Challenger I-P Memory Map (BASIC-in-ROH Configuration)

0000 -
0100 -
%0130
%01CO
0200 -
#0203
#0205
#0218
%#021A
. %021C
*021E
%0220
0222 -
0300 en

A000 -

D300 -
DFCO

F000 -

regg -
FC0O0 -
FDOO -
FEOO -
FFO0O0 -
*FFFA
*FFFC
*FFFE

00FF
Ol1FF

0221

02FA
d of

BFFTF

D3FF

FoOl

rRrr

Loada .

FCFF
FDFF
FEFT
PEFF

Page Zero
Stack
NMI Vector
IRQ Vector
BASIC Flags & Vectors
LOAD Flag
SAVE TFlag
Input Vector
Output Vector
Control C Check Vector
Load Vector
Save Vector
Unused
BASIC Workspace

BASIC-in-ROM

Video RAM
Pclled Keyboard

ACIA Serial Cassette Port

ROM

ROM - Floppy Bootstrap

ROM - Polled Keyboard Input Routine
ROM - 65V Momitor

ROM - BASIC Support
NMI Vector

Reset Vector

IRQ Vector

MEMORY

LOCATIONS CONTAINING THINGS OF INTEREST

000B,C Address of USR routine .

Number of extra nulls to be inserted after carriage return
Number of characters since last carriage return

Terminal width (for auto CRLF) :

Terminal width for comma spaced columns

0013=5A Input buffer "

String variable being processed flag (?)

000D
OCuE
O0QOF
0010

00 5P

0061

0064

0065

0079,7A
0078,7C
007D, 7E
007F, 80
0081, 82
00835, 86
0087, 88
0089, 84
008F, 90
0095,96
0097,98
00AA, AB
00AD, AE
00AE, AF
00D1=-D7
00EQ-E6
00E8-FF
0OFB

00FC

0130
01CO
0200
0201
0202
0?03
0205
0206

0212

?
CTRL O flag (hl bi* on = suppress printing)
gometimes contains $68 (?7?)

Pointer
Pointer
Pointer
Pointer
Pointer
Pointer
Current

to initial null of BASIC program workspace

to beginning of BASIC variable storage space
to beginning of BASIC array storage space

to end of array space/beginning of free memory
to end of string space/top of free memory

to top of memory allowed to be useé by BASIC
line number '

Sometimes next line number (?)
DATA pointer
This is where ADOB leaves address of the variable it found

Address

of variable to be assigned value by OUTVAR (AFC1)

Points to pointer of next BASIC line after LIST

The contents of this pair is printed in decimal by B962
Thig is where INVAR (AE05) leaves its argument
Clobbered by OSI Extended Monitor disassembler;kills BASIC
Apparently unused page zero space

Apparently unused (by BASIC) page zero space

RO” monitor load flag

ROM monitor contents of current memory.location

OOFE,FF Address of current ROM monitor memory location

NMI routine .

159G routine (can be overwritten by stack being used by BASIC)

Current

screen cursor is at D700 + (0200);initlalized to (FFEO)

Save character to be printed

Temp storage used by C3T driver

LOAL flag ($80=LOAD from tape)

SAVE flag (0= not SAVE mode)

Time delay for slowing down CRT driver

0207-0E.Variable execution block=-code for screen scroll-not reuseable
CTRL C flag (not O=ignore CTRL C)(reset by RUN)

0213-16 Polled keyboard temporary storage and counter

A000-37 BASIC initial word jump table (in token order; add 1 to each &t

A038~65 BASIC non-initial word jumps

(real entry addresses)

AOB4=-163 BASIC keywords in ASCIT:hi bit set as delimiter;in token orde:
A164-86 Error messages with nul.. delimiter x :

. BEALE

"Written by" message i

00BC

00C2
ALT77
A925

AAC1

VERY USEFUL BASIC ROUTINES °*

Works its way through a line of BASIC (or whatever C3 C4 points to)
and gets the next char each time it is’'called, It will ve pointing -
to the end of your USR statement if you call it from the USR; you
can then use it to get stuff after X=USR(Y)--and BASIC will never

be the wiser! BC leaves carry set if character is numeric,

Entry to the BC routine without incrementing C3,C4 before getting
the character. Thus it gets the current character.

Call this routine and then jump to A5C2 and you'll be RUNning
the current BASIC program--starting from machine Ianguage!

Call this from a USR statement and you will be doing an INPUT
statement==but BASIC will not echo the characters you typo in-=
including the CRLF at the end. This gives you a real BASIC INPUT
statement that doesn't screw up your nice graphics by scrolling
the acreen one line! You must set loc 64 to $80 (set the CTRL O
flag) before this all works. Do an LSR $64 to clear the flag to
normal if you want BASIC print statements to work again.

Like AAAD but no type mismatch check,

One you've been waiting for. This gets a 16 bit argument from
the current BASIC line position (yes, like right after the *)"

of your USR statement!), evaluating whatever expressions it finds,
and leaves it where a.call.to AEO5 will find it and put it in
AE,AF! (Use ACO1 to find a comma and then call AAAD again to get
another value!) :

ABF5-ACOC This series of routines (actually of entry points té one routi

ADOB

B3AE

B962

uses the BC routine to check for various delimiters, If you disassem
the RON here, it demonstrates a classic use of the 2C opcode as a
combination NOP and immediate load, depending on where you jump in.,
ABFB checks for ")"; ABFE for "(*; ACO1 for ¥,"; ACO3 for whatever
character you leave in A when you call it, ABF5 checks for “(*,
calls AAC1 to get a value, then checks for *)". (Thoughts of a

BASIC stat?ment X=USR(Y)(Z) should be jumping into your head

about now,

This routine uses the BC routine to find the name of the variable
that's next in the BASIC line, and puts the address of the variable
in locs 95,96. It also leavec the address in A, Y. If you store

A in 97 and Y in 98, you can call OUTVAR (AFCL) to store whatever
16 bit value you put in A and Y into that BASIC variable. '

This 1s like AAC1, but gives an error if the value is greater
than 255;. (Used by the POKE routine vo keep you from putting a
too-big number in memory.). .

Prints the decimal value of whatever 16 bit number is in AD,AE
at the current cursor location on the screen, with nnrmal BASIC
checks for line length (does auto CRLF if line is too long) eto.

MISCELLANEOUS BASIC ROM .ROUTINES

These notes do not claim to be complete or even error-free,
They are only my hastily scribbled comments on those routines I
happened to come across in my looking at BASIC, .

0000 Varmstart (4C 74 A2) ABE3 Output®?"
0003 Message printer (A8C3) ABES ?:;g“gogggg in A; update OE; check
; put’ '
oM E::;efuﬁgdﬁ“fniﬁgfia_p“ A925 Input routine less clear CTRL 0O
O0UBC Get next char in BASIC line - A946 Output *"? *;jump to A357
- AAAD Get 16 bit arg from BASIC line:
AlAl Look back thru stack 777 AEOS will put value in AE,AF: H
A212 Chec¥lfor OM and stack does TM err check .
overflow
ABAD Put 0in 5F;get char;goto B887
A24C *OM* error , if numeric’ 777 -
A24E Error; caller sets X-re ABD8 16 bit complement using AEO5/AFC1 7
to error code ABF5 Checks for *(*, calls .
A274 Warmstart entry AAC1 ,checks for *)
A357 Input and fill buflfer; ABFB SN err if next char not *)*
put null at end ABFE SN err Af next char not *(*
A386 Input from FFEB ACOL SN err if next char not *;*
Az9g T°“51°A§§§L12 rlag ¥i ACO3 SN err ifnext not what's in A
A Find B ne whose 8
? in 11,12; put addr of ptr ACOC SN err printer
of that line in AA,AB ‘ ADOB Get var name from BASIC line; put
AB77 Point C3,Ch to 0301;reset ~ addr of var in 95,96 and A,Y
str and array ptrs;reset AD53 Expeots var name in 93,94; finds
stack to (1)FC;put 0301 in addr of var and put in 95,96 and
25'20:351???C=0 in 61; AY; 0 4n 61 '
3 n
AEQ5 INVAR puts 15 bit signed value
A491 Clear stack;O0in 8C and 61 in AE,AF
A5C2 Top of main BASIC exec loop AE8S BS error
ASFC Entry to BASIC execute loop AE88 FC error
ASFF Do line of BASIC AFC1 QUTVAR 0 in 5F;(A)in AE; (Y) in AF;
then to 7

A629 Jmp FFF1 for CTRL C

A636 CTRL C entry point BOAE Msg printer (ABC3)

B3AE Put 8 bit arg from line in AE,AF

AG67B Set null count at DO (?7) ’ .
A77F Cet dec # from buffer; B3F3 (BA,BB) to C3,C
put value in 11,12 | . BHDO Arith to normalize FP arg??
A866 Put null at end of buffer; B887 Cheok for +,~,8,#,.,E... long!
CRLF;nulls
BO5SA Prints current line #

ABEC CRLF w/ nulls from OD . | B962 Prints contents of AD,AE (as dec)
A8C3 Msg printer; A,Y point to BD11 Coldstart ;

msg, which ends w/ null HEES ‘AR Amonh -
T input routine
ABEO Output " * (51883 chip at FBOX)
BEPF3 UART output routine
BEFE UART initialization

BFO7 ACIA input (6850 chip o
at FCOX-like CII-4P) ;

BF1§ ACIA output routine
BF22 ACIA initialization

ROM BASIC NOTES
Here 1s what we lmow so far of the structure Ar 0SI ROM BASIC
Version 1.0 rev 3.2,

A good place to start exploring is the warmstart entry at A274,
(A1l addresses are hex unless otherwise noted.) BASIC can also be
warmstarted by a jump to loc 0000--where the system puts 4C/74/A2
at coldstart, At this point, BASIC is looking at the keyboard,
walting for immediate mode commands or BASIC instructions with line
numbers to be entered.

See the warmstart flowchart. BASIC first clears the CTRL ©
flag (LSR 864 clears the flag--the hi bit of loc 64) to allow
-printing, invokes the message printer (loc 0003 i2 a jump to the .
printer at ABC3) by the standard convention of pointing A,Y (lo,hi)
at the message (ASCII in RAM or ROM==-with last character of a null--
that delimiter tells the rpinter routine to return) and prints
"OK erlf®, (The OK is stored at A192,3) Now the "fill the input
buffer® routine is called. This routine (at A357) inputs (through
FFEB, from elther keyboard or ACIA, depending of the load flag loc
0203, bit 7) characters, keeps a count of them, stores them in
the imnput buffer at loc 13-5A, handles "backspace®, @, CTRL 0, and
when it sees a CR, calls A866 to put a null instead of a CR in the
buffer, and print a CRLF with extra nulls from OD, (Nulls are put
in the output stream after CALF if needed for a slow device by puttin
the number of nulls desiged in loc 0D.) There is .also a flowchart
for A357, a main system routine,

There exists a vital routine callable at 00BC {the code for which
is copied at coldstart from BCEE-BDO5 in BOM) that puts the pext
character in the current line being worked on in the accumulator,
(The gurrenft character may be had in A by calling 00C2 instead of BC.
The BC routine also sete the carry flag if the character being passed
1s numeric, for the information of the calling program. The address
of the current character is in loc C3,84~--the address portion of '
an LDA instruction. Everybody uses BC to find out what's up next,
C3,C4 is constantly be changed by the usere of the BG.}nutinﬂ. in
addition to being incremented by BC each time it is called.

MISCELLANEOUS NOTES ON BASIC

Try answering "A* to C/W/M?--A for author.

All final quotation marks are optional unless ambigulty would result,
For example, PRINT "JIM works fine, but INPUT "NAME ; A$ does not,

If you want to embed commas in a line you are typing in response to
an INPUT statement, begin the line with quotation marks. This will
also let you enter & line with leading blanks. The same thing also
lets you put commas:or.leadling blanks in DATA statements. The closing
quotes are, of course, optional (unless ambiguity would result).

A colon after any response you type to an INPUT statement ends what
the INPUT sees, but lets you make remarks on the screen. For example,
if inresponse to INPUT a#ﬁgnu type JIM:WILLIAMS <RETR the screen will
show what you typed, but will contain only "JIM",

Although it is not documented, the statement ON X GOSUB nn,mm,pp, ...
works just fine--just the same as an ON X GOTO, but calling subroutines,

Recovery from coldstart is possible if you answer "MEMORY SIZE?" with

a number instead of {REI>. {Jﬂnce you hit RETURN, BASIC fills the memory
with test bytes until it doesn't get them back to see how much memory
there 13, That means your program is completely and irrevocably
overwritten.) The easiest way is to go into the ROM monitor hefore

you coldstart and find and copy the contents of locations 007B,7C and
0301,02, Then coldstart, entering your memory size (i.e. #4096 for a 4K
machine, etc.) and after BASIC comes up, go back to the monitor and
replace 7B,7C (the end of program/beginning of variables pointer) and
0301,02 (the pointer from the first BASIC statement to the second, which
will be set to zeros by coldstarting--though the rest of the program

is still there). If you have a.ready coldstarted, look for the first .
zero byte after loc 0305, and put an address one higher'than that zero.
in 0301,02 (low order byte first: the contents of 0302 will be 03
always, unless you have hand-manufactured a very unusual. BASIC program,)
The program will now list, but will wipe itself out if you try to run
it, ?variablea will overwrite the begimning of the program.) List the
program, immediately use the moritor to find the contents of 00AA,AB,
and put those contents into 007E,7C. Everything should then be back to
normal, (In fact, immediately after listing any line, locations AA,AB
will contain the address of the pointer of the next BASIC statement--
or of the ?eginning of variable space if the last line of the program

is listed. .

Long BASIC lines produce auto carriage return/line feeds when listed.
When saving on tape, this causes the last part of the line to be lost.
By setting the "TERMINAL WIDTH" to longer than any BASIC line with a
POKE 15,255, the damaging carriage return will be avoided.

If you have some program in the machine, but want to look at a program
on a tape without wrlting over the program already there, the following
"VIEW" program will be useful. It is absolutely relocatable, so may

be put anywhere in memory: it reads tapes and writes only on the screen,
20,07,BF,20,EZ,FF,DO,F8,FP0,F6. Starting address is first byte.

This won't work on 1P's; the ACIA is in the wrong place.

T

HOW TO _READ A LINE OF MICROSOFT

We are going to be talking about a lot of numbers in the
next few paragraphs. It would probably be easier to visualize
if you had the numbers in front of you on your system. If you
have an 0S5] system, I would suggest that you turn it on and
enter this program:

10 B=0iAL="E"
20 FORX=76910830:?PEEK(X) 5 sNEXT

How run the program before we go any further.

If you have run the program, you are now looking at the
entire text and variable table for a small program. QSI
i 1CH0SOFY reserves the first three pages of memory for house-
keeping duties so the text actually begins at location 769 - the
“irst location that you displayed. The first line of the program
c*ould be coded:

16 1 10 0 66 171 48 5B 65 36 171 34 0

“he first twe bytes, 16 3, are the location of the next line of
program. The next two bytes are the number of the current line
{10 0) and the end of the line is marked by a 0. (0's are
often used as markers in MICROSOFT as they occur infrequently
in text storage.)

~ 'All of the cnmmanﬂs, what MICROSOFT calls "reserved words",
are encoded in MICROSOFT codes. The arithemitic operators (,=,
#,/vand)} are also considered commands and encoded. The 171's
appearing in the line are " " statements. (I have included a
lizst of the MICROSQFT codes with this data sheet.)

MICROSOFT uses ASCII to store print statements, remarks,
variable names, and, strangely enough, all numbers that appear
in the téxt- All line numbers in GOTO statements, all arithmetic
values, all variable values, and all values in IF statemente are
vtored in ASCII, Hiscellaneous characters such as brackets and
* marks are nurmally stored in ASCII.

The only thing that does not seem to have a hard and fast
rule are REM and DATA statements. Those two commands may be
found either in ASCII or code and seem to work as well either way.
There does not appear to be any discernable pattern to the
‘choice of method of storage.

ﬂhe ASCII representation of numbers is significant. It
explains why statements using variable names normally execute
faster than statements using the numerical values for the oparltion.
“AZIC has to convert the ASCII numbers to BCD for storage and
to HEX for arithemetic operations before they can be used. Variable
values are already processed and ready in a table and can be
looked up faster than thev can be converted.

Here, the BC routine ie being used to work through the ASCII
in the input buffer as it 1s being tokenlized. Cc3,C4 is set to
point at the input buffer. If the first character in the buffer
18 numeric, the buffer must contain a numbered line of BASIC source,
s0 we go to A295 to do the "tokenize and store in BASIC workspace,
upd: Ling necessery pointers” job on the input buffer. If the first
character is not numeric, we call A3A6 to tokénize the line in the
buffer and put it back in the buffer. Then we jump to A5F6, the
main entry to the execute BASIC statements loop.

When a program is RUN (from the beginning), ASF6, in executing
the immedlate mode command RUN, Jjumps to the RUN routine at A477,
. which does the following: 1)points C3,Ck to the contents of 79,7A
(the beginning of BASIC workspace) (0301]1; 2)resets the string pointer
at 81,82 to the top of memory as recorded in 85,86; 3) resets the
array pointer to the end of the BASIC program (also mown as the
beginning of BASIC single variable spage) as kept in 7B,7C. (ZThis
pointer at 7B,7C is constantly updated during BASIC editing and
program entry,); %) the 6502 stack pointer is regset to (01)FC;
5) a 00 is stored in locs 8C and 61 (why?); 6) a $68 is stored in
~loe 65 (why?). Returning from AL77, we jump to A5C2, the top of
the "do the next line of BASIC" loop. See the "Main B3SIC execution
loop" flowchart, _

In the main BASIC 1oop, at A5C2, we first do a CTBL C check,
and stop, printing "BREAK IN LINE"contents of 87,88) before returning
to warmstart if we find CTRL C. If not, we check to see 1f the next
character in whatever llne we're working on is a null (the beginning
of another BASIC line). If 1%t isn't, it had at least better be a
m.® to indicate multiple statements per 1line, or we o to the
syntax error printer, and back to warmstart, If we have a null,
the hi byte of the pointer after it will contain a 00 if we are at
the end of the program, so if we {ind that, we stop. Otherwise,
1£'s on to the next line of BASIC, first storéng the number of this
new line in 87,88, and then incrementing €3,C4 past the pointer and
1ine number. The next sequential instruction in ROM is ASFC, and
we continue executing BASIC statemeﬁts.

A5FC ig the main entry point to the "run the BASIC prugram'lnnp.
See its flowchart., It calls BC and checks for a null=--and exits
to warmstart if it finds that trivial gase, Otherwise it calls ASFF
to do the dirty work of executing & BASIC statement before looping

=35

ASFF calls BC and checks to see if the first character is
greater than $80, If not, it is not a token, so we must be doing
a LET statement with an implied LET. In this case, we go to A7B9,
+ which calls ADOB, a very important subroutine that finds the name
of the vatiable the LET will asslgn into, finds its address in
variable storage space, puts that address in 95,96, and also returns
wilth the address in A,Y. A7B9 then checks . for an "=t (everybody,
of course, using BC to find the next character) (if no "=", then
syhtax error), calls important routine AACL, the "evaluate an expressic
routine (with no checking for TM error) and somehow stores the -
output value of AACL into the address ADOB left. Done with the -
statement, we return to A5F8, which loops back to the top at A5C2.,
(There will be a short quiz on these addresses at the end of the perioc

If ASFF finds a token at the beginning of the line, it first
verifies that it is an inifial word token (i.e.,, less. than:$9C) then
deoes an ASL, TAY to multiply the token value by 2 to get an offest
Tfor the initial wort jump table at A000, (Note on tokens: Tokens
are functionally divided into initial words like FOR, RUN,POKE, and
other non-initial words like THEN,=,SQR. There is a subroutine to
handle each initlial word, and the addresses of those routines are
stored in a table at A000, two bytes per routine, since it take two
byfes for an address, The addresses are stored in the order of
the token numbers; that is, the first address is for token 80, the
next address (A4002,A003) is for token 81, ete. ' Initial tokens go
up through 9B, - For non=initial tokens, some (like SQR) are complex
enough to require their own subroutines, while others (like =) do
not. Tokens 9C through A€ require no subroutines; AD through C3 do.
The first 28ptokens (the initial word ones) take 28%2 bytes in the
table, so the non initial tokens get the addresses starting after
the first 56 bytes of the table, namely at A038. (The 28 and 56 are
decimal.) Ignoring the hi bit of an initial token amd multiplying
it by 2 gives the address in the table of the routine for that
token.) (If you think that's hard to follow, it's even rougher to
infer from a disassembled dump of the ROMs!) Anyway, A5FF now has
the address of the subroutine that will do the operation of the
BASIC keyword that started the line., It pushes this address onto
the stack, calls BC (for the convenience of the next routine) and)
- an RTS does the actual jump to the needed routine, Again: the
address of the routine to do the desired BASIC operation for an
imntial word is pushed onto the stack--like the return address 1is

for a JSR--and then an RTS makes the processor jump there. This all-
happens around A60D, (Small detall:ASFF JMP's to BC; subroutine BC's
RTS is what actually pops the address off the stack and "returns®
there.) (Another detail: Since the PC is incremented by one after
popping the return address from the stack, the addresses in the
initial word part of the Jjump table are all 1_1gnnn than the routines!
actual entry addresses.)

The other, non-initial tokens are dealt with ﬁ.‘g.thin the initial
word routines, The routines to service the non-initial tokens that
are complex enough to need them are called by the old ASL,TAY trick.,
(The ASL is at A027; the TAY at AC55) That offset in the Y-register
is added to an invented base address of 9FDE to £ind the routine's
address in the jump table.(9FDE + 2#(AD with hi bit ignored)=A038,
the address of the jump for the routine for token AD.)(Phew!)

This Jump is not a stack trick; so the addresses in tha'jump teble
for non-initial tokens are correct as they stand, (They don't have
to have 1 adﬂ.ndtugetthemlaﬂdress) The SFDE+Y stuff is
around ACS6, ' :

Program to look at binary repregentations ‘of numbers in memory

10 INPUT M

20 P=PEEK(123)+256*PEEK(124)
30 P=P+2 '

40 FOR J=0 TO 3

50 N=PEEK(P+J)

60 GOSUB 200

70 PRINT * *;

80 NEXT

90 PRINT

100 GOTO 10

200 FOR I=0 TO 7

210 B=N AND 2A(7-I) |
220 IF B THEN PRINT "1";:GOTO 240
230 PRINT "O%; '
240 NEXT

250 RETURN

(Yes, lines 210 and 220 are correot.)
. The program walts for you to input a number, then prints the
binary representation of it, and then waits for another mumber,

Arrayu are stored in assorted 1ength blbdoks from {'m 7E) to
(77,80) as follows: 5

arrays name this block subscripts subseript to_last subse.s.f0,0...,0]1,0...,0

numeric varieble length of mmber of size of last a.:lne of nm elmtflmt

string variable length of number of size of last né:t-tn—l_ut loc of of
arrays name this block subseripte subseript subseript ,, ., [/ element | element
1 . s , D,ﬂ".. 1,”-.-;0

— e — —

 this bit set

To find an array element, Basic starts at (7D,7E) and looks at the
name, then skips to the name in the nexy block (that's why we have’
that 3rd byte) etc until a match is found, then skips 4 bytes per
element until it finds the element it wants. (If it's a string,

we have the lengih and location of the string. not the mtua:l. utring
This table is over at (7F, BD).

*Strings are actually stored starting at the top of memory
(as indicated by (85,86)). Modifying the contents of 85 and 86
(or having answered a number less than the actual memory size to
*MEMORY SIZE?" .at coldstart)will keep the strings from wiping out
any other programs or data you may want to tuok safely away in the .
top of RAM, BASIC uses this space at the top of the memory with
no regard for saving space or reusing space unless it runs out of
space., It keeps a pointer to the next (working from top to bottom)
free space in #81,82), putting any strings it needs (array or not)
there and updating the pointer until it runs out of room. (I.e.,
(81,82)=(7F,80)) To keep from creaming the array tables (the first
 thing it would run into), BASIC calls a “garbage collection" routine
that tries to shuffle the strings arcund to the top of the memory
and reclaim vnused space, Unfortunately, there seems to be a bug
in the garbage collection routine that makes it hang up if it has
to try to relocate string arrays. Unless you try to do some fancy
spring array manipulations in big loops, you probably wom't run
into trouble. The FRE(x) routine at AFAD calls the garbage collector
before finding out how much room is left between (81,82) and
(7F,80)=-in case you wnat to go bug hunting, T

o2 iy
B

' NUMERIC VARIABLE REPRESENTATION | | g

T™e floating point velue of & numerio variable 48 stored in

it9 four bytes in nomalived binapy axpgnantiu; (solentifio)
nototion: :
ign and most sig :
(?xponent sign it least sig bit
100000011 00100000 00000000 0000000
exponent IQ“'~~-"c»i.::nrs!f.r':gl" point .
This would be read as: 1013 X 2103 = 5,

The last three bytes contain the number, to 24 bits' accuracy.

The first byte is the power of 2=-if you like, the number of places
to move the binary point, (The binary point is like the decimal
point, except to itsright we have the %'s column, 3's columm,

1/8's column, etc--instead of 1/10's, 1/100's, etc.)

The most significant bit of the value (bit 7 of byte 2) is always
interpreted as having the value 1, (If it were 0, we could shift
the number to the left (binary point to the right) until iy wag
1, increasing the exponent by as many places as we moved.) Since
this is understood, we can use that actual bit in memory as the
sign bit. (1 is negative) Negative numbers are not represented
in 2's complement form, The exponent, however, is, Some examples:
10000011% 00100000 00000000 00000000
10000001 00000000 00000000 00000000
10000010 00000000 00000000 00000000
10000010 01000000 - 00000000 00000000
10000011 00000000 00000000 00000000
10000011 01100000 00000000 00000000
5 10000100 01110000 00000000 00000000

=5 10000011 10100000 00000000 00000000
(3/8).37501111111 01000000 00000000 00000000

0 00000000 00000000 00000000 00000000

]
L

L

=3 LN gy

If you want to explore this further, there follows a short
bagic program to read the binary representation of a number
from memory. It looks at the 2md thru 4th bytes after (7B,7C).
Killing line 30 lets you look at the 7ar1ahlﬂ name (and the first
two bytes of the value), :

If|you also replace 7B,7C, programs are editable and can run happily.
NOTE: Either avoid programs with lots of variables that can wipe out other programs,
or hlso update 85,86 to indicate that the top of memory is just below the next program .
up. The hard cne to fix is 7B,7C. It points to variable workspace--so BASIC POKE
statements using variables can't fix it: the variables are lost between the first

and second POKEs !
BASIC VARIABLE STORAGE

BASIC also needs space to store variables. There are stored
in memory above the program=--numeric variables, preceeded by their
nsmes from the end of the program going up, and string variables
from the top of memory goilng down--their names being kept in a
table along with where in memory the strings actually lime, Two
data areas{with name tables) are kept--one for arrays (string and

numeric), the other for eingle variables (string or not) and functions. Since only 7
bits are needed for each character of the variable name, the highest bits are used

to show what type of variable is stored. A 1 in the second character indicates a

strinz. A 1 in the first character indicates a function. (In DEF FNAB{X).) Both first
bits high indicates a string function (FNABS), although the system does not support them.

Single variables are stored immediately following the program,
starting at the address pointdd at by 78,7C on page zero., (The |
abbreviation (7B,7C) is used to indicate the contents of 7B,7C,.
Thus, the sihgle variables start at (7B,7C).) Each variable is
stored in agrtzad length) six byte block in this area:

function loe of first loe of
function name b char af'ter = durmy variable
f{ASﬂII) in DFF gtmt -

this bit set if funetion

" numeriec variable
variable name floating point value
|] (ASCIT) ,
- string variable location -
variable " name length of string 00
: (ASCII)

(-"—\' -
this bit is szet to

indicate a string
To find a variable, BASIC searches the names, starting at (7B,7C),
skipping to the next name 6 bytes later'til a match is found.(If
a string is being searched for, the actual' string is not here, but

at the address contained in the 4th and 5th bytes.) The search
ends if a match is not found by the end of the area, (7D,7E).

TOKENS AND BASIC SYTOBAGE

[
L}

Your BASIO programs are stored, line by line, in a partially

pre-digested form gtarting(normally) at memory location 0301, All

BASIC keywords (FOR, GOTO, END, =, CHRE, eto.) are stored ‘as ona—brta'
"tokens". Tokens always have the highest bit on (1.e., they are '
always greater than 12810.] Other parts of your BASIC' statements

(1ike AA and 123 in LET AA=123) are stored as the ASCII characters

you typed in. The line number is stored as a two~byte stralight

binary number., (That does not explain why the highest allowed line
number is 63999 instead of '65535!) In addition to these, each stored
line of BASIC source contains a two byte pointer contalning the -

' address of the pext stored BASIC line, (This lets BASIC search

rapidly for a given line number.) The format of BASIC statement
storage is always like this: : :
null pointer to 1line # BASIC code; tokens and ASCII null of
next line F e next line
(That information alone is enough to let you write a BASIC program
renunbering program,) :
The "normally starting at 0301* can provide interesting possibilit
*"BASIC workspace®"--the area in memory where your program and variables
are stored--begins at whatever address is contained in locations
0079,0074, (Machine addresses arenormally stored lo byte, hi byte,
This, when the coldstart routine initializes these locations, it puts
01 in 0079 and 03 in 007A,) Now, if you change this (with your
trusty ROM monitor or with POKE gtatements), you can make BASIC
store your programsanywhere you choose. In fact, you could have
one program stored starting at 0301, another at 0901, and another...
all using the same line numbers, if you want! BASIC will find only
one at a time for running and listing--the one whose beginning is
oontained in 79,7A. Note: the byte immediately before the first
line mpst be the initial null. Normally, the system puts a permanent
0 in loc 0300, and the first byte of the first pointer goes in 301,
You must put the initial null in (at 0900 in the example above) or
nothing works. After you change 79,7A and put in that inltial zero,
type NEW to reset some other pointers. Unfortunately, if you put
one program one place, reset 79,7A and put another somewhere else,
trying to edit the first one will blow up the second program and
not work in the first. You can, however switch back and forth ir
all you do ‘48 run and 1ist *he pPrograms.’ ta-Tittie—fancy—work-with

2

One sipnificant fact showe that mere than one person worked
¥ICROSOFT whe 414 not 'l the other guy what he was dolng.-
j“e convention for storins a2 etring IJnetiun varles., Nameep of
«tring variables Btore the 1 after the name and some siring funce
‘Liors Btore the 3 in tha tex:t. Other string functlons such as
_MIF” atorn ‘only on the one byte commancd and eesume the presance
»f-vhe- B, TLook for it either way in the text if you are looking
Cfor a string variable.. Eraekata ghow the same inconsistency.
Some functions which require operatore. stere both brackets, but
gther store only the second bracket, "), and assume the.presence
of - tre first. That doesn't mear’ that you cz2n leave them out when

you tyoe ‘in the text, juuf that ybu cnn't find tham if you look
“% the stored rade. '

. 'That rctually ends the line uf KICROSOFT, but while we are
&l ity we might as well look at the atuff that follows. The first
f¢r ny ie the variable tables. The variables are stored in the

r that they are found in the text. ({For fast asccess,
'1n1tialize the most used wariable Tirst.) Each variable takes
‘aix bytes, Resular varisbles start with two bytes for the name
{even if it is a one byte name), followed by three bytes of
vackad 70D giving the six digit value and &m with a ﬂ 'Hhich
warks the end cf the tnbll antry

. String varinhlu: BYE nturpd - Bort uf ~ in the aame tablee.
.TBAT entries are mlsd six bytew leng.. MAM!'INMM start in
the seeond ASC.1 eharacter of “the mtring smme.plus 128 to show
*hnt it is a string entry. The next b 1 store the address of -

e last place that it appeared 'n the text. The end iB mlrkad
Vf‘i

If you lauh at the llnyln PTOETAN, you 1111 notice thlt the
“irs: thing following the 0. that s the . ﬂ'w is 66 0. The
AGCI. representation of the warigblé nime "B". If it were a
two letter name; the second Wytes would contain the sscond
character of the name: The n#xt three bytes contain the six
Aigit value of "B* in packed B(D, which is u besy to read. The
lagt garo marks the ené of the table entry. The next entry
€5 128 1 13 3 0) containe the information on A$» The two hrt-
name is =pded with ASCIZ for the letier and the ASCII. 128

for the next letter to show that it im & string. The n ‘byte -

iz the léngth of the string and the naxt two Dytes (sj J} are the
memory location where the fire: text reference is found. The 0
marks the end of the table. .Thé last entry in the table is for
vEeY able X which shows the: curren*'vllul of 831 {BE " 138 ?8 128

D\

If there were sdﬁneripted v:r;ablt:, they would follow the
resular variable table (to look mt a subscripted variable table,
Chdﬂfﬁ line 12 to 10 A(: J=1vA(2)=31 and charge 830 in line 20 to
30+ The tatie begins with a variable name, the length of the-
’td.l& and¢ ther the actual’ ‘entrieg. . The iritlm marks off four
- paces for eur% entry - one for the marker humbsr and three for

‘he 8ix 4ipits of the variable valus. It sets aside emough. space

HANDY LOCATIONS.IN ROM BASIC

PAGE o

0000 JUMP TO WARM START (4C/7T4/A2)

OOFB CASSETTE/KEYBOARD FLAG

DOFC DATA TEMPORARY HOLD FOR MONITOR

PAGE 1

0100-0141 STACK

0130 NMI VECTOR. NMI INTERRUPT CAUSES A JUMP TO THIS LOCATION
01co TRQ VECTOR

PAGE 2

0200 CURSOR POSITION

0203 LOAD FLAG

0204 SAVE FLAG

0206 CRT SIMULATOR BAUD RATE-VARIES FROM ' O=FAST to FF=SLOW BAUD RATE
0212 CONTROL C FLAG

0218 INPUT VECTOR (C1P only)

0214 OUTPUT VECTOR

021C CONTROL C CHECK VECTOR

021E LOAD VECTOR

0220 SAVE VECTOR

0222-022FA **UNUSED** A NICE PLACE TO PUT USR ROUTINES
PAGE 3 and up to end of RAM is BASIC work space.

AOQO-BFFF BASIC IN ROM
DOOO-D3BF VIDEO REFRESH MEMORY
DFOO POLLED KEYBOARD
FOO0-F0O01 CASSETTE PORT ACIA (C1P)
F800~FFFF MONITOR EPROM

FCOO FLOPFY BOOTSTRAP
FDOO KEYBOARD INPUT ROUTINE (SEE "INPUTTING WITHOUT SCROLLS")
FFOD BASIC I/0 SUPPORT

USEFUL SUBROUTINES IN ROM

A274 BASIC warm start *NOTE-FOR DISK BASIC WARM START IS 051A%

RL11 BASIC cold start

BF2D CRT simulator-prints character in Accumulator to screen offset by wvalue in 0200

FDOO Input character from keyboard result in A and in 0213 -

FCB1 Output character in A to cassette

FEOD Entry to Monitor-

FEOO Entry to Monitor -bypass stack initialization.

FE93 Converts ASCII hex to binary-result in A.-80 if bad value

FF69 BASIC output 16 cassette routine-outputs one character to port and screen,
outputs 10 nulls if character is a carriage return.

FFBA BASIC input routine

FFGB Control © routine

FFOQ Hsset entry point

SEMI FAST SCREEN CLEAR (WITHOUT THE USR FUNCTION)

I hate to be bothered with the USR screen clear. I can't remember it off
hand and I hate to take time to logk it up. Besides, it takes too muech
memory. This one is fast-it clears the screen in less than 2.16 seconds-
and easier to remember i

C2/4/8 it R
100FORX=1T029: ? : NEXT 100FORX=1T029:? : NEXT
110FORX=55168T055295: POKEX, 32 : NEXT 110FORX=54174T054275 (54307 on some

monitors):POKEX, 32 :NEXT

PRINT AT STATEMENT
OS5I has a great BASIC but the lack of a FRINT AT command makes it
difficult to print scores and names and similar items where you want them
on the screen. You usuzlly end up with a long series of POKE statements and
you have to divide the score up into individual digits to do even that. There
is a simple solution. Add this subroutine to your program-
5@@@FORY=1TOLEN(D$): POKED+Y , ASC{MID$(D$,Y,1)): NEXT: RETURN

To POKE up any name, word, or even sentence on the screen simply set the

name equal to D§ and make D=equal the starting address on the screen. i.e.
3APADE="WINNER IS":D=540.i8:G0SUB5#A#2

Scores should be done just & little differently. You start at the second
digit because the BASIC thinks the sign is the first digit in the siring and
can set you over one space from where you planned. You may also want to blank
the digit after the string to allow for the possibility that the score may
decrease (say from three to two digits). To use ii you set the score equal to
D¥ and the final prodact looks like this-

30@D$=STR$(SCORE) : D=5484@: GOSUB5208
5@@PFORY=2TOLEN(D$) : POKED+Y , ASC(MID$(U$,Y,1)): NEXT
S@1PPOKED+Y, 32: RETURN

SOME POKES YOU SHOULD KNOW

To aid in reading you may want to set the line length down to 32 on a (2
or to 23 on a Cl, Unfortunately, if you set them down when you start up the
system you will be unable to make tapes. Fortunately. the line length is
gtored in loeation 15. You can reset line length by executing
1@@POKE15, 32 (or any other number down to as little as one) and then reset
with 2@@POKELS,72 to record the program.

If you find it annoying to reserve space for user programs when you fire
up the system (I always forget to do it when I am using the rapid screen
clear) you can set the memory space by POKEing the high order digit (in HEX)
into loeation 134 and the low order digit into 133. For instance, the line
1PpPOKE1 34,14 will reserve space for the screen clear without reseting the
system.

You can even make self starting BASIC programs if you are willing to do a
few additional moments work when you make the tape. The flag for LOAD is in
loeation 515. A 1 POKEd into that location turns off the load mode. Therefor,
to make a self start tape-as soon as the program finishes reading out to the
tape and while the system is still in SAVE mode, type in POKE5135, 1:RUN

That command will record on the tape and start the program automatically when
it finishes loading.

SAVE can be turned off in a similar manner by POKEing a O into loeation 517

EASY KEY DETECTION
If you are doing a cne player game, you can detect the control keys

without either POKEing the keyboard or turning off the CONTROL C scan. The
values for the shifts, rept, control, and esc keys are recorded continuously . :
in location 571#@. i.e. If you push the right shift, a 3 always appears in
5710%. To see how it works try this program
10PRINTPEEK(57129): GOTOLZ

Then push the control keys one at a time. It is simple, fast, and allows
you to keep the CONTROL C funection to break the program..

COVER ART BY TULLIO PRONI

