475 |

3. (Clock) (see diagram 6) Install a jumper from IC-QQ to IC-JJ, pin 10.
Consult diagram 6, and select the appropriate pin of IC-QQ for the
desired clock speed.

4. (Microprocessor) Install the 61@p at IC-T.

Gate

7209
7494

7429
8795

CieevtT TRACE

Table of Unused Gates

Location

1C-J
IC-11
IC-KK

IC-AA
IC-CC

Pins

OHIO SCIENTIFIC

11679 HAYDEN STREET

HIRAM, OHIO 44234

Eris7r

ALL CAPS ARE .1

ALL DIODES ARE 1N%14

ALL R“S , ARE 4. 7K

7o =2

Céot R

5607 SOFTWARE PACKAGE
Software for the 560Z Consists of Three Parts

320p - 33D3 Z-80 I/0 Handler
3499 - 37F2 6100 IOT, Interrupt, & Switch Handler
33BPP - 3FE9 Main Driver and Subroutines

Initializing Start address is 380p
Non-Initializing Restart Address is 382F

Initialization Code Does the Following:

Clears trace flag '

Sets high four bits (H command)

Initializes all PIAs to inputs and Tow sets predefined states*
Pulses CKLN 100 times to clear out processors

Available Commands
- The Commands Below Employ the Following Notation:

nnnnd is a 4-digit hex number (address)

¢n> is a 1-digit hex number (high four bits field)
> is a 1-digit number from P to 3 (PIA number)
<000000> is a 6-digit octal number (address)
<0000> is a 4-digit octal number (data)

<0> is a 1-digit octal number (PIA line)

¢side> is an A or B (PIA side)

unction) is an H, I, or L, (high, input, or low)

- Commands are not followed by a <(return).
- If you make an error a ?? will be typed.
- A1l the move instructions are inclusive in their move Timits.

B<{nnnn} Bin load a paper tape from the UART at FBPX. <nnnny is the start of
an 8K buffer for the uncompressed twelve~-bit format data. A bin tape
loaded in this manner can be moved into the 16100 address space with
the MI command. The uncompressed format :
at <load address #2>+<nnnn} is <high four bits of data),
at (load address #2+¢nnnny+1 is (low eight bits of datad, right justified.
This bin loader is applied only on 4K loads without field changes.If a
field change is attempted, FLD is typed out and the ivader stops.

C Clear all PIAs. They are all initialized as inputs. CKLN is pulsed 100
times, as in initialization. Also, several predefined states are set.*

E Exit to 0S-65D (location 25¢9)

F<nnnny Fetch an indirect memory resident command file at ¢nnnny. Indirect
files should end with an X command.

GI<oo00) Start 16100 running at location (0000). High four bits definning the
field (4K Block) must be set with an H command. Reset is done by
placing <oooo) at location 7776 and a 5776 at location 7777, COMPIA?
is brought low, 6100 reset is brought low, INTREQ is brought high, and
the 6100 run/halt toggle is brought Tow and then high. .

GZ<nnnn> Start the Z-80 running at location <nnnny. Reset is done by placing
a C3 at Tocation PPPP, the low address byte of <nnnn> at @P@1, and the
high address byte of ¢innn> at @@@2, setting CONPIAT low, and Z-80
reset low. ‘

H <n> Set high four bits of memory management multiplexer to <n> when a GI
command is done. This sets the 4K field which the 16100 will use when set
running .This command does not affect the PIA until a GI command is executed.

I Go to the I6100 IOT, Interrupt, and Switch Register handler located at
340p. The only way to exit the IOT handler is to reset the computer and
restart this program. If the 16100 is running and not executing I0Ts or
interrupts when you reset, reentry of this driver package at 382F will not
interrupt it. You may halt a free-running 16100 or Z-80 whith the C
Command. I/0 is passed to the UART at FB@X.

KH Set CKLN as an output and output a high. This effectively sets $#2 high
on the 560Z Board. This and the KL Command are used for manually
clocking a processor.

KL Same as KH, but outputs a Tow.

L{wnnny Set to Tearn mode. Everyting you type will be placed in memory at location
<nnnn> upwards. This is .used to generate an indirect command file accessible
by an F Command. <(Return)s may be typed now to format commands, but are not
stored. A $ typed at any time will exit you to Command Mode again. The
number typed is the Tocation where the next character would have gone. It
is effectively the end of the file. Command files should have an X Command
as their last command so that when executed, one returns to Command Mode.

MF {nnnn>, =<nnnny o, <nnnn> 3 Moves eight bit memory from location <nnnn>, on the
560%'5 side of the bus, ending at <nnnn>3 to location <nnnn>; on %he 6502's
bus and upwards. Move from the 560Z side to the 6502 side.

MI<nnnnd> 1=qmnnny o, <nnnn>3 Moves the uncompressed twelve bit format from the
650% bus starting a% <nnnn)2 and ending at <npnnny 5 to location <nnnn>]
upwards on the 5607 side.

MT &innn> =<nnnmy 2, {nnnnp 5 Opposite of the MF command. Moves from the 6502 side
from <nnnnj o to <nnnn>3 to the 560Z side starting at <nnnnyj .

P Print PIA status table. Prints a 16 line table, twolines for each of the
four PIA ports. Every other line is labeled as to which PIA it is referen-
cing (0, 1, 2, or 3) and which side (A or B). The first of each of the
two 1ines is a dump of the Data Direction Register (@s correspond to lines
set as inputs, 1s correspond to lines set as outputs). The second of each
eight pairs of lines is the contents of the Data Register. If a PIA bit was
set as an output, the corresponding data bit is being outputted. If a PIA
bit was set as an input, the corresponding data bit is the status of that
input.

R<nnnn> Pulse the clock 1line (CKLN) with a delay constant of <nnnn>. @099
means run as fast as possible. FFFF is the slowest run. (@2 period of 1 sec.)

25.

S<LY<Sidep<o><Function? Set PIA number <L, Side <Side> bit <o> according the the
Command Function . Bits are numbered with the least significant bit as 0.
The following are the possible commands for {F>:

H - Set as an output and set that output high
I - Set as an input
L - Set as an output and set that output Tow.

Set the I6100 IOT handler's trace flag. Each opcode is pritned as it:
is handled.

W¢ooooy Set the switch register contents to be {oooo). Switch register value
is contained in the IOT handler package. When an 0SR is executed, the
contents of that location are fed to the 16100.

X Exit the indirect file command mode and return control to the console.

7 Go to the Z-80 I/0 Handler at location 32p@. This must be exited with a
reset much like the I Command, I/0 is passed to the UART at FBPX.

<000000)/<0000> Open the twleve bit data location (oooo0o> on the 560Z side.
The driver responds with the /<0000 which is the contents of location
€000000>. A line feed closes this location and opens the next. An open
location is subjected to being reopened by changing the contents of the
location. This is much like the # command for the Extended Monitor.

* Predefined States on Start or C Command. The following line are set outputs high:

(Z8O)INT (pB1) CONPIA] (3B@)
MMENAB (9B3) CONPIAZ (3B1)
IGIRST (383) RUNSTP (3B4)
INIREQ (2B@) [CIPHT (2A6)

560Z BOARD TESTING WITH SOFTWARE PACKAGE

1. Testing PIA Ports. Once the board is populated enough for the PIAs to
be functional, it is a good idea to test a few PIA lines on each side of each
of the four PIAs.

Start up the utility driver and set MMENAB low (S@B3L). Then, set up
the high address on MMj2, MM13, MMi4, and MMi5. Most likely, one would set them
all low to access the first 4K on the 560Z Bus. Exit the driver package with the
E Command. Enter a Monitor (The Extended Monitor or a PROM Monitor). The 4K
block which you have selected with MM 2, MMy3, MM14, and MMjg should be visible
through the 4K window at EXXX. The first byte of the 4K block is at location
EPPP, the second at EPP1, and so on. Try writing and reading what you wrote
to verify that the memory is really there. Be sure that the memory has been
pre-tested before you use it on the 5607 Bus.

Once the program has been loaded and started, a P command should yield all
PIAs set as inputs and various different bit patterns being inputted. Try setting
some bits as outputs low and outputs high and see if those settings were made pro-
perly by examinina the status of the PIAs with the P command.

If the board passes these initial tests, then use a voltmeter or a scope to
examine several PIA 1lines as they are toggled low and high. Check at least a couple
bits on each side of each PIA.

26.

2. Accessing Memory through the 4K portal using the memory management

multiplexer. MMENAB line to PIA @,Side B , Bit 3 controls the memory
management multiplexer.

Cay ade :'[.Q _."

MMENAB- Tow - the high four bits of an address on the 560Z's bus come from
MM12, MM13, MM14, and MMI15.

MMENAB - high - The high four bits of an address on the 560Z's Bus simply
pass through from the 6502's Bus.

Running a Z-80 Program Manually

Clear all PIAs with a C Command.

Set MMENAB Tow (SPB3L) so we can set up a 4K block of memory to view through
the 4K window. .

Set MMIZ, MM13, MM14, and MM15 low. (S@B4L, S@B5L, SﬂBGL,SﬁR’]L)

Exit the driver with an E Command and enter the Extended Monjtor on your
PROM Moni tor.

Place a C3 (Hex) at location EQ@@, the Tow-byte starting address at E@@1, and

~ the high bytes starting address at E@P2. This sets up a jump instruction to

your program since the 7Z-80 on reset starts executing at location 90Q9@. If
your program resides also in the first 4K block of memory, enter it at

this time. Otherwise, restart the driver package and set up the high

four bits, exit, and use a Monitor to enter the program. Understand that
you must write data into E@P@ to EFFF to access the proper 4K block.

Restart the driver at 38pp. (This clears all PIAs)

Set CONPIAT low (S3B@L)

Set Z99RST Tow (S3B6L)

The Z-80 should now be running.

To halt it, set Z80RST high (S3B6H) and then clear the PIAs with a C Command.

A 7-80 Test Program

Location Contents

*=200
200 . 3E 45 START LA #45
202 32 @b @2 L Rl R1« 45
205 E6 PF AND #F ’
207 32 QE @2 L R2 R2¢5
2PA C3 QA @2 LOOP JP LOOP
20D o8 R1 .BYTE @
20E JuJi] R2 .BYTE ¢

.END

If this program runs successfully, a 45 will be placed at location 2¢D
and a 5 will be placed at location 20E.
-

TEST 789 1/0

2pp - DB P21 START IN 1
2 CB 1F RR A
4 D2 09 92 JNC START
7 DB 00 IN @
9 F5 PUSH AF
A DB P01 WAIT IN 1
C € 1F RR A
E CB 1F RR A
19 D2 A @2 JNC WAIT
13 Fl POP AF
14 D3 19 : outT 1P
216 C3 PP @92 JP START
19
Port [/ - Input Data
Port 1 - Input/OQutput Flags

Bit P high keyboard data ready
Bit 1 high printer ready for data

Port 19 Output Data

THE Z8p I/0 HANDLER

The program which is supplied handles the following port assignments:

Port @ - Teletype input. Read this location for data when
bit @ of port 1 goes high.

Port 1 - Bit @ high means input data is ready and available
at port p. Bit 1 high means port 19 is ready to
to receive new output data. :

Port 19 - Teletype output. Write data to be printed to this
port when bit 1 of port 1 goes high.

Additional ports may be decoded (not all unassigned ports pass valid data).
Simply replace the zero in the location 32C8 + Port number with an offset which,
when multiplied by 3 and added to 33C8 will point to a jumpinstruction to a sub-
routine to handle it. Since ports may be used both as inputs and outputs a
single port handler will have to look at the value of location 26 on page p.

A zero means an OUT instruction, non-zero implies an IN instruction. The example
shows I/0 routed through the UART at FBPX. This could easily be patched to use an
I1/0 device other than the UART for Teletype I1/0.

Note: Patch area is located from 317E-—=»31FF, 33D4 ->»33FF, 37F3->37FF, and
3FEA—>(end of memory).

28.

4. RunninganI6100 Program Manually

a. Load the program intoc memory via the # Command

b. Load the starting Tocation into location 7776 in the 4K block where the pro-
gram executes, and a 5776 into location 7777 in the same 4K block. This
sets up the reset start.

c. Type the C Command to clear all PIAs.

d. Set MMENAB low. (S@B3L)

e. Set up the high four bits of the memory management (MM12, MM13, MM14, and
MMI5S). For example:

SpBaL
SPB5H
SPB6L
SPB7L -

Sets the high four bits to PPIP which selects the third 4K block.

.

Set COMIA Tow (S3BIL)

Set I61RST Jow (S3B3L)

Set I61RHT(CONFIA4) low, then high (S2A6L S2A6H)

The 16100 should now be running. You can halt if by repeating step h which
sets the run/halt toggle in the I6100 to halt. To continue, repeat step h.
j. To stop the 16100 halt it as shown in step i. then clear all PIAs with the

C Command.

- -4
. . .

A Test 16199 Program

This test requires only a 4K by twelve-bit 420 Memory Board on the 5607
bus. If run successfully, it will place an octal 5777 in location 0211 and a 1
in location 021@. On reset the I6100 starts executing at location 7777. Thus,
our general practice will be to place an indirect jump at that location. So, to

Location Contents
*=200
200 7291 START, CLA IAC / Set AC=1
201 3219 DCA R1 / RL<1
202 7049 CMA / Set AC=7777
203 7112 CLL RTR / Shift right twice
204 3211 DCA R2 / R2€-5777
205 7519 SPA
26 5206 JMP . / Infinite Toop 1
2p7 5297 JMP . / Infinite loop 2
210 o090 R1, p
211 poapg R2, p
7776 p200 INDIR, START
7777 5776 JMP T INDIR / Restart Jjump

start any program, place the starting address at location 7776 and the instruc-
tion 5776 at location 7777.

29.

Location

poa2e
201
2p2
203
204
205

206
207
219
211
212

30
3]

ap
41
42
43
44

46

50
51
52
53
54

Test I/0 Program for 16100

Data

6046
6032
6031
5292
6036
1212

6941
5206
6946
5201
pop1

/ Read
*200
START

ONE
Restart

7776 - P
7777 - 5

Character Add 1 Echo it

TLS Clear print buffer
KCC Clear flag
KSF Wait
JMP -1
KRB Read
TAD ONE Add 1
TSF Wait
JMP =1
TLS Print it
JMP START+1 Loop Back
1 Constant
Jump
209
776

/ Interrupt Test for 6100

papp
524p

6901
5231

6{31
7419
5250
6p41
7419
5260
5246

6036
1271
3279
6001
5609

*=g
INT,
/ Start + Wa

*=3)
START,

*=4
SERV,

INFINT,
/ Device S
*=5¢
KB,

EXIT,

P
JMP SERV

it Loop

ION
JMP STARTH

KSF

SKP

JMP KB

TSF

SKP

JMP TP

JMP INFINT

ervice

KRB

TAD ONE
DCA BUFFER
ION

JMP T INT

30.

*=6f)
60 7200 TP, CLA

61 1279 TAD BUFFER
62 7459 SNA

63 5253 JMP EXIT
64 6p46 TLS

65 7200 CLA

66 3279 PCA BUFFER
67 5253 JMP EXIT

*=70

0 D0pp BUFFER, @
71 pppl ONE, 1

7776 - 0039
7777 - 5776

560Z 10T, Interrupt, and Switch Register Handler for 16100
Additions to the IOT Tables
16100 IOT instructions are of the form:
6 {device numberd {evice op»

The {device number® is a two-digit octal number specifying a unique device.

For example, P4 is the Teletype printer. The IOT handler obtains this number
and the <device op> during the execution of an IOT instruction by the 16100.

The first digit of the device number times two is used as an index into the
table of device tables. This yields an address of a table, which, when indexed
by the second digit of the <{device number> times two yields a table of addresses
of opcode handlers. This opcode table is indexed by the <device op times two
to yield an address of a subroutine to handle that particular device operation.
For example the IOT instruction 6034 (KRS) has a {device code® of P3 and a
{device opy of 4. Let us follow through the index tables:

P indexes to location 374B in the table of device tables. This gives,; the
address 375B. The 3 indexes to location 3761 where we find the address
378B. Finally the 4 indexes to location 3793 where we find the address
(36BD) of the KRS instruction handler.

Each instruction handler ends with an RTS which returns us to location 3484.
Since there are two parts ofan16100's I0T instruction execution, we again index
into tables to see what to do next. The first digit of the device number)
times two indexes into the table at 37C3, yielding an address of the table which
is indexed by the second digit. We then go to that location to handle the
second part of an IOT. Normally most instructions will wait for XTC to go Tow,
then the 16100 is set to run free.

Loading and Running FOCAL Off Paper Tape

—
.

Load and start up the driver package.

2. Type a B@2@@. This calls up the bin loader to Toad a tape from the UART.
The loader makes a modification to 0S-65D to enable it to get full eight-
bit data (i.e., not masked to 7 bits). If one were to reset while bin

3]_

loading, a 7F would have to be placed in Tocation 23pC before 0S-65D, or
the driver package would work.

Start reading the tape in, the loader will return when it senses the
trailer tape (channel 8 punches). FOCAL consists, usually, of 2 tapes to-
gether; the first part is FOCAL and the second part is its initialization
program. Thus, continue the bin Toader with BP2@@ again to load the second
part in over the first.

3. Exit with an E Command. Save the block of memory from @209 to 21FF on disk.
For example: :

S40,1=p2pp/C p2¢0/C
S41,1=pEPP/A PEPD/ A
S42,1-18pp/A 1800/A

Return to the 560Z driver package and do a MIP@PP=p2pP,21FF Command. This
moves FOCAL into the 560Z's memory (twelve-bit memory). '

Clear all the PIAs with a C Command.

Set the switch registers to 60@9 with the W Command. (Woo000)

Set the high four bits with the H Command (H@)

Then start FOCAL at 9209 with GI@209.

Execute an I Command to handle the I0Ts and interrupts. Be sure the IOT
handler package is loaded at 34p@. A1l I/0 is passed to the UART at FB@X
by the IOT handler.

(Voo N e NS | >
. . . * . »

Hand Clocking a Processor (I6100) / (Z-80)

Follow the same procedure you use when vunning a 16100 manually up to step 8.
Just after step 8, use the following steps:

9. Set RUNSTP low. (S3B4L). This sets the clock multiplexer into single step
mode. P2 comes from CKLN rather than the 6502's 02.

10. Set I6TRHT(CONPIA4) low, then high (S2A6L S2A6H). This starts the 16100.

11. To single-step the 16100 you must provide the 92 clock with the KL and KH
Commands. P2 is generated by typing alternating commands of KL and KH or
the R Command. At any time you may view the address or data lines with the
P Command, or examine and change any other lines. Then continue. This per-
mits you a detailed look at a running micro.

The Z-80 can be single-stepped by using the instructions to manually run a Z-80
up to step 6. Just after step 6, use the following steps:

7. Set RUNSTP Tow. (S3B4L)
8. Set Z8PRST low. (S3B6L)
9. Clock the Z-80 in the same way as you clocked the 16100 in step 11 above.
PIA Bit Assignment Table in the Utilities Package
On the 5607 board there are 4 PIAs as listed below:
PIA @ at FpQP
PIA 1 at FOp4

PIA 2 at Fp@8
PIA 3 at Fp@C

32.

Note that each PIA has two sides, A and B, each of which has eight bits.
Referring to the spec sheets on the PIAs you are using, you will see that

each side has two registers, a control register and a data register. The con-
trol registers are at odd locations (F@p1, Fp@3, FPP5, Fp@7, FOP9, FPPB, FPED,
and FPPF). The data registers are at the even locations (FPP@, FPP2, FPP4,
Fop6, FPP8, FPPA, FPPC, and FPPE). In the utilities package each PIA bit (out
of the 64 possible) has two bytes which completely identify it. The first is
an offset from FPPP to the data register. We know, of course, that the corres-
ponding control register is 1 location past the data register. For example
DEVSEL has an offset of A which means it is on PIA 2, side B.

PIA No. Side Offset
P A P
p B 2
1 A 4
1 B 6
2 A 8
2 B A
3 A C
3 B E

The second number is an eight-bit number with the bit set which corresponds to
the bit line in that data register. For example CKLN which is in PIA 3, side

B has a bit mask byte of 49 which is bit 6. Thus the CKLN is on PIA number 3's
PB6 line.

Bit Mask Bit Number
1 2
2 1
4 2
8 3
19 4
20 5
49 6
8p 7

A1l 64 lines are uniquely identified on the table at the end of the utilities
package. (locations 3F2F to 3FAE). The positional order of the table is im-
portant. Changes in the order of the table without proper changes in the soft-
ware could render the driver useless.

This format for line definition was adopted so that PIA bit assignments could
easily be changed. This is useful if one is redefining bit assignments. Note
that since some lines can be tristated on some processors, single lines may have
more than one function. This feature was not used in implementing just the
16100 and Z-80, for the sake of simplicity.

33.

Example:
Testing PIA Ports

A G3800 _
&P ‘ - = ;xi?Ui Example: Running
0k 00000000 - 7 Z-80 Manually
00000000 | "~
08 00001010 g:gssoo
00001111 ‘
1A 00000000 2t SOB3L
' Z3 50B4L
11110000 5
1B 00000000 Z3 SOBSL
11111111 : zsggggt
21 01000000 Example: Z15
11011011 4K Data Window Z;EE
00 R
® ???8300} A% G3800 $#£000723 C3
3A 00000000 Zs SOB3L $#E001/00 00
11141111 Z3 SOBA4L $#E002/3E 02
3B 00011011 43 S0BSL $#E200/DB 3E
11111011 Z3 50B6L t#E201701 45
Zt SOAOH Z3 SOBTL $#E202/CB 32
ZESOATL Z3E $#E203/1F 0D
Z:S1A6L A*HE $#E204/D2 02
Z31S1A40H $#E000/745 23 723 $#E205700 Eé
Z1S1B3H t#E348/700 FF /FF I#E206702 OF
Z: S1B4L S#EEQL/780 A7 /47 $#E207/DB 32
Z3: S1B5H S#EFFF/724 67 /67 t#E£208700 OE
Z1S3AlL D I¢E209/F5 02
z Ax 1¥E20A/DB C3
3 S3A0H
:#E20B/01 0A
Z:S3A2L
Z1 S3A3H $#E20C/CB 02
Z:P $#E20D/1F 00
0a (Doooooof) 1#E20E/C2 00
00000000 D oo
0B 00001010
23 S3BOL
00001111 S3B0L
1a odooooo® z:gaB L
11110000 2353B6
1B 0 00 2:C
11101111 z: SOB3L
24 01000000 43 SOBAL
11011011 g:ggggt
28 00000001 '
1010000 23 SOBL
3Aa 000 ZtE
A%HE
11111001
t#E20D/45
38 00011011 #E20D/A4S
11111011 tE2
D
FAYY i
Z1E :

Example: Manually
Running 16100

Example: Z-80

A*G3800
In/Qut Program | Z31#000200/5674 7201
A*RE | 74 #000201/1137 3210
1#0200/31 DB 7314000202/3022 7040
£#0201/80 Ol | 7140002037 7001 7112
$#0202701 CB 71#00020473100 3211
+4020370E 1F 71 #000205/3026 7510
£€0204704 D2 714000206/1226 5206
140205721 00 Z:#000207/3013 5207
+#0206700 02 71#00021071225 0000
$#0207/D0 DB Z1#00021174551 0000
140208706 00 7140077767 7444 0200
$#0209700 FS 714007777/ 7547 5776
1#0204736 DB Z1C

¢#4020B8/20 Ol 73 SOB3L

1#020C/23 CB 73 S0BA4L

3#020D/10 1F Z$ SOB5L

$#020E/FB CB Z1 SOB6L

+#020F/0D 1F Z2 SOBTL

$#0210/20 D2 Z1S3BIL

1#0211/F8 0A Z3 $S3B3L

140212721 02 28 S2A6L

$40213700 Fl 28 52A6H

1#0214/00 D3 Z3 S2A6L

$#020R? 73 S2A6H

$§0215/22 10 Z1C

14021 6/FE C3 21#000210/0001
+#0217/00 00 Z1#000211/5777
1#0218/18 02 Z3E

$G3800 A%
ZIMT0200=0200,0218

Z1 GZ0200

Zz

THIS IS INPUT ECHOED BY THE Z80 PROGHAMees

Example: Using BIN Loader
and MI Command

A% G3800 Example: Single
Z:1#0002007 7201 Stepping the 16100

Z3#000201/3203
Z1B0200 AxG3800

= : Z3$ #000200/5567 7201
Z::§3333.8§83:3?§§ Z: #000201/3420 3203
Z3 #000200/0000 Z3 400020273400 5202
Z1 #0002017 7300 Zs #0002037 7777 0000
Z3E Z:#00777670200
ax Z314007773/57176

Zi1C
Z:SOB3L
Z3 SOB4L
Z3s 508B5L
Z: SOB6L
43 SO0BTL
Z3S3B1L
Z2S3B3L
Z:153B4L
Z3S2A6L
ZtS2A6H
ZSKL
ZsKH
ZsKL
Zs KH
ZSKL
ZIKH
Z3 KL
ZtKH
Example: 16100 Z1 KL
I0T Program Zt KH
Z3KL
A*xG3800 Z2 KH
Z3 #000200/0000 6046 Z3 KL
Zs #0002017 7300 6032 Z3 KH
Zs #000202/1224 6031 Z$ KL
Z3 #00020371225 5202 Zs KH
Zs #00020471226 6036 ZER3000
Zt #00020571227 1212
Z:1#00020673230 6041l
Zs#000207/1225 5206
Zs #00020877
Z3#000210/73224 6046
Z3#00021171226 5201
Z$#000212/3225 0000
ZsC
Z3 WO000
Zt HO

Z3 G10200
1

Example:

Hand Clocking a

Z-60 Program

A% G3800
Z3 SOB3L
Z3 SOB4L
Zt SOBSL
Z3 SOB6L
Z3 SOBTL
Z:E
A%RE

$#E000/C3

t#£001700

$#EQO2/700 07
$#E700/00 3E
S#ET0L/52 2C
t#E702/700 32
S#ETO3/3E 08
$#E 704700 07
s#ET705752 C3
1#£706700 05
$#E707/3E 07
I#E 708700

tG3800
Z$ S3BOL
Z353B4L
Z$53B6L
Z3 KL

Zt KH

ZS KL
Z3KH

ZSs KL

Z3$ KH

Z3 KL,
Zsp

oA

oB

1A

1B

3A

3B

00000000
00000000
00001010
00001111
00000000
00000000
00000000
11111111
01000000
11011000
00000001
11100001
00000090
11111111
01011111
10001010

Z: KL
43 KH

A

THIS IS BEING ECHOED BY THE 16100 I0T INSTRUCTIONSee-.

36.

Example:
Using FGCAL

*WRITE
C~FOCAL» 1969

Ol+10 COMMENT DEMO PROGHAM IN FOCAL
01.20 SET B+=10
0130 TYPE "POWERS OF"
01.35 ASK A
Ol+40 FOR I=1,B3;TYPE AtISTYPE !
01.50 TYPE $
0160 TYPE "DONE™!
0l.70 QUIT
*GO
POWERS OF32
= 2.0000
440000
8.0000
160000
32.0000
64.0000
1280000
25640000
512.0000
10240000
Be(00)= 10.0000
ABC0O0)= 2.0000
18¢00)= 11.0000
DONE
*1415 2
*1e5 ?
*WRITE
C-FOCAL» 1969

0l.10 COMMENT DEMO PROGRAM IN FOCAL
Ol.15 7

01.20 SET B=10

0130 TYPE "POWERS OF"

01.35 ASK A

0le40 FOR I=1»B3TYPE AtI;TYPE !

0l.50 ?
0l«60 TYPE “DONE'!

01.70 QUIT
*GO

SET B=10

TYPE "POWERS OFASK A

12

FOR I=1sBiTYPE Atls= 2¢0000TYPE !

TYPE Atl:= 4+0000TYPE !
TYPE Atl3= 8+0000TYPE

TYPE Atll= 16.0000TYPE !
701.00 @ 0140

*ERASE 1.0

*»WRITE

C-FOCAL» 1969

x

Example: Using
ODT Symbolic Editor

300074551 7201

01 71125 1235
3002 73152 7040
3003 /5177 7402

300171235 t
3035 71471
30028
30006
3002 (1472
3003B
Cc
3003 (6305
B
A6305
K
A
#2200
STARTs CLA CLL
TAD A
CIA
DCA TALLY
MJLT, TAD B
1SZ TALLLY
JMP MULT
HLT
As 22
B» 44
TALLY> O
3
& 8L
MJLT» TAD B
ISZ TALLLY
JMP MULT
v
1$Z TALLY
L
*200
STARTs» CLA CLL
TAD A
CIA
DCA TALLY
MOLT, TAD B
ISZ TALLY
JMP MULT
HLT
fs 22
B 44
TALLY, ¢
$ 37.

