Challenger I-P Memory Map (BASIC-in-ROH Configuration)

0000 -
0100 -
%0130
%01CO
0200 -
#0203
#0205
#0218
%#021A
. %021C
*021E
%0220
0222 -
0300 en

A000 -

D300 -
DFCO

F000 -

regg -
FC0O0 -
FDOO -
FEOO -
FFO0O0 -
*FFFA
*FFFC
*FFFE

00FF
Ol1FF

0221

02FA
d of

BFFTF

D3FF

FoOl

rRrr

Loada .

FCFF
FDFF
FEFT
PEFF

Page Zero
Stack
NMI Vector
IRQ Vector
BASIC Flags & Vectors
LOAD Flag
SAVE TFlag
Input Vector
Output Vector
Control C Check Vector
Load Vector
Save Vector
Unused
BASIC Workspace

BASIC-in-ROM

Video RAM
Pclled Keyboard

ACIA Serial Cassette Port

ROM

ROM - Floppy Bootstrap

ROM - Polled Keyboard Input Routine
ROM - 65V Momitor

ROM - BASIC Support
NMI Vector

Reset Vector

IRQ Vector

MEMORY

LOCATIONS CONTAINING THINGS OF INTEREST

000B,C Address of USR routine .

Number of extra nulls to be inserted after carriage return
Number of characters since last carriage return

Terminal width (for auto CRLF) :

Terminal width for comma spaced columns

0013=5A Input buffer "

String variable being processed flag (?)

000D
OCuE
O0QOF
0010

00 5P

0061

0064

0065

0079,7A
0078,7C
007D, 7E
007F, 80
0081, 82
00835, 86
0087, 88
0089, 84
008F, 90
0095,96
0097,98
00AA, AB
00AD, AE
00AE, AF
00D1=-D7
00EQ-E6
00E8-FF
0OFB

00FC

0130
01CO
0200
0201
0202
0?03
0205
0206

0212

?
CTRL O flag (hl bi* on = suppress printing)
gometimes contains $68 (?7?)

Pointer
Pointer
Pointer
Pointer
Pointer
Pointer
Current

to initial null of BASIC program workspace

to beginning of BASIC variable storage space
to beginning of BASIC array storage space

to end of array space/beginning of free memory
to end of string space/top of free memory

to top of memory allowed to be useé by BASIC
line number '

Sometimes next line number (?)
DATA pointer
This is where ADOB leaves address of the variable it found

Address

of variable to be assigned value by OUTVAR (AFC1)

Points to pointer of next BASIC line after LIST

The contents of this pair is printed in decimal by B962
Thig is where INVAR (AE05) leaves its argument
Clobbered by OSI Extended Monitor disassembler;kills BASIC
Apparently unused page zero space

Apparently unused (by BASIC) page zero space

RO” monitor load flag

ROM monitor contents of current memory.location

OOFE,FF Address of current ROM monitor memory location

NMI routine .

159G routine (can be overwritten by stack being used by BASIC)

Current

screen cursor is at D700 + (0200);initlalized to (FFEO)

Save character to be printed

Temp storage used by C3T driver

LOAL flag ($80=LOAD from tape)

SAVE flag (0= not SAVE mode)

Time delay for slowing down CRT driver

0207-0E.Variable execution block=-code for screen scroll-not reuseable
CTRL C flag (not O=ignore CTRL C)(reset by RUN)

0213-16 Polled keyboard temporary storage and counter

A000-37 BASIC initial word jump table (in token order; add 1 to each &t

A038~65 BASIC non-initial word jumps

(real entry addresses)

AOB4=-163 BASIC keywords in ASCIT:hi bit set as delimiter;in token orde:
A164-86 Error messages with nul.. delimiter x :

. BEALE

"Written by" message i

00BC

00C2
ALT77
A925

AAC1

VERY USEFUL BASIC ROUTINES °*

Works its way through a line of BASIC (or whatever C3 C4 points to)
and gets the next char each time it is’'called, It will ve pointing -
to the end of your USR statement if you call it from the USR; you
can then use it to get stuff after X=USR(Y)--and BASIC will never

be the wiser! BC leaves carry set if character is numeric,

Entry to the BC routine without incrementing C3,C4 before getting
the character. Thus it gets the current character.

Call this routine and then jump to A5C2 and you'll be RUNning
the current BASIC program--starting from machine Ianguage!

Call this from a USR statement and you will be doing an INPUT
statement==but BASIC will not echo the characters you typo in-=
including the CRLF at the end. This gives you a real BASIC INPUT
statement that doesn't screw up your nice graphics by scrolling
the acreen one line! You must set loc 64 to $80 (set the CTRL O
flag) before this all works. Do an LSR $64 to clear the flag to
normal if you want BASIC print statements to work again.

Like AAAD but no type mismatch check,

One you've been waiting for. This gets a 16 bit argument from
the current BASIC line position (yes, like right after the *)"

of your USR statement!), evaluating whatever expressions it finds,
and leaves it where a.call.to AEO5 will find it and put it in
AE,AF! (Use ACO1 to find a comma and then call AAAD again to get
another value!) :

ABF5-ACOC This series of routines (actually of entry points té one routi

ADOB

B3AE

B962

uses the BC routine to check for various delimiters, If you disassem
the RON here, it demonstrates a classic use of the 2C opcode as a
combination NOP and immediate load, depending on where you jump in.,
ABFB checks for ")"; ABFE for "(*; ACO1 for ¥,"; ACO3 for whatever
character you leave in A when you call it, ABF5 checks for “(*,
calls AAC1 to get a value, then checks for *)". (Thoughts of a

BASIC stat?ment X=USR(Y)(Z) should be jumping into your head

about now,

This routine uses the BC routine to find the name of the variable
that's next in the BASIC line, and puts the address of the variable
in locs 95,96. It also leavec the address in A, Y. If you store

A in 97 and Y in 98, you can call OUTVAR (AFCL) to store whatever
16 bit value you put in A and Y into that BASIC variable. '

This 1s like AAC1, but gives an error if the value is greater
than 255;. (Used by the POKE routine vo keep you from putting a
too-big number in memory.). .

Prints the decimal value of whatever 16 bit number is in AD,AE
at the current cursor location on the screen, with nnrmal BASIC
checks for line length (does auto CRLF if line is too long) eto.

