LIMITED WARRANTY

Ohio Scientific, Inc., 1333 S. Chillicothe Road,
Aurora, Ohio 44202 (the **Warrantor') hereby
warrants to the original purchaser that its _
hardware equipment will be free from defects in
materials and workmanship for a period of ninety
(90) days from the date of receipt by purchaser,
when operated and maintained in accordance with
Ohio Scientific's recommendations. This
warranty includes power supplies and floppy disk
drives. It specifically excludes terminals, video
monitors, audio cassettes and keyboards not
manufactured by Ohio Scientific.

Ohio Scientific warrants its software against
media that is defective, such that it is not
readable by the computer system, for a period of
ninety (90) days from the date of receipt by
purchaser. The software is thoroughly tested and
thought to be reasonably bug-free when released.
Ohio Scientific maintains a full ztaff of software
experts, and will endeavor to correct any serious
bugs that may be discovered in the software after
release in a reasonable amount of time. However,
this is a statement of intent and not a warranty
or guarantee in such event. (Software sold with
annual site licenses offers additional support
commitments. See their contracts for details.)

You must have purchased the product from a duly
authorized Ohio Scientific dealer, whose name
appears in Ohio Scientific's current dealer
listings, to qualify for the 90 day warranty. Ohio
Scientific makes no other express warranty than
that made above. Any implied warranty,
including, but not limited to, the implied
warranty of MERCHANTABILITY or fitness for
a particular purpose, shall not be extended
beyond the ninety (90) day period.

Ohio Scientific's obligation under the above
warranty is limited to the repair of the product,
without charge, if it is defective and has not been
misused, carelessly handled, or defaced by repairs
made or attempted by others, and it is returned to
Ohio Scientific for repair. Ohio Scientific shall
not be liable for any other loss or damage
resulting directly or indirectly from the defect in
the product including, but not limited to,
incidental-or conseguential damages for lost
profits, lost sales, injury to person or property, or
any other incidental or consequential loss.

In the event that vou desire to obtain
performance of any warranty obligation, please
return the product, in its original or other
adequate packaging, to Ohio Scientific, Inc., or by

prior arrangement to the dealer from whom you
purchased the unit.

Ohio Scientific reserves the ultimate authority to
determine what constitutes in-warranty repair in
circumstances where circuit modification, abuse,
misuse, or shipping damage occurs. If it is
determined that the product is not under
warranty, it will be repaired using Ohio
Scientific's standard rates for parts and labor.
Ohio Scientific will use its best efforts to repair
the product within three weeks after receipt
thereof. However, Ohio Scientitic shall not be
responsible for delayvs bevond its control such as,
but not limited to, those caused by shipping or
long delivery of replacement components.

The warranty contained herein is the only
warranty which any Ohio Scientific dealer is
authorized to give in conjunction with the
product. Ohio Scientific shall not be bound by any
other warranty made by the dealer to the
purchaser. The support of such warranty or
maintenance contract is the sole responsibility of
the dealer offering the warranty,

When requesting performance under the terms of
this warranty, the original purchase date, or date
of purchaser’s receipt of the product, must be
established by means of a bill of sale, invoice, or
other acceptable documentation.

This warranty gives you specific legal rights, and
vou may also have other rights which vary from
state to state. '

If there are any questions about this warranty, or
if a complaint has not been answered by the
dealer to your satisfaction, please contact:

1333 SOUTH CHILLICOTHE ROAD
AURORA, OH 44202

‘For your records:
Model Number
Serial Number
Date Purchased
Dealer

C4P

-~ OPERATORS MANUAL

& Copyright 1881 by Ohio Scientific Inc. |
All rights reserved. This book, or any part thereof, may not be reporduced in any form without permission of the publishers. Printed

in the United States of Amarica.

Although great care has been taken in the preparation of this Operator's Manual to insure the technical correctness, no responsibili-
ty is assumed by Ohio Scientific for any consequences resulting from the use of its contents. Nor does Ohio Scientific assume any
responsibility for any infringements of patents or other rights of third parties which may result from its use.

TABLE OF CONTENTS

SECTION | . PAGE
1. GENERAL INTRODUCTION ..ot [EERPPITTTPPY 1
2. VIDEO DISPLAY CONNECTIONciiiiiirrernaesrrannnsnsnannesannnnnns 2
3. CONNECTING THE FLOPPY OR CASSETTE SYSTEM........ccvvivivenennnn. 3

A. Cassette Systemcoiviinnn b aresrsssrasesreaarnterae s 4
B. Floppy Disk Systemcciiiiiiiiniininnrensnnrennns T 4
4. STARTING THEMACHINEcc0tns posmms s e e a e bs s reaEs 5
A. Cassette Systemcovviiiiiiiiineenn P EE TP PP PP PP P PP RrRrY 5
B. Floppy Disk Systemcooimiiiniiinii e ... 6
5. RUNNING A CANNED PROGRAM reaaas T TIPPETTE 9
A. Cassette Systemcooiiiiiiiiiiiiiiiien, e R 9
B. Disk Based System.................. D00t e A e 0 L B L
6. BASIC PROGRAMMING.c.cooiiiiiiiiiiiiiiiiiiiiieaeee, EEERLTTTRrS 12
7. GRAPHICS. ...t ee et eeee e e e eneeeaneens SUUTUUTUTRUTR 27
8. SOUND...........civvinuns R T TR ETEPPREITE 30
A. Tone Generator............cooviiviimiiiiiiiiieiiiiiiiiiiii ... 30
. B. DAC Use (via monitor)................ freeaaas e seaaeaisrrsrar s 31
9. STORING FILES ON CASSETTEORDISKS eeereraaieenaaan 33
A. To Load Cassette: Programs into RAMc.eeeee, reeeaas 33

B. Saving Programs on Cassette.............. FIETTErrr TSI T TotcSIeteTSIoi L
C. Use of Cassettes as a Data Storage Mediumccvvvuiariannnnn, - 35

D. Reading Data From Cassette Tapecceeeeernrusencnseasaeeeseees 35
E. To Write to Disk............ TR SO SRUTTOTTS ... 36
F. ToRead from DisK.........coviiinnrennnnsosnsssassssssssassnssnsnnnsnnsss 37
G. Operating System Organization...........coiiiiiiiaiii it 38
10. ADVANCED FEATURES.cciiiiiiiiinaiierranssnsnnnssasnsasrasarsssns 40
11. JOYSTICKS AND KEYPADSciiiiiiiiitittrsnsnnnsasnnnnstsasssaannnnns 42
A, JOYSHICKS . 0vvevrrrrennnecanaisnissasatostnsassnsnasssasssnsstsanarssnns 42
B. Keypads.......ooviiiiiiiinsansarsnsesssarssnssnssarnssssasstansssnsasans 47

:

ﬁ- -\.I—‘._.__

e

e e e

R A —

g S

T -

D e

O T SUSE)

SECTION . o PAGE

12. AC REMOTE CONTROL, SECURITYciiiiiiiiiiiiiiiieinesincranennsnnnans 50
A. Appliance Control ... i i iistssntntasarsannsnannnnns 50

B. Home Security.........coiiiiiiiiiiiiiirrieisrninnsarnns 52

13. PARALLEL 1/ 0. ... ciiiiiiiiitiitiiiansstsncsassrastotssatsssannnansasnsnnnss 54
A. External Switches e ereerreser et e rieaeieesaianaas 54

B. PIARegISters.......ooiiiiiiiiiiiiiieiiinisesanrsnsnssansesonsnsnsnnnans 55

14, CONNECTION OF 16 PIN BUS DE‘IICEE et reeeean e naaea 59
A. CA-15Board, theinterface Boardciiiiiiiiiiirnrnennnsnsannns 59

B. CA-20 Board, the Expander Board............. rererenerenns Ceeernaenas 59

C. CA-21 Board, the Parallel 1/0 Expansion Board e areraannas 60

D. CA-23 Board, the EPROM Programmeercoviiiiivnrninnencnenesns 60

E. CA-24 Board, the Experimenter Board............. fereeananaes Ceeraaaaa 61

F. CA-25 Board, the Accessory Interface I T ORURURRURRY -

G. CA-22 Board, Analog 1/O......veeeneeeenneeneeensannss. e 61

15. MODEM AND TERMINAL COMMUNICATIONS. (DR . 63
16. PRINTER COMMUNICATIONScuvvenneneneenenennnnnns eiririiiriiii.. B5
17. ADVANCED TOPICS................... e evereeann 67
A, POt BaSiC ... vvvietseeteeeeeeesteeseneseesenssnssenaeneennnsns e - 67

= T T e 67

C. Home Control and Real Time Operating Systemscccvvunn. 68

D. Real TiMe CIOCK . -« e eneneneeereeeneeeeeeeesnennns J 68

a. Time of Day Clock....... s e eeeeeeeaa e, 68

b. Count Down TImer.cooiiiiiiii i ittt resrnnnesnsnsnsnsonnesnn 69

c. Real Time Monitor, RTMONcciiiiiiiiinnrrnnnss eraieraan 69

d. A Greenhouse Example............... e tasaeamaareararareenaenee 71

i

APPENDICES AR PAGE

A. TROUBLESHOOTING AND MACHINE ORGANIZATION. ...vvvvvveensennennn. 75
B. DETAILED A-15 BOARD PIN CONNECTIONS......c...cvvuunrenenenennnnn. . 1T
C. MEMORY MAP AND MINI-FLOPPY DISK ORGANIZATION'cue.... 78
D. DISK BASIC STATEMENTS AND ERROR LISTINGS.0vvvvereeeneenreneenns 81
E. POKE AND PEEK LIST......c.covvnnnnn... e 87
F. PIANO KEYBOARDeouvenrtnsennensesen e e eaneaseeeneaneneeanennensss .. 92
G. DISK UTILITY PROGRAMS.uuunenseesaaeaeaaaaaaaaaeeesd s ceree 03
| a.‘ Delete [ETTTTTTPT TP PreD eeasssesaanenes 93

b. Rename........... 2 eerssemsree 93

c. Change......... O ey e I SIS PSS peyeyets Feeetesinetagateatatisirenaas 93

o T 0 T« R e easnssssannnsnss 95

é. ereﬁte 97
H. HEX TO DECIMAL TUTOR, CONVERSION TABLESccccvvnerineenenns 99
. ASCIHl CONVERSION CHARTe. freeneersaavaans e, :..108
J. CHARACTER GRAPHICS AND VIDEO SCREEN LAYOUT................. e 110
K. 0S-65D USER'S GUIDEcoouiiutunnaraesesernnsnnssnssassesansnnes ...118
L. MACHINE MONITOR, B5V. ...+ uue s enseeaneeseesnsensesneeenseeinerneeens 125
M. USRX) FUNCTION - .o ventennten e eneenses e aean e eneeneeneeessseanesneaneens 127

2, USING the ASSEMDBIET.vvuieereeeeraesnniasieeteesenansnresassesees 134
N. EXECUTING A DISK RESIDENT MACHINE LANGUAGE PROGRAM. 136
0. INDIRECT FILES. . r e v tnrsieen e s s et e e ea e e ae e et aae e eaaanes 139
P, BEXECY .o e e e e et e ST ... 142
Q. 1/O DISTRIBUTION .o eeeeeeee et e e e e e e e e e e e et e n e e e aaeaanss 144
Y] = ST S 149

il

SECTION 1
GENERAL INTRODUCTION

" You are using a state-of-the-art Ohio Scientific computer system which brings cost effective processing to the
popular computing field. The high instruction rate and expandable architecture of the OSI bus bring computing
power within the reach of home and office while a wide range of software supporlts the various applications, such as
recurdkee.pmg, security systems, education, mmpulalmn and entertainment. . .

This manual is a general guide Lo your computer’s features. It gives applications and e:-mmples. to aid you in your
programs and applications. We hope it will lead you to consider new ways to benefit from your computer’s features.
More detailed manuals from OSI cover the definitive use of option boards or operating system and sofltware details.
However, the material in this manual should be sufficient to show most of the features you will need in common ap-
plications. .

To aid in quick reference, the features and functions referred to throughout the manual are contained in separate
appendices and listed in the index.

The C4 is a self-contained computer and a highly reliable system. To prevent abuse and assure this Iew—;l of per-
formance, please follow these instructions:

1. Insure that the power outlet is part of a 3-wire grounded 118V AC system. If the existing system is a two wire
system, then a securely atiached wire from the computer’s cabinet must be run to a c]amp on a culd water
pipe. Only then may a two wire adapter be used on the computer’s power cable.

Failure to follow these precautions may present a shock hazard and - cause comiputer-damage from static discharges.
Such damages are specifically not covered under the H"aumr.*;.r

2. Connect the system together with the cables provided acmrdmg to Figure I Press the -::ahle ::-::nnnemnrs ﬁl‘l‘ﬁl}f
for gt::-ud contact. If a monitor provided by OSI is not used, then read the section on-**Video Display Connec-
tion.” :

3. Put the floppy disks aside until needed. These disks should be stored upnght in lhe" sleawzs in a clean dr:-.f
area. They should not be bent, folded or twisted. :

Do not use paper clips or other fasteners on the disks.
Mark the disks with felt tip pens, only. Ball point pens and pencils will dent the disks.
Do not touch the inner disk surface, as body oils and dirt will degrade performance.

Keep disks away from magnetic fields (magnels, motors, computer power supplies, elc. ,'! Dﬂ' not Ieava disks
on the cabinet tops, as the magnetic fields and temperature can be excessive.

Disk temperature should be maintained between 1§°C—5@°C (50°F—125°F). If the temperature is comfort-
able for a person, the disk will not suffer either! Slnrage in direct sunlight, adjacent to heating vents, or in a
car trunk should be avoided.

The disks must never be lefi in the disk drives when any part of the system is turned OFF or ON.

SECTION 2
VIDEO DISPLAY CONNECTION

There are three different methods of attac:hing a video display to the C4P ::{:-mpu'.ﬂrs. ThESE are outlined as follows:

1 Preferred method—connect the supplled computer video cable to the high impedance (Hi-Z) input of a
closed-circuit TV video monitor. Ohio Scientific offers a color television set, modified for video monitoring.

Ohio Scientific also offers the Model AC-3P 12" black and white monitor. Both are ideal for this application.
The units double as television receivers when the video cable is disconnected.

2. Connect the supplied computer video cable to an **RF modulator’ which is, in turn, connected to a standard
television’s antenna terminals. RF Modulators are-inexpensive and allow }rﬂu to use almost any television
with the computer. They are sold in kit form.

3. 'Have a standard AC transformer- -:rparatacl ta}awsmn modified to accept direct video entry. This requires spe-
cial s.afew precautmns

-

CLOSED-CIRCUIT VIDEO MONITOR CONNECTION

1. Refer to Figure 1. Attach the supplied video cable to the computer as-shown.

2. Connect the other end of the cable to the high impedance input of the video monitor. The AC-3 monitor has
a Hi-Z RCA-type phono jack input. On other monitors, a high impedance—Ilow impedance selector switch is
sometimes present, or there may be two or more inputs. Consult the manufacturer’s instructions.

3. Observe the manuficturer’s power recommendations. If the monitor has a 3- w1r¢ gmunded plug, cnnnect it
to a properly grounded 3-wire AC outlet.

4. Turn on the computer and monitor.
5. Allow the monitor to warm-up. The screen should be filled with random gi'aphics characfars, alphabet, etc.
6. If necessary, adjust the VERTICAL and HORIZONTAL controls to obtain a-stable pi::thre.

RF MODULATOR/STANDARD TV CONNECTION

I. Refer to Figure 1. Review the manufacturer’s instructions inclu:ie-:i 'ﬁith the RF modulator.
Connect the computer video cable to the computer as shown.

Connect the video cable to the RF Modulator.

Connect the modulator to the television’s antenna terminals (consult modulator instructions).
Plug in the television and computer.

Turn on the compuler, television, and modulator (consult modulator instructions).

el A

At this point, the proper TV channel must be selected and the television’s fine tuning adjusted as necessary
(consult modulator instructions).

8. When the television warms up a screen filled with random graphics characters should be observed. If the pic-
ture is not stable, adjust the television's VERTICAL or HORIZONTAL controls as needed.

2

I e, P,

s— L P

i

JOYSTICK "A” |
JOYSTICK “B" VIDEC MONITOR DAC AUDIO

. PORT “A" PORT "E!-"-\ . FINE COLOR ﬂDJUET
' , A :

| A l,|

16PIN __ 1y211J3]|J4 J5 : |

O /0 BUS O Q |
J6 - v

o o |

AC J8 J9 \

J7
SWITCH AC CORD

w9 L) A

FUSE

O

G
/ / ' | / .
PRINTER Keypap “A* | - NOT USED [GAEEE“{TE OuUTPUT .

ON MIN, |
MODEM KEYPAD"B" FLOPPY | CASSETTE MIKE' = AC CONTROL

SYSTEMS

Fig. 1 C4P Back Panel and Video Interconnection

-SECTION 3
CONNECTING THE FLOPPY OR CASSETTE SYSTEM

- CASSETTE SYSTEM

The manual to this point has made no differentiation between a C4P (cassette) compuiter and a C4P MF (Mini-
Floppy). Hereafler, all information pertinent to the cassette model will be marked with the same border as that on
this page. L -

The cassetle provides an economical bulk storage medium, though the data transfer rate is considerably lower
than the disk’s rate. The internal configuration of computer components is slightly different than the mini-floppy
configuration. Externally, the computer and accessories should agree with Figure 2.

The cassette recorder should be a medium price audio tape recorder. If price is indicative of quality, then $35-35¢
would be a price guide. Volume and tone controls should be set at mid-range. If 118V AC is not used for the re-
corder -power, be sure 10 use fresh batteries. (Speed variations due to weak batteries can create errors.)

TELEVISION OR VIDEO MONITOR

CHALLENGER C4P

CASSETTE RECORDER

S

CASSETTE OUTPUT JACK CASSETTE INPUT JACK
(MAY BE LABELED "EARPHONE" OR "SPEAKER"}

Fig. 2 Computer and Aﬂﬂ&ésnries

The cassette based systems are not permitted to use back panel connections J2 and J4 and J8 and J9.

FLOPPY DISK SYSTEM

1. The mini-floppy disk provides a large performance benefit for the relatively small investment above a C4P
- {cassette) system; the chief benefits of the C4P MF-are file handling and high speed data transfer.

2. Floppy disk drive units will be connected at the factory. The removal of packing material, done earlier; is the
only preparation step‘required. Externally the interconnection of computers and accessories should agree
with Fig. 1. ' : :

SECTION 4
STARTING THE MACHINE

CASSETTE SYSTEMS: COLD START

The precautions and discussion given in the main part of this manual for the C4P MF (mini-floppy) system, still
apply. As a reminder these are outlined.

1. Assemble the computer system a-::-::urﬁing to Figure 2. The use of OS] supplied cables will assure reliable.and
firm connections between units.
2. Turn on the computer. The switch is on the back panel.

3. Turn on the monitor. (Only OSI modified monitors or RF modulators should be used. Damage produced by
unauthorized monitors will void all warranty coverage.)

4, Turn on the cassette recorder power.
5. Press the ““BREAK™ key.

6. Rewind the cassette so that the tape “‘leader” is visible on the take-up spool. OSI software will be supplied on
high quality tapes. Use of low quality tapes will cause erratic performance and excessive recorder wear.

7. Respond to the terminal screen message
C/W/M?
by pressing the “‘SHIFT LOCK” key down and then respond
C <RETURN-=>

If the *SHIFT LOCK" key is not depressed, the keyboard message will not be understood by the com-
puter.

8. When the computer requests
MEMORY SIZE? . ‘
just press the “RETURN™ key. |
9. The computer will next ask
TERMINAL WIDTH?
Again, press the “RETURN™ key.
19. The prompt
OK

should appear at the bottom of the screen. If it does not, repeat steps 1 thru 1.
This prompt indicates the BASIC program is ready for operation. The cassette supported C-4P is a BASIC-in-
ROM system, having a 6-digit BASIC stored in read only memory (ROM).

Section 5, Running a Canned Program, will introduce some OSI software and a demonstration program. Casselte
system users skip over the disk oriented material in this section and proceed directly to Section 5.

5

= amam ma . mmn o s -

R e

FLOPPY DISK SYSTEMS

POWER UP

a. Check that the system is connected according to Figure 1 and the related instructions. Make sure that there is
clearance for ventilating air in the back of the C4P system. '
b. Plug in power cords.
¢. Turn on power on the back of the keyboard console,
d. Turn on floppy disk power (switch is on rear of disk drive).
e. Turn on CRT and any other accessories.
f. Depress the SHIFT LOCK key. Now press the ““BREAK”’ key on the keyboard.
W | ofl p RET RETURN
CONTROL —CTRU SL BX +——BREAK
SHIFT | |l € u M _ SHIFT SHIFT LOCK
. SPACE
Fig. 3 Keyboard Layout
g. Remove the disk labeled “*Customer Demo Disk" from its covering sleeve. Carefully insert the disk with
right thumb on the label. Keep the disk label on the top side. Refer to.Fig. 4.
The disk should be inserted firmly until a click is heard or slight resistance is encountered. Close the door on
the disk drive.
h. MAKE SURE THE “*SHIFT LOCK" KEY IS DEPRESSED. When the computer responds ““H/D/M?"" on

the CRT (lelevision screen), type

D | . /
The program will automatically be loaded into the computer from the disk. '

This disk will repeat its program endlessly.

Inserting a Disk. - _ . To remove a Disk.

Fig. 4 Disk Placement

6

NOTATION

“Throughout the remainder of this manual, the following nolation conventions shall be employed:
The shorthand notlation:

<RETURN>

will be used instead of writing **Press the “"RETURN" key.”” Do not type the brackets or the word RETURN letier-
by-letter.
Blank spaces will be indicated by a blank in the lypmg, such as

10 GOTO 5 <RETURN=
rather than writing
10 <SPACE> GOTQO <SPACE> 5 <RETURN:.

When the operator is to enter something from the keyboard, his responses will be underlined or in brackets (the
messages produced by the C4P will not be underlined). In the following example,

FUNCTION?
UNLOCK <RETURN:=

The C4P ask the question “FUNCTION?" and the operator’s repsonse wnuld be m type out “UNLOCK"™ (note
that all of the letlers are capitalized) and then a carriage return.

DISK PROGRAMS

The Customer Demo Disk contains a continuously sequenced animation, showing the power of the OS] C4P
computer and its software. This manual, will show how to adapt some of these programs (o individual purposes.
Similar programs are available from OS] dealers. When finished, remove the disk from the drive and store the disk
in its protective sleeve. To use another disk, press

<BREAK=

insert the new disk in the disk drive, then repeat Step g of the previous section.
The **Dealer Demo Disk™ contains the programs

Graphics Demo, an image generator which shows the tools of animation and graphing.

T

Plane Banner, a simulated airplane made from the C4P’s Characler set. A wide variety of shapes is possible.
Random Square, an animaled patlern generator to show the color range available.

Kaleidoscope, a continuously changing pattern to illustrate the variety of symbols available,

Space Wars, a game to pit your starship against the enemy empire.

Hectic, a ricochet simulation game. Both scientific prﬁhlem simulation and games can use these lechnigues.

Tiger Tank, a combat game (o show real-time player interaction,

S @R 0 8 oo

Set Time, a clock function which does more than keep time. This program can be used Lo control other pro-
grams. ' '

i. AC Demo, a home light and appliance control program. With the external lamp modules attached, the pic-
tures on the CRT screen will be echoed by the device behavior. (Note that remote module switches must be
properly set to use this program.)

These programs can be readily adapted to individual use. After becoming familiar with the C4P system, the operator
will be able to list these programs and extract the examples for his special purposes. These well written examples
provide programming lessons and power for sophisticated programs.

In order to access specific programs on the Customer Demo Disk (ONLY), the operator/user must be provided
with a ““menu’’ of programs from which to choose. To examine the directory of programs on this disk, press

7

<CONTROL> <SHIFT>

simultaneously. These keys are adjacent to each other on the left of the keyboard. These keys must be held down for
several seconds, as the program checks them infrequently.
Upon being presented with the menu of programs, respond to the request for response by typing

PASS

to immediately bring up the BASIC program.
To run a simple prngrmn_smred on the disk, enter

RUN “DIR"” <RETURN>
The DIR program will ask | |
LIST ON LINE PRINTER INSTEAD OF DEVICE #27

Answer
NO <RETURN>

at which time a listing of the directory appears on the screen. Each program stored on the disk is listed by name and

the numbers of the disk tracks it occupies.
An alternative way to run the program DIR is by specifying the track on which it is resident. On the Dealer Demo

Disk, DIR is resident on track 11. The alternate method to RUN the program DIR is to enter
RUN “11" <RETURN>

at which time-the sequence displayed when RUN **DIR"* was typed will repeat.
Once in memory,. the program can be RUN yet again by typing

RUN <RETURN>

since it need.not be loaded from disk again. .

POWER DOWN .

When ready to turn the system off:
a. Remove the disk from the disk drive by pushing the rectangular button below the disk dEIEH' Then remove the

disk, placing it back in its sleeve.
b. Turn off peripheral devices, if any. -
¢. Turn off CRT. (Video monitor)
d. Turn off disk drive (for disk systems only).
e. Turn off computer power (back of keyboard console) last.

The hardest part of using the C4P MF computer has just been completed. From hereon, care of the computer and
orderly handling of materials will pay for itself in reliability and enjoyment of the C4P system. Now go on to using
the system in some applications!

SECTION5
RUNNING A CANNED PROGRAM

CASSETTE SYSTEMS

In Section 4, the procedure to turn on the C4P Computer was covered. Now the power of the OSI Software availa-
ble to support the computer will be shown by running a demonstration program.
1. Turn on the computer and bring up BASIC, as described in Section 4.

2. Place the demonstration cassette (Marked SCX-104, C-2-4P/C4P Sampler) in the tape recmder which is con-
nected to the system as shown in Fig. 2

3. Turn on the recorder power.
4. Type

LOAD
but DO NOT press <RETURN> yet.

5. Press the PLAY switch of the recorder. When the tape begins to move past the leader, as indicated by brown
tape moving off the left hand spool and winding onto the right, then press the computer’s .-

<RETURN:>

key. After a few symbols appear on the screen, then a listing of the program will appear on the screen. The
first program on the cassette will take approximately 3 minutes to load. Programs requiring 4K of memory
will load in approximately 3 minutes, those requiring 8K of memory will require 5 minutes.

6. When the program is loaded, the message
?S.1 ERROR
OK

will appear on the screen. MNow, stop the tape or the next program on the tape will be loaded into memory over the
program which was loaded first.
1. Press

<SPACE>
then
<RETURN>
8. The program listing may be examined by typing

| LIST <RETURN:
9. To execute the program, type

RUN <RETURN>

at which time, the program will prompt the operator through the first program on the tape, a Math Tutorial. Other
. sample programs on the tape may be examined by repeating steps 4 10 9, after going through the startup procedure
of Section 4. The Cold Start is necessary to return to the BASIC program control,

10. Rewind the cassette and return it Lo safe storage before powering down the tape recorder and computer.

9

Each program on cassette is separated by appmximaleiy 1# seconds of blank tape. If the tape is not rewound after
loading a program, it will be positioned to load the next program,
The programs recorded on the demonstration cassette are:

Side I: *'Basic Math™ is an educational quiz program that gives addition, subtraction, multiplication, and division
problems.

**Checking Account™ will help balance the checkbook. Just give the compuler the initial balance and check
amounls and let the computer do the work.

“Trig Tutor™ explains and diagrams three trig functions: sine, cosine, tangent. The computer then tests
comprehension of these functions with a quiz.

*‘Star Wars" is an arcade-type computer game. The player moves the cross-hai rs around the screen trying
to draw a bead on the target ship. '

Side II: **Counter’ is a combination of educational game and cartoon for youngsters learning to count froni one to
ten. ' - -

“President’s Quiz™ asks 200 historical questions aboul various presidents.

By using the tape counter on the recorder, the tape can be positioned to return to any program. When the cassette
is turned to Side Il to load the program **Counter,”” a 200-30 second delay occurs before listing begins on the screen.

These programs provide usefulness in application and serve as models of well written software. A listing of availa-
ble O8I Software, continually expanded and updated, is available from OSI dealers.

DISK BASED SYSTEMS

'ISﬂUEral disk based programs have already been reviewed in previous sections. The disk labeled 05-65D, de-
scribed following the procedure of Section 4B, “‘Starting The Machine,” presents a menu display on the screen.
When the standard 0S-65D development disk is loaded, the following text is displayed on the screen:

BASIC EXECUTIVE FOR
0S-65D V3. N
MO, DAY, YR RELEASE
FUNCTIONS AVAILABLE:;
COLORS-TEST PATTERN TO ADJUST COLOR MONITORS
CHANGE-ALTER WORK-SPACE LIMITS
DIR-PRINTS DIRECTORY
~ UNLOCK-UNLOCKS SYSTEM FOR END USER MODIFICATIONS
FUNCTION?

This menu offers four program choices. COLORS, the first choice, presents a test pattern to adjust the color video
monitor controls, if needed. If the second choice, CHANGE, is selected, the computer will automatically LOAD
and RUN a program by the name of CHANGE. If the response DIR is entered, the computer will LOAD and RUN
a program named DIR. If the response is UNLOCK, then the system is unlocked. This allows the user o assume
control of the system with the capability of entering and listing new programs in the workspace. The response
UNLOCK places the system in the BASIC immediate mode and displays the prompt OK,

For now, focus on the program DIR. This program prints a directory of the files present on the diskette. If the re-
sponse to the query FUNCTION? is DIR, the computer will ask -

LIST ON LINEPRINTER INSTEAD OF-DEVICE #27

10

Responding NO will cause the following output to appear on the screen:

0S-65D VERSION 3.N

—DIRECTORY —

FILE NAME TRACK RANGE
QS-65D3 p-12
BEXEC" . . 14-14
CHANGE 15-16
CREATE 17-19
DELETE 20-20
DIR 21-21

DIRSRT 22-22
RANLST . 23-24
RENAME . 25-25
SECDIR 26-26
SEQLST 27-28
TRACE 29-29
ZEROC 30-31

ASAMPL . 32-32
COLORS 33-33
C-ASM1 37-37
C-ASM2 38-38
COMPAR 39-39

46 ENTRIES FREE OUT OF &4
OK

Some of the files of this directory listing will be discussed in detail in Appendix G. The files listed contain utility
programs written in BASIC. Note that two of these programs, CHANGE and DIR, were introduced on the previous
page in the menu. In addition to listing the names of the programs on the diskette, the directory tells where they are
located on the diskette. For example, the program DIR is located on track 21 and is one track long while CHANGE
is a 2 track program starting on track 15. (Each diskette has 4 tracks, numbered @ through 39.)

Any of the BASIC programs on this disk can be run by responding UNLOCK to the query FUNCTION? and then”
“entering the command RUN “NAME™" where NAME is the name of the program or the number of the first track
where it is stored. For example, either of the commands RUN"DIR™ or RUN""21"" would run the program DIR.

Most of the applications diskettes do not offer the user the option of unlocking the system. On these diskettes
programs are run by entering the appropriate response when the menu is displayed.

The use of mini-floppy diskettes for storing programs will be discussed in detail in sectjion nine.

11

SECTION 6
BASIC PROGRAMMING

The applications programs provided on the customer demo disk have been used to demonstrate the power of the

OSI C4P system. The next step is to write personal programs in a powerful but simple language. BAS/C is such a
language. : _ ' :

An excellent book by Dwyer and Critchfield, BASIC and the Personal Computer, is available from QSI dealers.
However, the information in this manual will suffice to teach some simple programs. This section is not intended to
cover all of BASIC. Instead, it is to show extensions and differences of OSI's BASIC that the user should know. A
few simple examples are included to familiarize the new users with applications.

For Cassette Based systems:

1. Turn on the computer power and the video display console.
2. When the display has warmed up, press
<BREAK>
3. In response to the query
" C/W/M? -
refer to steps 7-10 on page 5 for procedure
BASIC, as indicated by the prompt
OK
" is now ready to operate.

For Disk Based systems:
First, turn on the OSI C4P computer. Remember

[

. Turn on the computer power first and the floppy disk’s power second (power switches are located on the rear
panel; see Figure 1). :

2. Turn on the video display console.
3. Press <BREAK>. .
4. Insert the minifloppy disk marked simply “*08-65D 3.N".
5. Verify that the shift lock Eeg,r is down. Press D on the keyboard.
6. Respond to the question |

FUNCTION? |

by typing
UNLOCK <RETURN>

(As established under **2.Notation,”” Section 4, B, the operator’s entries will be underlined for emphasis.)

Mow clean out the work space (memory where the pragreim is ru'nn'mg} by responding to the BASIC prompter
OK '

12

by typing
NEW <RETURN>

This will erase the old programs which occupied the available memory. Next type
LIST <RETURN=>

to verify that no programs are present.

CALCULATOR MODE (IMMEDIATE MODE)

As an example of one of the easiest forms of BASIC math operations, type the line below
PRINT 5+ 3 <RETURN> | -
(Remember underlined quantities are entered by the operator.) The computer will return the answer
8 : :
For brevity, the question mark, **?"" can also be used in place of PRINT as |
? 5+3 <RETURN> |

The result is the same. This calculator-like function is called the immediate mode of operation. It can be used like a
scientific calculator.

fre]

PROGRAM MODE

Now repeat this program with the input and lhe output controlled by the computer (program mude) Type
10 ? 5+3 <RETURN>
or
1@ PRINT 5+3 <RETURN-> e

Because of starting the line with a number, the computer will await any further numbered lines before performing
the required calculations. This is the first program or set of instructions (in BASIC]' When ready to ha'#e the calcu-
lations run, type

RUN <RETURN>

The C4P will now execute the one line program that was just entered. The answer is, as before,

8 .
The numbering of lines (also called “*labeling for *‘statements’’) may be used to perform many instructions con-
secutively. It is a good practice to number statements as 19, 2@, 3@, . . ., leaving room for easy future addition of

lines. Be careful to arrange the lines in the order in which they are to be pﬂrﬁ::r med. The clarity and the usef ulness of
the previous program will be improved by allowing input to the computer when the program is run.

To prompt the program user, quotation marks are placed around words to be printed on the videomonitor when
the statement is performed. The name of the variable to be entered follows the prumpung quote, separated by a
semi-colon.

Intermediate variables, wlth convenient names (which do nor mclude w-::rds reserved for use by BAS!C such as
FOR and WAIT-see the appendix) should be chosen to keep the program statements simple. The final statement,
END, in line 5@ in this example, indicates to the computer that this is the end of lhe program.

Write out this example program. Type

10 INPUT "ENTER THE FIRST NUMBER",;A <RETURN=>

20 INPUT “ENTER THE SECOND NUMBER";B <RETURN:=

13

e =

il S — T —— o —— s - - B

- 30 SUM=A+B <RETURN:>

49 PRINT “THE SUM IS";SUM <RETURN>

50 END <RETURN>
In case of a typing mistake, simply pressing
<RETURN:=

and retyping the line will force the error to be thrown out. If a long line has been typed, this is inconvenient.
Pressing the keys, SHIFT and O simultaneously, as

<SHIFT O=

will cause the last character typed to be removed. In disk based BASIC, the last character will simply disappear. In
Cassette BASIC-IN-ROM, the <SHIFT O> will cause an underline symbol m be printed, rather than erase the
deleted character. The statement

10 PRX ___INT “"HELP"
would appear as |
19 PRINT"HELP”
The correction could be checked by duin.g .a
. usTip .

‘command, showing the symbol X has been truly deleted. Cassette BASIC-IN-ROM error message codes differ from

those given for disk based BASIC. Lists of error codes for both versions of BASIC are given in Appendlx D.
When ready to run the program that has just been entered, type

RUN <RETURN=>

the message in between quotes in line 19 will appear as
- ENTER THE FIRST NUMBER?

The BASIC program follows the message by a ? to indicate an operator entry is expected. Respond by typing a num-
ber, then a <RETURN=, such as

5 <RETURN=>

The computer will inquire again
ENTER THE SECOND NUMBER?
Type ghe second number in the same manner, such as
. 3 ﬂHETUHN}
The computer will respond by printing_
THE SUM IS 8
Now type
RUN <RETURN>

The computer will again RUN the program and ask for numbers.

The above examples illustrate that the B4AS/C language is algebraic in form, with simple input and output state-
ments. By numbering the statements, the order of execution of program statements is arranged. Upon typing '

RUN <RETURN>

14

the ordered sequence of statements is executed. Note that the words appearing between the quotation marks will be

printed on the CRT screen as prompting statements.
Multiple calculations can be performed by using loop statements. For example, computation of the squares of the

numbers from 1 1o 6 inclusive could be done by the following program

19 REM SQUARES OF NUMBERS PROGRAM
20 FORI=1TO®

30 SQ=I"I

40 PRINT “THE SQUARE OF";1;"IS=";8Q

50 NEXT I

60 END

RUN

Remarks are denoted by the word REM. Remarks are used for program clarity and are not executed by the BASIC
program. The writing of <RETURN-= at the end of each line has been discontinued to make the program look less
cluttered. The operator must still enter <RETURN= when entering the program from the keyboard.

To illustrate another method of performing the same operation, type

30 SQ=IA2

(The up-arrow is entered by <SHIFT N>). This will replace the old Statement (3 SQ=1*1) and will also run but will
yield slight variations in the answers. This is due to the algorithm (method of calculation) which QS BASIC uses.
The up-arrow, A, means “*To the power of.”" It involves the use of algorithms instead of merely multiplying.

To do a computation until a desired value is found involves the use of the less than, greater than, or equal (<, =,
=) signs. An example might be to find the smallest integer whose square exceeds 609.

19 REM FIND THE INTEGER X SUCH THAT

20 REM (X—1) A 2 IS <609 AND

30 REM (XA2) 1S> 60D

40 X=1

50 SQ=X"X

60 IF SQ> 609 THEN GOTO 99

70 X=X+1 '

8P GOTO 50

99 PRINT “THE LOWEST INTEGER X WITH XA 2> 609 IS";X

100 END

Statement 6f is a conditional statement. If it is satisfied, i.e., SQ> 6@@ is true, then the next statement to be executed
is number 9@. If SQ= 60 is false, the next statement in order, number 7@, is executed. This branching between
statements permits a program to be modified, depending on the result of a calculation. This branching technique
makes high speed decisions possible, based on the data which is evaluated by the computer. When the conditional
branch to statement 9@ is made, the answer is then printed.

CHARACTER MANIPULATION

In addition to handling numbers, OSI BASIC language canalso be used to manipulate characters. For.example, to
read in a string of characters, type .

12 INPUT "YOUR CHARACTERS ARE";A%

The dollar sign after the variable name implies that this is a character string, rather than a number, per se.

15

] -

e —— Tk —

Several character string operations are possible. It is possible to print out the characters by typing .
20 PRINT A%

To run the program at this point, type RUN, then respond l'I:'.;l
YOUR CHARACTERS ARE? |
by typing
NOW <RETURN>
and see the result in the print out
NOW

If

NOW IS THE TIME <RETURN=>
had been typed the character string
NOW IS THE TIME

would have been printed. This last string consists of 12 letters and the three blanks in between Wﬂ]‘ds These strlngs
can be operated upon with string operations. _
One of the possible string operations is counting the string length

30 L=LEN(AS)

Therefore, the program
10 INPUT “WHAT ARE YOUR CHARACTERS":A$
20 PRINT AS: “ WERE READ IN "
39 L=LEN(A$)
49 PRINTTHERE WERE" ;L; "CHARACTERS"
50 END

will read in the character string, echo the characters for verification, and print the character count. (BASIC expects
72 or less characters to be input at any time.) Entering ““LONG"" will echo “LONG"" and report four characters.

Other useful string operations are picking out the leftmost | characters in a string. For example, the leftmost
character in the string AS is found via

10 L$=LEFT$(A%,1)
The two lefl thand characters in the string AS$ are
" 10 LS=LEFT$(A$,2)
Simllarly, the rightmost two characters in the SII'II'IE AE are
10 R$= HIGHTHME}

- Likewise, the midrange J characters which start from the Ith one are

MS=MIDS(AS,.J)
Thus, the second, third and fourth characters of the string A$ are given by
M$=MID$(AS,2,3)

* For example, the program

10 A$="FRIDAY"
29 PRINT MID$(A$,2,3)

16

will resuit in the output
RID

Now enough mt‘c-rmauﬂn has been presented to write a sm'lple two person hangman t}rpe game Let the ﬁrst per-
Snn type a three letter.word. The computér will then erase the screen. The second person will try to guess the letters.

If the player fails to guess in six trles, the first player wiris.
‘Eﬂ REM GUESSING GAME
Eﬂ INPUT “PLAYER #1 ENTEH A 3 LETTER WDHD" A$

30 FOR I=1 TO 32 : REM CLEAR

49 PRINT :REM THE

50 NEXT | :REM SCHEEN

60 COUNT=p :REM COUNT IS CDHHEGT GUESS COUNTER "
70 TURN=0 ‘REM TURN COUNTS TOTAL GUESSES

80 INPUT “YOUR ONE LETTEH GUESS 1S";B$

90 IF LEFTS(AS, 1]—E|$ THEN PRINT LEFTEFM&H
100 IF LEFTIA.1J—B$ THEN COUNT= GDUNT+1
120 IF RIGHTS$(AS,1) =BS$ THEN PRINT HIGHT${A$ 1)
130 IF RIGHT$[A$ 1)=B$ THEN COUNT=COUNT+ 1
150 IF MID$(A$2 1)= B$ THEN PRINT MID$[A$ 21)
160 IF MID$(AS$,2,1) =B$ THEN GOUNT =COUNT+1
179 TURN= TURN+1

180 IF COUNT = 3 THEN GOTO amm

199 IF TURN=6 THEN GOTO 609

zm GOTO am
309 PRINT “YOU wm THE WORD WAS™; A$

319 GOTO 700

600 PRINT “YOU LGST THE WORD WAS";A$

700 END

Ut‘ course, if a player gets one Ietter correct, it is puss.lhle to cheat by ra-entermg that leuﬂr lhrﬂe I.IlTIES hut then
this was just to try out the ideas. A program does what it is tuid to do, not necessarily what is desired for it to do.

For complicated programs, a plcture is usually drawn of the thcught or decision process. This picture is -:allecl d
flow chart. For the previous program, the flow chart in Fig. SA & B applies:

17

PLAYER #2 |
GUESS . - S
OME LETTER

WAS IT
LEFT MOST
LETTER?

NO YES

l

' ECHO
CORRECT
GUESS

=

INCREMENT
CORRECT GUESS
COUNTER

NO WASIT .
RIGHT MOST

. LETTER?

YES

ECHO
CORRECT
GUESS

o
' - “INCREMENT -

CORRECT GUESS
COUNTER

Fig. 5A Flow Chart (80 to 150)

18

WAS IT
MIDDLE -

NO ' YES

LETTER? 1
ECHO
CORRECT
GUESS
INCREMENT
CORRECT GUESS
I COUNTER
== sl
INCREMENT
TURN
COUNTER

GUESSED YES
ALL 3 -
LETTERS?

USED UP
TRIES TO
GUESS?

— , PRINT
WINNER
LOSER
MESSAGE MESSAGE
GE AND ANSWER

700
END

Fig. 5B Flow Chart (150 to 709)

19

—————— e

3 e — R — L — rm

’!’his picture was then directly written as a BASIC program, since the programming decisions had been made.
.St_tme:me:m numbers in circles, known as “‘connection points’™ are used to indicate program start, stop, and
branching connections. Input operations are represented by a sideview drawing of a key board:

.

Printing on the video monitor is shown by a:

and calculations are shown by a: -

Branching statements are shown by
(] g -

where the two possible branching choices are indicated. These symbols are standard. However, a distinct set of

~ shapes ‘(from any available template) will encourage the use of flow charts. The path of calculations, from one

operation- to the next, is shown by arrows.

| Simp!iﬁcatiqn of this program is made possible by using the MIDS string operation as
" 9p FORCHAR=1TO3 o |
100 IF MID$ (AS,CHAR, 1) =BS THEN PRINT B$
110 IF MID$ (AS.CHAR,1)=B$ THEN COUNT =COUNT+ 1
120 NEXT CHAR . |
139 REM—THE MID$ OPERATION CAN
149. REM—REPLACE THE LEFTS
150 REM—AND RIGHT$S OPERATIONS
160 REM—WITH RESULTING SIMPLICITY

The flow chart drawing for.this new program segment (statements 99 to 160) can be shown as a loop in Fig. 6.

20

DO LOOP FOR
TERMS=1TO 3

GUESS
LETTER CORRECT
FOR THIS
TERM?

YES

ECHO
CORRECT
GUESS

INCREMENT
CORRECT GUESS
COUNTER

Fig. 6 Flow Chart (99 to 170)

Each term is considered in the same way, so the loop examines the ﬁrst semnd and third Ietters m‘" the answer m
order.

If it were desired to rewrite this game program for different-length words, this last form would be easier to follow.
In programming, sacrifice anything but clarity.

Now rewrite the program for words up to five letters in length. Output a blank for each |EIIE:I' as a pmmpt As the
player guesses a correct letter, fill in the blanks and show them (including repeated letters in the word). Most impor-
tantly, eliminate the chance to cheat by barring reuse of correctly guessed letters, whllf.: aiiuwmg the opportunity to
repeat incorrectly guessed letters,

The former error was a logic error, discovered by playing (testing?) the game. The program writer could have
written the program to generously forgive repeated wrong entries, but thls w-:}uil:l have made the example longer
(and easier for the player)!

The subscripted variables, such as C$(1), C$(2), C$(3), . . ., will be used to hold the value of the first, second,
third, . , correctly guessed letter(s). This will permit clearer pnnted messages to the playver. By usmg the same
vanablf: namﬂ each subscripted variable can be used by merely changing the subscript.

21

With this more complicated program, a flow chart is needed. Start with an overall flow chart (Fig.7), the individ-
ual boxes of which get expanded as follows: (Fig.8A, B, C)

e ———m————

TE S ——

PLAYER #1
IMPLUT WORD

CLEAR

SET UP
IRITIAL

PARAMETERS

CLEAR OUT
ANSWER
HOLDER

PLAYER # 2

COUNT =@ CORRECT ANSWER COUNT
TIME = 1@ END OF ALLOWED GUESSES
TURAN =& GUESS COUNTER

L=LEM (A%, COUNT OF CHARACTERS ENPUT

OME LETTER GUESS. BS

CORRECT GUESS
COUNTER

PUT LETTER B4
ANSWER
HOLDER

(e

PRINT PRESENT
STATUS

INCREMENT
NUMBER OF GUESSES
CIOUNTER

TURMNS = TLARMS+ 1

Fig. 7 Flow Chart ['.'.‘.'vera_lll.

22

~ The *‘clear out answer holder™ is expanded as:

|
Fig. BA - _,.<: __TT“L _:>

Csll) ==
—6

and “‘print present status’' becomes

o

Fig. 8B s

1
FOR
I=1TOL

DS=D%+Csil

:

B
8z

The *‘previous correct guess’” test is;

PREVIOUS
CORRECT
GUESS?

Fig. 8C

23

Now-convert these flow charts into a program. If a flow chart is well written; the program can be coded as fast as the
programmer can type. . :

10 REM PROGRAM:HANG AUTHOR: L. ROEMER JULY 1979
20 INPUT “PLAYER #1":A$ -
30 COUNT=@:TIMES=19:TURNS =0:L=LEN(A$) ,
49 FORI=1TOL |
50 CH(l)="-"
60 NEXT |
70 FOR 1=1 TO 32:PRINT:NEXT |
199 INPUT “YOUR GUESS";BS$
119 FOR I=1 TO L:IF B$=CS$(I) THEN GOTO 109
120 NEXT |
139 FOR I=1TO L
140 IF MID$(AS,,1)=B$ THEN COUNT=COUNT+1:C$(l)=B%
159 NEXT |
160 TURNS=TURNS+1
179 IF COUNT=L THEN GOSUB 1090
.. 180 IF TURNS=TIMES THEN GOSUB 2000 T
200 DS=""
219 FOR |=1TO L
220D$=D$-+C$()
23p NEXT I:PRINT DS$
249 GOTO 100
1900 PRINT“CHEERS"
1199 END
2000 PRINT“BUMMER”
2109 END

Note: In Microsoft BASIC, the conditional statement at 140 also imposed the condition on the statement following
the colon **:*". The colon serves as a separator between BASIC statements which are written on the same line. An

equivalent program segment would have been.
140 IF MIDS$(AS,,1)=B% THEN COUNT=COUNT+1
145 IF MID$(AS,1,1)=B$ THEN C%(l) =B%

The prngramjstill could be improved. For example, the variable C$(I) has been used to store the correct guesses.
In order to use more than a ten letter word, additional memory must be reserved for the variable C3(1). This must
be done by dimensioning the variable C$(I), for example; for a maximum length of 2@ letters in a word as

5 DIM C$(29)

If a subscripted variable is not dimensioned, BASIC will default to the assumption of 1) subscripts possible. For-
tunately, the other variables do not have to be dimensioned, as they are either single characters or, in the case of
AS$, a single string of characters.

A character string is a set of characters stored under a single variable name.

24

To play this game, the computer to user dialog would be, typically,

PLAYER #1? GHOST

Then after the screen is cleared,
YOUR GUESS: G
G____
YOUR GUESS? B
G____

This dialog continues until either the winner message of
CHEERS

or losing message of
BUMMER

is printed. -
Further improvements in the program could be made by providing a preselected vocabulary or having a stick
- figure drawn as player errors occur. The program works: the style will be up to the individual. '

ASCIl CODE

In using string operations, the distinction must be made between a character and its representation inside the
compuler. For example, to display the number 1, a value of 49 decimal (31 hexadecimal) is sent to the display ter-
minal. This code, called ASCII (4 merican Standard Code for /nformation /nterchange), is used for small com-
puter systems. To find the ASCII representation of a character, such as the letter A, use the BASIC command ASC
as follows: :

10 AS="A"
20 X=ASC(AS$)
3@ REM THE ASCIlI REPRESENTATION
49 REM OF THE FIRST CHARACTER IN A%
50 PRINT “THE ASCII CODE FOR":A$:"IS";: X
60 END

This process may be inverted to find whether 65 is really the code for the letter A by using the command CHRS
10 X=65
20 A$=CHR$(X) -
30 PRINT “65 CONVERTS TO":A$
49 END

One application of the ASCII code conversion is in using POKE's. For example, if the command

LIST

is used to clear prior programs from user memory, the letter *‘L"" will be found in location 741 decimal. To examine
this, type

PRINT (PEEKI(741))
| which will return

76

25

76 is the ASCII code for the letter L (See appendix I for ASCII code list.) Any other symbol in location 741 will dis-
able the command LIST. It would have been easier to have typed .

PRINT (CHR$(PEEK(741))

Conversion to the expected symbol L would have been done directly. .
Another example is found when changing the cursor symbol. The cursor symbol is found in Location 9680
decimal. The command

POKE 968042

will make the symbol * into the cursor symbol. However
POKE 9680ASC("*")

could have been used to achieve the same result, avoiding looking up the ASCII code. This would be an easier state-
ment to program and a clearer statement lo read.

Finally, consider some interesting arithmetic. Since the alphabetic characters are ASCII coded sequentially, from
65 decimal for A to 99 for Z, the stalement

PRINT(ASC(“Z")—ASC("A"))
will answer
25

the difference in code of the 26th and 1st characters of the alphabet. Alphabetical sorting can be readily done using
this observation,

For example, read in two letters, arbitrarily placing the first one in string variable FIRS, the second entry in SECS.
Now to test the variables' order of precedence, rearrange the variables into their natural order by the program:

19 REM PROGRAM SORT
29 INPUT “FIRST LETTER";FIR$
3¢ INPUT “SECOND LETTER";SEC$
40 REM EACH LETTER IS INPUT
50 IF FIR$> SEC$ THEN TEMP$=FIR$:FIR$=SECS$:SEC$=TEMP$
60 REM ALL STATEMENTS ON LINE 50 HAVE CONDITION APPLIED
70 REM REVERSE ORDER ONLY IF NEEDED
80 PRINT “LETTERS ARE";FIR$,SEC$
The variables will be réarranged il;lllﬂ- their normal ordering. Altypical dialog is
'FIRST LETTER? M
SECOND LETTER? C
LETTERS AREC M

This sorting takes advantage of the coding without explicitly using the string commands.

SECTION 7
GRAPHICS

High quality graphics have been provided on the C4P system by dedicating memory to retain the image of the TV
screen. The entire screen is normally divided into 64 columns by 32 rows. Other screen arrangements are possible,
however. These choices are selected by a BASIC command

POKE 56832 N

where N is selected as

Characters Sound . Color/ . -
N Per Line On/Off Black & White
@ 32 | Off Ba&W
1 64 Off BAW
2 32 On B&w
3 64 On B&W
4 32 Off Color
5 64 | Off - Color
6 32 On ' Color
7 64 On _ | Color -

To select a B & W screen (64 characters by 32 lines) with the sound off, the command would be
POKE 56832,1 ' | :

The same command for color display (64 characters by 32 lines) but keeping the sound off is
POKE 568325 _

Each character to be displayed is an 8 by 8 array of dots (cell).

There are 256 selectable characters available for use. The 256 characters, selected from a larger possible set, pro-
vide versatile graphics without heavy demands for memory. See appendix J for a complete list. -

The memory selected for storing the screen image is from 53248 to 55295 decimal. The color selected for each
symbol is stored in another set of memory locations from 57344 to $9391. The locations for storing color values are
4996 locations beyond the location for the corresponding symhﬂl (Since 16 colors are available, only 4 bit (half
byte) storage is provided). Memory might be regarded as an image of the screen (See Fig. 9).

A work sheet is provided in the appendix to make an easier task of screen picture layout.

_Display of any image is achieved by placing (in BASIC, using the *‘POKE’ command) the character value and its
color in the desired locations. For example, the following BASIC program will turn on the color in the 64 character
display mode, leave the sound off, clear the screen, fill the color memory with Red using POKE’s, place an “X"ina
blue square and sit in a delay loop for a few seconds

1@ POKE 568325

20 FOR | = 1 TO 32 : PRINT : NEXT

30 FOR J = 57344 TO 59391 : POKE J,2 : NEXT
4(POKE 54302188 : POKE 583488

50 FORTO = 1 TO 5000 : NEXT

- 27

e — m

LOCATION 57344

LOCATION 53248

IMAGE OF COLORS OF

SCREEN CHARACTERS LOCATION 57407

+ (E@3F HEX)

(EQDD HEX) <

(DOPD HEX) — |

LOCATION 53311

(D@3F HEX)

| LOCATION 59391 .

LOCATION 55232 (E7FF ng}
(D7CP HEX) _ _ > LOCATION 55295
IMAGE OF SCREEN '(D.?FF HEK} A
CHARACTERS -
64 COLUMNS |
y Y
P et
%
44 M
32 ROWS \

EACH CHARACTER IS A
SET OF 8 DOTS BY 8 DOTS

Fig. 9 Make-up of ‘lu"idﬂﬂ_sfr:rem

Color selections must be made from this list:

Decimal Value

=

o ~ O O & W K =

— ek
R = = D

-
(]

Color

Yellow
Inverted Yellow
Red

Inverted Red
Green

inverted Green
Olive Green

Inverted Olive Green
Blue

Inverted Blue
Purple

Inverted Purple

Sky Blue

Inverted Sky Blue

28

14 Black .
16 Inverted Black (no color)

An inverted color is a black background with the symbol in color. Each of the 32 by 64 cells can be colored. To im- |
prove viewing, only the center two-thirds of the screen is used for graphics. For any line, the left and right border’s
color is the same as the last cell on the line (rightmost). The right -border wraps its color around to the left border.
The cell immediately before the leftmost (addressable) cell has the same color as the leftmost cell.

To illustrate the color choices, the following is a program that places the symbol numbers 181, 182, 18@ (the

shape of a ship in that order) into adjacent locations.

181 182 o | 180 96
This ship will be displayed across four columns for 16 times. Each time the color shall be changed. The program is

19 POKE 568325 : REM SET UP.COLOR ON, SOUND OFF
20 ST=53248 : REM START AT UPPER LEFT
30 C=8T+4p96 : REM COLOR AT 4096 BEYOND SCREEN LOCATION

49 FOR RW=0 |
TO32 : REM ROW INCREMENT LOOP

50 FOR CM=0 TO 63 STEP 4 : REM COLUMN INCREMENT LOOP
69 D=64+CM : REM COMPUTE SCREEN DISPLACEMENT
70 POKE ST+D+0,181 : REM SHIP USES 4 CELLS
80 POKE ST+D+1,182
99 POKE ST+D+ 2,180
100 POKE ST+D+396
119 FOR I=1TO 3
12 POKE C+D+1,INT(CM/4) : REM SAME COLOR FOR WHOLE SHIP
130 NEXT |
149 NEXT CM
150 NEXT RW
169 GOTO 29

Since the program is looped on itself, <CONTROL C> must be used to exit.
Examing the possible character fonts in the appendix shows a wide variety of useful images for program sources.

29

e s Y W s s SO e s — = re———

I——————eeeseesewewe s DI FEERREEE R R

SECTION 8
SOUND

A standard feature of the C-4P system is the ability to generate tones and sound waveforms for music generation
or for signaling (e.g. alarms, bells). Two methods are provided for sound generation. The simplest method is the
Tone Generator, a device which puts out a continuous stream of square pulses at a programmably selectable fre-
quency. The more versatile method, though more detailed in the requirements in its use, is the companding digital
to analog converter. The Companding DAC is capable of generation of arbitrary wavefurms over the common
voltage ranges used by audio amplifiers.

Look at the specific characteristics of the two methods.

TONE GENERATOR EFFECTS

For games or test signals, it is often desirable to have a tone generated at a specific frequency. This frequency can
be heard when the audio output (See Figure 1) of the C-4P is connected to the audio input jack of the AC-SP video
monitor (or other audio amplifier).

_ This facility is available when the sound is turned on by

POKE 56832,7
for color and sound or
POKE 568323

for black and white and sound.
The other sound options are listed in the **Video Graphics™ section.
The tone generator’s frequency is set by

Frequency out = 49152/1
where | is an integer between | and 255. The value of | is stored in 57089 by
POKE 57089,

The registers at 56832 and 57089 are write only locations, and cannot be PEEKed.,
A familiarization test program which demonstrates the range of tones produced is

10 TUNES=57089 .
20 CST=49152 '‘REM CONSTANT FOR FREQUENCY CALCULATION

39 FOR i=1TO 255

49 POKE TUNES,|

5@ F=INT(CST/) '‘REM F IS FREQUENCY IN HERTZ (CPS)

6@ PRINT I;F

70 NEXT I

80 POKE TUNES,I :REM BE SURE TO TURN TONE OFF!
99 END

To try this computer feature in a more interesting tune, the first seven notes of “*Twinkle, Twinkle Little Star™
have been found to be frequencies of 261.6, 261.6, 392.9, 392.0, 440.9, 440.0, 392.@ Hertz (cycles per second). The

30

frequency of the different notes appears in many encyclopedias and handbooks as well as Appendix F. These data
form a BASIC program as shown:

5 REM TWINKLE TWINKLE TUNE
19 TUNE=57089
20 FORT=1TO7
‘30 READ N,BEATS
40 1=INT(49152/N)
50 POKE TUNE,
60 FOR DELAY=1 TO 5p0*BEATS
70 NEXT DELAY '
80 FOR D=1 TO 5@:POKE TUNE,:NEXT D
99 NEXT T |
100 DATA 261.6,1,261.6,1
110 DATA 392.0,1,392.0,1
120 DATA 440.0,1,440.0,1
130 DATA 3929,2

The tone generator continues to put out a tone without requiring the computer to do additional calculations. This
achieves efficient use of the computer for signaling at audio rates. A keyboard and note guide is provided in the
appendix to help write tunes.

Twinkle Tune

r""’q

= o ® o
o @

DIGITAL TO ANALOG (D/A) CONVERTER

For general applications, the C-4P is equipped with a companding digital to analog converter (DAC). This DAC is
coupled to the output through a capacitor. Therefore, only changing voltages can be observed. A constant voltage
will be blocked by the capacitor. For example, a positively increasing signal from the DAC will appear at the output
as a positive voltage. A decreasing signal from the DAC will appear as a negative voltage. The peak to peak voltage
range is about 3 volts. (Brief maximum excursions of up to £3 volts are possible at start up.) :

Since the output of the DAC must change rapidly to pass through the capacitor coupling to the output, the pro-
gram code which drives the DAC must be in machine code, rather than in BASIC.

A program to drive the DAC can be loaded under the machine monitor at boot up by responding to

H/D/M7?

with
M <RETURN=

Press the “‘period™ (**. ") to enter the address mode and type
p309

as an address, then press the *‘slash’ (** /') to alter the memory locations. Enter the two digit hex 'code at the
adresses indicated S . :

3

o e i N P .

Address . .
p300 E8 <RETURN> Increment X

D300 ~ BE <RETURN> .
@392 P1<RETURN> Store X at location $DF@1
9303 DF <RETURN>
P304 4C <RETURN>
P305 PP <RETURN> To return to start
0306 @3 <RETURN> -
Then .tj"pﬁ . " again to return to the address mode. Type
300G

to run the program starting at location 399 hexadecimal.
This program will produce a **saw-tooth™ (roughly triangular) waveform at the DAC output. Music generation of
pleasing quality, imitative of musical instruments can be played by this device (with additional programming).
Be cautioned that the DAC output should not be tied together with any other output of the computer (such as the

tone generator). Further, only one audio output should be used at a time since the register assignment of the audio
output devices is the same.

The sound output should be taken from the DAC (See Figure 1) output jack, of course.

32

SECTION 9
STORING FILES ON CASSETTES OR DISKS

The need to be able to store long programs for rapid reentry is rapidly evident to the new computer user. The
chance for typing errors, compounded with the waste of time, encourages one to find an inexpensive medium which
maintains program fidelity. Both Cassette and Disk offer such a medium. Cassette provides the most economical
medium, since low cost tape recorders suffice for reproducing the signals stored on tape. Low speeds (several min-
utes for typical programs) and the lack of program selection under computer control are the drawbacks which bal-
ance the low cost. The disk provides the speed and computer controlled program selection, but at a somewhat higher
cost than a tape recorder.

Following are examinations of the methods of LOADIng a program into memory-for execution, and the storage of
a user written program on the storage medium. First, a look at the cassette as a storage medium. -

TO LOAD CASSETTE: PROGRAMS INTO RAM (MEMORY)
Enter BASIC, as shown in the previous section. ;
1. Place the demﬂnatra.tiun cassetie in the recorder.
2. Rewind the cassette tape. When the tape stops rewinding return the selection switch(s) to STOP.
3. Type
NEW <RETURN:=
This will clear memory in preparation for reading the cassette.
4. Type
LOAD
but not <RETURN>

5. Start the cassetle in the PLAY mode, in order to play back the demonstration programs into the computer
memory. .

6. Assoon as the tape leader has moved past the recorder head (is no longer visible on the wound up reel), press
the

<RETURN>

7. The computer will type

?S JERROR
OK

Which may be ignored. The computer will then list the program being read. The program appears on the ter-
minal screen and is simultaneously stored in memory. If there is a large unused tape region between the tape

leader and the program, meaningless characters will be printed. They may be ignored, as they will not affect
the program operation.

8. When the program is finished listing, there will be printed
OK
?S JERROR
OK

9. Turn off the cassette recorder, then type
<SPACE>
then
<RETURN=>
The program is now in memory and may be examined by typing
LIST <RETURN=

10. When finished, store the cassette away from heat or magnets. Do not leave the -::assen'es on the computer
case, as the temperature and proximity to the iron transformers can degrade the programs stored on tape.

SAVING PROGRAMS ON CASSETTE

First clear memory by typing

NEW <RETURN:>

The computer responds
OK

Now write a short program
10 PRINT"NOW IS THE TIME"
20 PRINT"FOR ALL GOOD MEN"
30 END

to be stored on tape.

. Rewind the tape.
2. Type
SAVE <RETURN-=
The computer responds
OK
3. Now type
LIST
but not <RETURN:!

4. Start the recorder in the record mode. This operation is obtained by pressing the RECORD and PLAY
switches, simultaneously. (This two switch operation is meant to reduce inadvertent wriling over programs
not meant to be destroyed). '

5. As soon as the leader passes the recording heads (disappears from sight on the windup reel), type
<RETURN=> _ |
6. When the listing is complele, turn off the tape recorder and type
LOAD <RETURN> |
<SPACE=>
<RETURN>

7. Now rewind the tape and check that the recording is satisfactory by following the instructions to LOAD the
casselle.

R

34 f

e

USE OF CASSETTES AS A DATA STORAGE MEDIUM

Intermediate data within programs can be stored on cassette. This provides easy retrieval of data and intermediate

calculations for future use.
As an example, this is how to print the numbers 1 to 15 on the cassette. After rewmdmg the tape, the sequence of

operations would be

1. Write the program to create the desired data, such as
1P FORI=1T0O 15
20 PRINT |
30 NEXT |
40 END
2. Type
SAVE <RETURN=

3. Type
MNULL 8 <RETURN=
This step, although optional, is recommended.
4. Type
RUN |
but not <RETURN=> "

5. Start the recorder in the record mode (PLAY and RECORD switches depressed). As soon as the tape leader
has passed the recording head, press

<RETURN-=
6. The data will be recorded on tape and listed on the terminal screen.

7. When the listing of data is complete, turn off the tape recorder and type

LOAD <RETURN>
<SPACE>
<RETURN:=

to return to normal operation.

. Note that this set of procedure steps was almost the same set used to SAVE a program.
This data can be input for another program in a similar manner.

READING DATA FROM CASSETTE TAPE

In a manner similar to LOADing programs from cassette, data can be read from cassette. The steps are

1. Rewind the cassette tape.
2. Type
NEW <RETURN:>

35

S e — T n

e —

3. Enter the program which will use the data on tape. A typical program might be

10 INPUT A
20 PRINT "DATA I1S="";A
3 IF A <15 THEN GOTO 1¢
49 END

Now type
RUN

but not <RETURN>

4. Start the tape in the PLAY mode to play back the data. When the tape leader is beyond the recorder’s head,
then press |

<RETURN=>
5. The requests for f:iata will be shown on the terminal screen as typically
’y
DATA IS=1
72
DATA IS=2

etc.

6. Upon completion of the program (or the tape’s being wound up on the reel), turn off the tape recorder. Then
type

<SPACE>
and
<RETURN:
The computer will now be in the BASIC program.

These techniques should permit a flexible use of the cassette, both as a program and data storage medium. For ex-
tensive data handling, however, the drive control of a disk will give enhanced speed and control. Therefore, its use
is encouraged.

The alternative to Cassette storage is use of disk. For comparison, examine the equivalent operations on a disk,
Even cassette users should examine the power of a disk operating system. The large convenience of such a system
may justify the modest additional cost.

TO WRITE TO DISK

The operating system (0S-65D V.3.N) contains simple and powerful routines to handle disk input and ﬁutput.

These routines permit using low cost disk storage rather than using the more expensive random access memory
(RAM). '

A simple connection for storing BASIC programs is available. '

First, create a file, say “SCRTCH" (see Appendix G, Section E); then a simple program such as
19 PRINT "NEW TEST"

20 END

can be stored on the file “SCRTCH" hy- typing

DISKI"PUT SCRTCH"” <RETURN:

36

Now type
NEW <RETURN>
LIST <RETURN=

and see that nothing is printed, since the work space was cleaned by the NEW mmmand
If LIST yields a Syntax error, type POKE 741,76 <RETURN> to enable LIST.

TO READ FROM DISK
To load the program from disk into the BASIC work space, type

DISK!"LOAD SCRTCH" <RETURN>

Then the LIST command
LIST <RETURN>

‘will result in the listing of the previously stored program.
Another method to store and retrieve the program on SCRTCH is available. BASIC can be exited by typing

EXIT <RETURN>

Then respond to the DOS prompt:
A*

by typing
PUT SCRTCH <RETURN>

to store the program directly under control of DOS.
The copying of file "SCRTCH" into the work space is accomplished by typing

LOAD SCRTCH <RETURN=

To be able to specify the disk locations and memory locations, a more detailed set of commands are CALL and

SAVE.
" Thesecommands are used after the operating system prompt{and generally apply only to machine code programs)

A*

CALL address = track, sector <RETURN=>

and S | '
SAVE track, sector = address/page f:FlETUFIN:r

These commands transfer a specified track (1 to 39), and sector (1 to the maximum used on that track). A page is
256 bytes. Each sector is an integer multiple of pages, i.e., 1, 2, 3 pages of 256 bytes each. The address must always
be a four digit hexadecimal value, track must be two decimal digits (so track 2 is written §2), and sector is one
decimal digit. Pages must be one hexadecimal digit within the range 1 to 8. h given sector can be referenced only if
all lower numbered sectors exist on the specified track.

The CALL and SAVE commands are particularly suited to storing and retnevmg machine code programs. An ex-
ample of this is shown in the use of disk copy routines given in the appendix. The CALL and SAVE also permit stor-
ing data on a track without the requirement of creating a named file.

Since all these routines can be invoked within a BASIC program,-the ability is provided to run complete BASIC
programs which use other BASIC and machine code programs, brought in as needed from disk. This allows the use
of large programs, small parts of which are brought into memory as needed.

However, the frequent use of the routines, CALL and SAVE, under BASIC, is probable. The DISK! command
can be used to gain access to the operating system commands while remaining in the BASIC program. For example,

37

e e e o e e R L S R L. B

to SAVE a program on track 39 for 1 sector, where the program is resident at memory location 3279 hexadecimal,
and it is less than one page (256 characters) long, the command is

_ DISKI"SAVE 39,1 = 3279/1" <RETURN>
Likewise, to recall this same program back into these same memory locations, write
DISKI"CALL 327 = 391" {FIETLJHN'::

Caution is urged, as it is possible to bring the disk program on top of a program in use. This will destroy the program
which is overlaid. Each command that gives additional power or discretion carries the need for additional caution.

OPERATING SYSTEM ORGANIZATION

An operating system is a program, or set of programs, which supervises the running of mdmdual programs.
That’s not a purist definition, but it will do.

The central part of the OSI disk operating system (DOS on Figure 1§}) supervises the running of all programs. It
can call for three subsidiary (or utility) programs: BASIC, ASSEMBLER ianguage: {ASM} and the E}{TENDED
MONITOR (EM).

BASIC is the program commonly in use. It is almost conversational in form. Since it is a high level language, it is
very powerful and rapid for program writing.

ASSEMBLER is a shorthand way to write machine language programs. The details are covered in the Ohio Scien-
tific 6500 Assembler/Editor User's Manual and MOS Technology’s Microcomputers.

EXTENDED MONITOR provides the ability to inspect, alter, or fill memory locations. It can also move blocks of
program from one memory region to another. Details are discussed in the Ohio Scientific Extended Machine Lan-
guage Monitor User's Manual,

The inter-relation of these programs is shown in Figure 10. The recommended way to go from one program to
another is shown beside the direction arrows. These are the commands to be typed.

!E‘A‘E‘IE DIE H! “A'SM“

IBASIC

EM, C e
EXTENDED | !
MONITOR [~ — ASM
FOR DEBUG —
; ' 'EM

Fig. 10 Dparating System Flow Chart

" At boot up time, the ﬂperatmg system will dalwer the BASIC program asa default. TD illustrate, when in BASIC,
as shown by the prompt

OK

type
DISK!"EM”
and see the EXTENDED MONITOR prompt |

Upon typing
" EXIT

EM will be left and the computer will be back in D{jS as indicated by the * prompter. Return to BASIC can be
effected by typing
BA

(Note: valid only if BASIC is still in memory) which is a return to the starting point.
Since different services are provided by BASIC, EM, and ASM, it is nice to be able to use these programs inter-

changeably.

SECTION 10
ADVANCED FEATUBES

KEYBOARD

The keyboard provides a useful input device for games and home control. The easiest way to use the keyboard is
to use the BASIC command INPUT, as

INPUT A

However, the INPUT command causes a **?** prompt to be printed. Also, scrolling {movement) of the video scréen
display occurs. These effects could detract from game and display use. A method to avoid these problems is avail-
able.

The keyboard consists of rows and columns of conductors. When a key is depressed, contact between the row
conductor and the column conductor is made. To determine whether or not a key is depressed, certain values can be
entered into the keyboard address by a POKE command and the results ﬂb&ﬂﬁ"ﬂd by a PEEK command. The values
which need to I:I-E POKEd and PEEKed are shown in Fig. 11:

VALUES FOUND WHEN PEEKED

DECIMAL VALUE 128 64 32 16 a8 4 2 1
CfT ©6 ©5 ©C4 ©C3 C2 ©1 Cp

DEE{TEL | 2 a | 4 | s | &6 7
[128 R7 y | A 4 d 4
| &4 A6 i 4 |
wn— 4 4 - |
y |

16 R4

VALUES
TO POKE

8 R3

A
b3 C v B M M
4 R2 4 4 4 ‘
Q A Z |SPACE| ; P
RepT | cTRL | Esc LJ Sty
\ mo 4 ‘SHIFT SHrFT' LDGE

Fig. 11 Keyboard (Values to be POKEd and PEEKed)

The keyboard appears at address 57988. To test for depression of the key **V", for example, the sequence would
'bE a

19 R2=4:C5=32

2p POKE 57088 R2

39 VT=PEEK(57088) :REM VT IS TEST FOR V'S COLUMN
49 IF VT=C5 THEN A$="V"

to set A$ equal to the “*V™ key, if it were depressed.

The possibility of depressing several keys simultaneously requires the disabling of the <CONTROL C>fi eature 10
avoid problems in identifying which keys are used. This is done by a POKE 2073,96 to disable the <CONTROL C>
feature, prior to polling (examining) the keyboard.

The polled keyboard achieves its economy by reading the sw:lch closures within a program. The In:e;fbﬂard appears
to be memory, located at 57088, as seen by a program.

The keyboard is a standard 53-key layout, with a few minor exceptions. These exceplions are:

1. The “‘here is™ key on standard layouts is deleted. It has been replaced by a “‘rub out™ key in this position.

2. The standard “*rub out’' key position is filled by a **shift lock™ key. This key is locked in the depressed posi-
tion in normal use. :

3. The “‘left shift’" and *‘right shift™ keys dre separatﬂlz;f decoded to permil greater versatility.

4. The *‘break’ key is brought directly to the computer reset circuits. Use of this key restarts the system opera-
tion.

Lower case letters and fonts can be obtained when the SHIFT Key is unlocked (not depressed). Normally, in
BASIC, the SHIFT LOCK is locked. However, text editing and letter writing will require access to these features.

The foregoing has been a demonstration of a simple method to read the key closures without disturbing the video
display. This method can be extended to the keypad and joystick accessories, which are merely extensions of the
keyboard.

By using similar programs, interactive games and their displays are easily controlled. The complexity of the most
involved game does not require any more than the example just examined.

Some special purpose keys should be mentioned. '

1. SL— the SHIFT LOCK key forces upper case letters to be printed on the CRT. It should be
depressed prior to bringing up the system or running BASIC. Unlike a typewriter, however,
the numbers will be printed normally. To type the symbols above the numbers, press the
<SHIFT> key simultaneously with the desired character. The SHIFT LOCK key is used for
normal entry. It should be released only for use of lower case letters, and then reset.

2. BREAK— resets the computer any time after the system is powered up.
3. SPACE BAR — provides a space when pressed..

3. RETURN— must be pressed after a line is typed. The previously typed line is then entered into computer
memory.

5. CONTROL C—press <CONTROL> while simultanously pressing C. Program Listing or executing is inter-
rupted, and the message.

BREAK IN LINE XXX
is printed and XXX =a ling number in the program.

6. SHIFT O— press <SHIFT=> first while simultaneously pressing O. The last character typed is erased. By
the way, O is the letter “*oh’"; @ will represent the number “*zero.”” Do not type the slash. It is
just to make reading easier. :

7. SHIFT P— press <SHIFT> first while simultaneously pressing P. The current line being typed will be
erased. The symbol ‘@ will be displayed. The effect will be m erase lhe line typed and enter
a <RETURN= and <LINE FEED-=.

8. D— When pressed after <BREAK:> , causes initialization of the computer and boots the operating
system from disk.

9. M— When pressed after <BREAK> , causes initialization of the computer. The computer is then
in its machine language monitor. :

41

SECTION 1 1
JOYSTICKS AND KEYPADS

JOYSTICKS

The joysticks provide realistic and convenient input devices for games and control, They are connected to the Sys-
tem as shown in Figure 12. The joysticks provide a digital signal when they are connected and ﬂnahle:cl
Prior to using the joysticks (or keypads) the <CONTROL C> command must be disabled by

POKE 2073,96
The enabling of joystick A is done by

POKE 57(088,128 : REM — ENABLE JG‘(STIGK A
and joystick B is.enahled by

POKE E?HE-B 16 : REM — ENABLE JOYSTICK B

Only one joystick can be enabled at a time.

The joystick position can be read using the PEEK command. The value found using the PEEK command must be =

ANDed with a constant, depending on which joystick is used, to obtain a value for the specific joystick position. The
constants used are 31 for joystick A and 248 joystick B. For example

APCJSIT=FEEK‘:5TE'BEJ AND 31

will return a value for APOSIT (A's pnsntmn} which indicates the joystick position. If the “*ACTION" KEY is not
dapress&d' 1he’ vaiue returned for jl’.’l}'ﬁtlﬂk A wnll be as mdlcated in Fig. 13

ACTION KEY

POSITION | IS THE CENTER
(NEUTRAL) POSITION

Fig. 12 Joystick

42

Joystick A : : Joystick B

Action Key Aclion Key Action Key Action Key

Not Depressed Depressed Not Depressed Depressed

Decimal Decimal Decimal Decimal

Joystick Value Value . Value Value

Position Réturned ' Returned ' Returned Returned
A 16 & 17 20O 32 160
B W /2 20 28 48 176
C 4 Z s 2 16 144
D 12 g 13 _;;_ﬁ'-‘ 2@ 208
E 8§ / 9 47 64 192
F 9 > 1 9 12 209
G 2 2 3;;! 8 136
H 18 6 19 3°2 40 168
! ? 1 /16 ? 128

Fig. 13 Joystick Values

With the action key depressed, 1 has been added to the “‘action key depressed™ value for joystick A.
When joystick B is enabled, the corresponding values are returned 1o

BPOSIT=PEEK(57088) AND 248

The “‘action key depressed’ causes 128 to be added to the “‘action kéy depressed’’ value for jﬂyslick B.

238 236 239 237

Fig. 14 Airplane Display

To try a sample program, cause the airplane figures in Fig. 14 to move about the screen. Place the plane in the
screen center to start at location 53494 (D429 hexadecimal). Ignore clearing the screen, simply leaving itin B & W
with 64 characters per line and the sound off, by typing

19 POKE 56832,1
Put the original plane on the mid-screen by
20 POKE 54304,236

Since B & W is being ﬁsed, no color is given. Use the **ACTION button to quit (exit) the program. Use the logic
shown in Fig. 135. - :

43

e —

[——— T " Py S T

. DISABLE CONTROL C
[ENABLE JOYSTICK)
DX=0 DY=9

"

READ
JOYSTICK A

g

DELAY LOOP TO
SLOW DOWN
MOTION

15

ACTION KEY

DEPRESSED
7

IS

POSITION AT
I HEUTRAL

s
POSITION
AT A7

h

CASE ERASE
OLD IMAGE
L
INCREMENT
DISPLACEMENT DY =DY+1
COUNTER '

MOVED
TOFAR TO
SCREEN

EDGET

NEW POSITION
i
WRITE
NEW IMAGE
AT NEW
POSITION

-

INITIALIZE DISPLACEMENT
FROM SCREEN CENTER AND
LOCATE PLANE AT VIDEO
SCREEN CENTER (54304

THIS 1S SAME LOGIC TO BE
LUSED OM EACH JOYSTICK,
POSITION TEST. AT EACH
FOSITION, CHANGE
CORRESPOMDING DX, DY
AND TEST IF OFF SCREEN.
IF HOT, DRAW IMAGE IM
NEW POSITION.

Fig. 15 Flow Chart for Airplane and Joystick.

44

—r

The program to implement this flowgraph is
10 POKE 207396 :REM DISABLE <CONTROL C>
o0 AP=-64:BP=—-62.CP=+1:DP=66 :REM SCREEN POSITION DISPLACEMENTS
30 EF'=E4:FP=_EE:GP=—1 ‘HP=—66:IP=0 :REM RESULTING FROM JOYSTICK POSITION

35 REM R
49 A=16:B=20:C=4:D=12 'REM CODE VALUES FOR
50 E=8:F=10:G=2:H=18:1=0 " .REM JOYSTICK POSITION
55 REM
60 POKE 57088,128 :REM ENABLE JOYSTICK A
70 BLANK=96 :REM SCREEN SYMBOL FOR BLANK
80 DX=0:DY=0
99 P=54304 :REM MIDSCREEN START
109 POKE P,236 '
119 R=PEEK(57088) AND 31
120 FOR K=1 TO 200:NEXT K :REM DELAY LOOP
130 IF(R/2—INT(R/2)) > @ THEN GOTO 9909 :REM QUIT IF ACTION KEY
135 REM 'REM DEPRESSED (ODD VALUE R)

140 IF R=IP THEN GOTO 110

150 IF R=A THEN GOTO 170

160 GOTO 309

17@ POKE P, BLANK . ‘REM — ERASE OLD IMAGE
189 DY=DY+1 |

199 IF ABS(DY) > 16 THEN GOTO 9009 :REM IF OFF SCREEN, QUIT
200 P=P+AP

219 POKE P,236 , :REM “A" POSITION IS UPWARD PLANE
229 GOTO 119 | |

309 IF R=B THEN GOTO 320 ‘REM “B" CASE

319 GOTO 409

329 POKE P,BLANK

330 DY=DY+1:DX=DX+1

340 IF ABS(DX) > 30 OR ABS(DY) > 16 THEN GOTO 9900

350 P=P+BP

360 POKE P,237

379 GOTO 119

409 IF R=C THEN GOTO 420 :REM “C" CASE

419 GOTO 59 |

420 POKE P,BLANK

430 DX=DX+1

— ————

440 IF ABS(DX) > 30THEN GOTO 9000
45p P=P+CP |
46Q0 POKE P,237

479 GOTO 110

509 IF R=D THEN GOTO 520

5190 GOTO 600

529 POKE P,BLANK

539 DX=DX+1:DY=DY—1

:REM “D" CASE

540 IF ABS(DX) > 30 OR ABS(DY) > 16 THEN GOTO 9990

550 P=P+DP

560 POKE P,238

570 GOTO 119

600 IF R=E THEN GOTO 620
610 GOTO 700

620 POKE P,BLANK

- 630 DY=DY—1

640 IF ABS(DY) > 16 THEN GOTO 9000
650 P=P+EP

660 POKE P,238

670 GOTO 110

700 IF R=F THEN GOTO 720

719 GOTO 899

720 POKE P,BLANK

730 DX=DX-1:DY=DY—1

:REM “E” CASE

:REM “F" CASE

740 IF ABS(DX) > 30 OR ABS(DY) > 16 THEN GOTO 9000

750 P=P+FP

760 POKE P,239

770 GOTO 110

800 IF R=G THEN GOTO 829
819 GOTO 999

820 POKE P,BLANK

830 DX=DX-1

849 IF ABS(DX) > 39 THEN GOTO 90090
850 P=P+GP |
860 POKE P,239

870 GOTO 119

999 IF R=H THEN GOTO 929
919 GOTO 119

- :REM "G"” CASE

:REM “H" CASE.

92p POKE P,BLANK

93¢ DX=DX-1: DY=DY+1

940 IF ABS(DX) > 39 OR ABS(DY) = 16 THEN GOTO 9000
950 P=P+HP

960 POKE P,239

97@ GOTO 119

900d END

Though the example appears to be long, it is the repeated use of the same tests and operations, in blocks of less
than 18 instructions. A nucleus of programs has thus been created with which to implement other games!

KEYPADS

The keypads are merely extensions of the keyboard as are the joysticks. They can be read in th& same manner as

the kevboard is read by the computer.

Prior to reading the keypad, disable <CONTROL C> , with a POKE 2@73,96.

Referring to Fig. 16, examine how keypad A is connected. Keypad A consists of a set of wires which currespﬂnd to
keyboard rows shown labeled as R1 to R4. These are shown superimposed on the keyboard rows R@ to R7. In the
same manner, the keypad A contains wires ::urrespnnding to keyboard columns C5 to C7 out of the total keyboard
set of columns C@ to C7. When a key is pressed, a connection is made between the row and column where the switch

is located.

VALUES FOUND WHEN PEEKED

‘128 &4 32 16 8 4 2 1
c7 €6 C5 €4 C3 G2 C1 CP

(128 R7
&4 RE
32 As
1 2 3
16 R4 A ‘ 4
VALUES 4 5 6
TO POKE
8 R3 ‘ ‘—
., T B 2
4 R2 .‘. ‘ ‘
® E !
2 A1 d 4 4
i Rd

Fig. 16 Keypad A

A cross-over point for keypad A will be drawn as lndlﬂaleﬁ (Row 2 and Column 6 joined when the key for symbol
**8"" is pressed), :

47

. C6

8

no M

with the key symbol next to the shaded region.
Likewise, keypad B is connected as shown in Fig. 17.

VALUES FOUND WHEN PEEKED

128 B4 32 16 8 4 2 1
Cr ©Ce ©C5 Ca c3 cz2 €1 Cp

128 R7

16 R4—

VALLUES .
TO POKE | . 4

8 R3— .
T

4 R2
A

Fig. 17 Keypad B

Since keypad A is connected across R4, R3, R2 and R1, ignore the other rows by examining these lines only. The
values of R4, R3, R2, and R1 are 16, &, 4, and 2, respectively.

It is possible to detect the symbol 8 (located at the intersection of Row 2 and Column 6 on keypad A) by setting
Row 2 via '

19 POKE 57088.4

where 4 is the value POKEd to activate Row 2. It is then possible to sense Column 6 (value associated with column
6 is 64 by

20 TEST = PEEK{(57988)

39 IF TEST = 64 THEN GOTO 1000

where statement 1009 takes care of the case when the 8 value is found.
A short program to read the key *‘8" or the key *‘#'" and print the respective key is:

1@ REM KEYPAD TEST

20 REM DISABLE <CONTROL C=>

30 CTRLC=2073: DISABLE=96: POKE CTRLC,DISABL
49 REM NOW SET POINTER TO KEYPAD LOCATION
50 P=57088: R2=4: C6=64. R1=2: C5=32

48

100 AS=" "

110 POKE P,R2: REM TEST FOR 8
129 IF PEEK (P)=C6 THEN A$="8" : REM ON R2,C6
130 POKE P,R1 : REM TEST FOR “#" B
140 IF PEEK (P)=CS THEN A$="#": REM ON R1,C5

49

S ——

SECTION 12
AC REMOTE CONTROL, SECURITY

A computer’s value over a calculator depends on its ability to change its sequence of computation based on the re-
sults already computed. This is particularly important when the values used in computation (decision) are data from
or to external devices. External devices use the data, binary 1's and @’s, sent over lines from the computer as out-
put. The 1's and @'s are represented by nominal 5 volt and @ volt levels (TTL logic levels), respectively. Likewise,
external devices can send data as input to the computer. Again, standard TTL logic levels are used.

Control, in the C4P, includes being able to turn on/off (and set the level of) AC controlled devices, such as
lamps, motors, and appliances. Control also includes being able to supervise security alarms, as well as numerous
status switches. All of these capabilities allow device operation while the computer is dmng tasks of a more immedi-
ate priority.

In the next two sections, the most popular applications are considered. Then, in greater detail, the many possibili-
ties of additional options and capabilities are considered. By combining the capabilities of several features in one
program, great flexibility and power can be obtained. All of this is controlled by a readily written BASIC program,
based on the examples that follow. :

APPLIANCE CONTROL

Without running any wires the C4P can operate lamps and small appliances when equipped with the AC-12
options! This is accomplished by using the BSR X-19 ©, a remote AC signaling system. The computer activates the
BSR command console which, in turn, sends a signal over the existing home wiring. This signal is sensed at the ap-
propriate device by a small switch module plugged into the AC outlet. The switches are modules which plug into the
wall sockets (118 volt AC power lines). The appliances are plugged into these modules.

Two types of switches are available, a lamp switch and an appliance switch. A continuously dimmable lamp switch
provides adjustable incandescent lighting levels (up to 3@ watts per lamp) throughout a building. A relay actuated
(on-off) appliance switch provides control of larger devices such-as lamps (up to 589 watts), motors {(up to 1/3 HP),
or current loads of up to 15 amperes.

Each remote switch module has two dials. One selects ““house code.’” There are sixteen choices indicated by the
red letters A through P. The **house code™ on the remote module must match the "*house code™ on the control
console. The various ““house codes’’ prevent signals from other computers from actuating “*non-mated’ remote
switch modules. Each switch module also has a **unit code™ dial (up to 16 units can be addressed), which permits
great flexibility in home/office control.

Lights in each room can be put on a different mndule Cﬂmputer control permits turning lights on and off, one
room at a time. The timing and sequence, following directions under computer control, can be specified with simple
commands.

In order to run AC control programs, the use of support programs from the system disk (0S8-65D V3.N AC) is re-

quired.
Software control of these remote switches requires running the previously stored program, “AC", by typing

HU MllACH

This brings the device driver programs from disk. The device drivers permit a relalivel;»,; simple set of commands to
control the more complex functions of the lamp and appliance switch modules. The user’s program must contain
a. A POKE to set the display screen state

POKE 2491
will set a 64 by 32 character B&W (sound off) display in the same manner as
POKE 56832,1

was used to set the display state (discussed in video section)

50

b. Address 548 (224 hex) and 549 (225 hex) must contain the low and high bytes of the address of the AC driver
routines. ' ' '
These are set by the commands
" POKE 548,127
POKE 549,50

Having taken care of the three required POKES, device driver programs can now be written.
The AC driver routines utilize a new BASIC command, ACTL, with the following format

ACTL DEVICE,COMMAND
where DEVICEs are numbered 1 to 16 and the COMMAND choices are as ﬁ:-!lm;as:
Function ' - - o COMMAND
Turn bn device - 65
Increase brightness (lamps only) | ' 66
Turn all lights on (lamps only) _ 67
Turn off device ' | . - 68
Decrease Idi;n} brightness {lamps ﬂnl}] . . o .89

Turn all devicgs off 70

(The total range of dimming (brightening) is accomplished in 12 steps.)
If a light is in the off state, brightening it will result in its being turned on, first.

This ACTL command can be used to turn on device number 4 (plugged into a module which has had its unit di.al
set 1o 4) by ' | ' |

ACTL 4,65 <RETURN:>
Multiple devices, for example numbers 4 and 5 can be turned off, using the format
ACTL DEVICE1,DEVICEZ2, . . . COMMAND <RETURN:> |

as
~ ACTL 45,65 <RETURN>
Similarly, use of the format . .
ACTL DEVICE,COMMAND,COMMAND, . . . ,COMMAND <RETURN>
permits brightening device #4 through th'reeﬁat“ the 12 levels of brightness by
ACTL 4,66,66,66 <RETURN>
Another variation of the ACTL command is

ACTL DEVICE1
ACTL DEVICEZ .
PROGRAM LOOP (LINES 300-490 IN FOLLOWING EXAMPLE)
ACTL COMMAND (LINE 500 IN EXAMPLE)
ACTL COMMAND (ADDITIONAL COMMANDS, IF DESIRED)
PROGRAM REMAINDER (LINE 600 IN EXAMPLE)
which can be used to slowly brighten device 1 and 2 simultaneously by
109 ACTL1

51

o e _—_——pE

. 200 ACTL2
309 FOR TIME=1 TO 12
40P FOR DELAY=1 TO 100 : NEXT DELAY
500 ACTL €6
600 NEXT TIME

For safety cﬂnsideratiﬂnsi the command for “all off" (7@}, which turns off all lamps and appliances, was not matched
with an “all on” command. The “all lights on” affects only the lamp modules.

There are now software commands to control one of the peripheral devices on the C4P system. New additions to
the peripheral family will be serviced in a similar manner to the devices already described. Now that each of the
available devices has been examined, they will be combined in a REAL TIME system. :

THE HOME SECURITY

The first level of home security can be mel with the home security alarms alone. These devices provide checking
for fire, intruders or tampering with vehicles. All alarms report their status by radio-control to the home control
module, connected to the C4P computer (on 13 of the C4P back panel, Fig. 1). Each alarm module contains the sen-
sor, battery power, and a radio transmitter to assure a reliable and tamper-resistant operation.

The fire alarm can sense temperature (thermal contact) or smoke (ionization detector). The intruder alarms are
silent, magnetically actuated door or window position sensors. By combining these alarms with computerized re-
sponse, such as automatic dialing of the telephone emergency numbers, a rapid response to critical situations can be
managed. The car alarm senses car battery voltage change; a door opening or the radio or lights left on would actuate
the alarms. The intrusion and car alarms permit choice of immediate alarm or delaying for 15 seconds prior to
actuating (sounding) the alarm. This gives time to disable the alarm when entering the house normally.

Additionally, a hand held alirm is available for handicapped or bedridden persons. All alarms have an effective
radius of 200 ft. (6@ meters) from the alarm site to the computer home control module.

The alarms are located at the computer address 63232 and the alarm control at 63233. The alarms are enabled
(permitted 1o report back to the computer) by setting locations 63233 and 63234 (o the values given in the fol-
lowing program:

1@ REM PROGRAM AID ; LISTEN FOR HOME SECURITY ALARMS
20 ENABLE=0 : HEAR=0: TRIP=0
30 ALARM=63232 : CTRL=63233 : START=4
49 POKE CTRL, ENABLE : POKE ALARM, HEAR : POKE CTRL, START
50 REM SET UP TO LISTEN TO ALARM LINES
60 FIRE=1: BURGLAR=2: CAR=4 : MISC=8
70 T1=PEEK(ALARM) AND FIRE
89 T2=PEEK(ALARM) AND BURGLAR
99 T3=PEEK(ALARM) AND CAR
109 T4=PEEK (ALARM) AND MISC
119 REM TESTS T1,T2,T3, AND T4 TO CHECK IF ALARM TRIP
120 IF T1=TRIP THEN PRINT “FIRE"
130 IF T2=TRIP THEN PRINT “BURGLAR"
149 IF T3=TRIP THEN PRINT “CHECK CAR"
15@ IF T4=TRIP THEN PRINT “MISC ALARM"
160 GOTO 70 |
17@ END

52

In later examples, further alarm responses will be incorporated. Alarm monitoring can be done while other
programs are being run. This powerful technique is available by use of the Real Time Monitor, RTMON. Many
other computer controlled responses can also be called. For example, AC, hpphance Control, can regulate light
levels or sound warnings; automatic telephone dialing can summon aid.

The user has the ability to maintain detailed supervision of home security w:th the simplicity of conversational
instructions in BASIC.

53

TTEE SR PSS e

B T ey S

SECTION 13
PARALLEL I/0 -

EXTERNAL SWITCHES, ALARMS, OR INDICATORS

In AC control and home security systems, there is often need to sense switch openings or closings. Relay contacts
might indicate an air-conditioner “‘on"’ for an energy management system; an open window might be read as a set of
open contacts to a home security system. Individual imagination is the limit.

The C4P system provides (in the AC-21 package) the ability to sense 48 separate remote contact-pairs. Each of
these contact-pairs (lines) is to be at either P volts or 5 volts (standard TTL levels). When these lines are computer
driven (used for output), a maximum of two TTL devices can be driven at a time. If devices other than OSI periph-
eral devices are used, be cautioned to use good circuit practices in interfacing circuits,

The input lines are grouped as 6 sets of § lines (6x8=48), or 6 input registers. Associated with each input register
(group of 8 lines) is a mask register (tells which of the 8 lines to ignore) and an active stale register (tells whethera 5
volt or P volt signal is to be the chosen active state). The state of each line can be sensed by examining the register
bit which reflects the state of the connected line. In the case of windows, for example, it might be desired to identify
the active state as an open window in one program but in a different program to have the active state reflect a closed
window. Which one is desired will depend on the program. '

The associated registers, i.e., the mask register and active state register, are used by the real time monitor,
RTMON, to systematically scan the input lines. When an input line becomes active, RTMON's services are re-
quested (in.the same manner as the count down timer requested service). Once again, discussion of how RTMON
uses these associated registers will be put off until after examination of the hardware which is used to support it.

The associated registers are memory locations which are examined to determine how to interpret switch positions.
In contrast, the hardware registers directly indicate line status, 5 volts or @ volts. The hardware registers also indicate
whether a set of lines is to receive signals (be read) or whether output signals should be sent to turn on/off devices
(to be written 1o0).
 External switches which can be used to provide 5 volts or @ volts are connected (through back panel connectors,
Figure 1) to a Peripheral /nterface Adapter (P1A). The PIA presents groups of input lines for input or output of
signals. These input or output lines are addressed in groups of 8 lines. The PIA is a single integrated circuit. Its or-
ganization and use are best explained in terms of its addressing, i.e., where the computer looks to input or output
data. For this purpose, a map is created.

PIA REGISTERS

Map of the hardware registers used for input and output,

Data Register ' Control Register
Hex Decimal Decimal Hex
Location Location 7 @ Bit Location Location

C704 50948 | Port 1A

CTRL Register | 50949 C7@5
For Port 1A . -

G706 50950 | Port 1B

CTRL Register 59951 - C7@7
For Port 1B '

C708 5P952 Port 2A
' CTRL Register | 50953 C709
For Port 2A

C70A 50954 | Port 2B

CTRL Register | 5@955 C70B
For Port 2B

C7oC 50956 | Port 3A

CTRL Register| 50957 C70D
For Port 3A

C7QE 50958 | Port 3B

CTRL Register | 50959 C70F
For Port 3B

Each port A, port B pair is called a Peripheral Interface Adapter or PIA. These ports provide a way to enter"data
from the outside world into the computer and to respond with computer-generated signals to the outside. The PIA
also holds or latches these input and output signals until the computer is ready to receive them (for input) or until
the outside devices can utilize them (for output). Each of the two ports on a PIA (port A and port B) contains 8 lines
which may be individually used for input or output. ' _ '

The CA-21 option contains three PIA’s. It is connected to the C4P computer by a 16 pin connector, J2. shown in
Fig. 1. External devices are connected to the three sets of input port pairs. Since three sets of port A-port B pairs are
accommodated (each port 8 bits wide), there are 3*2*8=48 lines available for external connection. |

The operating system will initialize the scan of PIA’s to include a complete CA-21 option group of PIA's as a
default. Scanning fewer PIA’s or scanning the PIA at 63232 decimal (F70@ hex) will require making the changes
(POKESs) just illustrated. ' '

For example, to scan all 48 lines starting at 53948 decimal (C704 hex), all six data registers (ports 1A, 1B, 2A, 2B,
3A, 3B) must be scanned along with six control registers. Therefore, location 8982 decimal must be loaded with
12— 1=11 (the number of scanned registers minus one). These POKEs can be accomplished as

POKE 8992,11 : REM LOOK AT ALL 6 DATA AND 6 CONTROL REGISTERS
POKE 8909,4 : REM LOWER HALF OF C794 PIA PORT ADDRESS
POKE 8910,199 : REM SINCE C7 hex= 199 decimal

(Only decimal values may be used with POKEs.)
With these POKEs, RTMON will check for an active state.

The foregoing has been a review of the connections to the PIA. Now look at the operation of the PIA. The ports
(port A and port B) serve two purposes. Each port accomodates input or output signals. Additionally, these port A
and port B pairs serve as data direction registers. When serving as a data direction register, the port specifies which
bits serve as input and which serve as output bits. The action of the port, whether it serves as an input/output port or
as a data direction register, is set by yet another register, called the control register. A control register is associated
with each port. If the control register is POKEd with zeros, then the port serves as a data direction register.

When the control register is POKEd with a 4, the port reverts to its data handling function. By using a data port to
serve as a data direction register, the number of hardware connections is reduced. But to understand its increased

95

complexity of function requires paying the price of additional work. To illustrate, for example, the use of the PIA to-
read port 1A at location 50948 (C7@4 hex), the steps are :

1. POKE 509490
This address, one beyond the PIA port 1A address, is the control register for port 1 A. A zero in the control
register will allow the use of the PIA port 1A address for its alternate use, designating which bits are input or
output (called a data direction register). A one indicates output, a zero an input. At the completion of this
POKE, the control register contains ' i

50949 |PO0Q PODD
and the port 1A will serve as a data direction register. Therefore, the command

2. POKE 5@948.127 ' .
will place the bit pattern @111 1111 into the data direction register. The data direction register will now be

50948 @111 1111

Bit 7. the leftmost bit of the data direction register contains a @ indicating that its corresponding line will be an
input line. The other register bits (bits @ to 6) are 1's, indicating that their corresponding data lines will serve
as output lines.]

3. The PIA port 1A is now ready to revert to its data handling function. This is achieved by
POKE 5@949,4 '

which commands the control register for port 1A to perform its 1/0O function. .

4. Bit 7, the leftmost bit, was pn:vinusly' set as an output bit in step 2. This uutput' can be set to a high value by
POKE 50948,64 |
This is a bit pattern 1099 P@@9. The data register (the alternate function ni‘ 1i1e port) will now contain
50948 1900 000D | '
Likewise bit 7 could have been sel to a zero by
POKE 509480 | |
5. If it were desired to read bit 6, which was dcsignaléd as an input bit, the result could be
BIT6=PEEK (50948) AND 64 . |

where 64 has a bit pattern P19 #@9P. The | in the bit pattern corresponds to the desired line. To the user,
location 50948 appears as '

7 6 5 4 3 2 1 0 bit

1 .
50048 | X |or [XX [X|X|X|X
]

where X indicates that A doesn’t care about the value. By ANDing the contents of 59948 with the value

21000000

only the value of bit 6 will be examined. If bit 6 of 5948 is a zero, then BIT6=@; if bit 6is 1, then BIT6=064.
Testing for zero or non-zero value of BIT6 provides a convenient programming test lo determine the bit 6
input line state.

The socket pin connections are shown in appendix B; socket mating information is also provided.

56

A short program-10 make all lines for port 1A into read (input) lines and all lines for port 1B into write (output)
lines follows: :)

5 REM PIA INITIALIZATION SUBROUTINE AT 1000
10 GOSUB 1000
20 INPUT “SIDE (A OR B)".C$
30 IF C$="A"GOTO 109
| 49 IF C$="B"GOTO 209
kL 50 GOTO 20 |
K 100 IF A$="1"GOTO 150
' . 119 INPUT “OUTPUT TO A":K
120 POKE XK
| 130 GOTO 2¢
. 150 PRINT“INPUT TO A I1S";PEEK (X)
160 GOTO 2¢
200 IF B$="1"GOTO 250
219 INPUT "OUTPUT TO B";K
220 POKE X+ 2K .
239 GOTO 20 | o
250 PRINT “INPUT TO B IS";PEEK (X+2) |
| 260 GOTO 20
; 1009 INPUT “STARTING ADDRESS OF PIA”;X
1919 INPUT “A SIDE | OR O":A$
1920 INPUT B SIDE | OR O";B$ | o
1039 POKE X+1,0:POKE X+30 : REM SETTING CTRL REGISTER TO ZERO
1040 IF A$="1" THEN POKE X,@ : REM PERMITS SETTING DATA DIF{I%GT,IDN REGISTER
1042 IF A$="1" THEN GOTO 1050 | | |
1045 POKE X,255 : REM IF NOT INPUT, THEN SET AS OUTPUT
1950 IF B$="1" THEN POKE X+2,0
1952 IF B$="1" THEN GOTO 106¢
1055 POKE X+2, 255
1069 POKE X-+1,4:POKE X+3,4 : REM CTRL REGISTER TO FORCE I/O
1079 RETURN

Multiple lines may be checked at one time.

57

The home security system addressed at 63232 (F7@p hex) is also a PIA port. Itis one of two ports. Two ports (of 8
bits each) are available, with the first 4 bits being reserved as:

Car Alarm Intruder Alarm
Misc.
Alarm_l I'_Firua', Alarm
Location (Hex) Bit7 6 5 4 3 2 1 9.

63232 F7ap Port A

63233 F7@1 CTRL A

63234 F7(2 Port B

63235 F13 CTRL B~

A program to handle this device is similar to the previous programs. For example, to check for a fire alarm
10 REM SET PORT A AS INPUT, LOOK AT BIT @, THE FIRE ALARM BIT
20 POKE 632330 : POKE 83232,1 : POKE 632334
39 IF PEEK (63232) = @ THEN GOTO 100

40 GOTO 20 ' .
This.program segment will continually look at the input port and check for the bit assigned by OS5/ to fire alarm

checks.

SECTION 14
CONNECTION OF SIXTEEN PIN BUS DEVICES

Ohio Scientific is pleased to introduce a unique new product line—The 16 Pin 1/0O BUS. With this system, it is
possible to add up to eight special function boards while occupying only the backplane slot.

This is made possible by a novel BUS extension method which allows decoding and tlmlng signals plus eight bits
of data to be carried on standard, inexpensive 16 pin ribbon cables.

Up to eight inexpensive 16 pin cables with standard DIP connectors may be attached to a single CA-29 board
which in turn occupies one slot of the standard Challenger backplane. Alternately, one 16 pin 1/0 BUS cable may be
attached to the A-15 board at the rear of all C4P products. Note, in the case of the C4P-MF this allows system ex-
pansion beyond the normal four slot backplane. -

Currently, five HEAD END CARDS are available for interconnection to the system via the CA-20 or CA-15
boards.

COMPUTER INTERFACE fﬂ SIXTEEN PIN 1/0 BUS

The 16 pin I/O BUS may be attached to the computer via two di flerent boards—the CA-15 or the CA-2. The
descriptions ol these boards are as follows:

CA-15 BOARD

The CA-15 board is a standard accessory interface installed on the following Ohio Scientific systems: C4P-MF,
C4P-DMF, and C8P-DF.
The CA-15 is mounted at the rear of the computer and contains the following interface connection:

Joystick and numeric keypad

Modem and serial printer

Sixteen PIA lines (normally used for the Home Security system—AC-17P)
Sixteen Pin 1/O BUS

The interconnect for the Sixteen Pin [/0 BUS is simply a 16 pin DIP socket. To use the BUS, the only thing nec-
essary is to attach one end of the 16 pin ribbon cable to the CA-15 board and the other end of the cable to one of the
HEAD END CARDS.

Please note that some of the HEAD END CARDS require more power than may be practically carried via the rib-
bon cable alone. Therefore, some of the cards require auxiliary power supplies.

CA-20 BOARD

The CA-2@. board contains all the necessary logic to decode eight distinct HEAD END CARD interfaces. The ac-
tual interconnect, as with the CA-15, is via simple 16 pin DIP sockets and standard 16 pin ribbon cables.

The CA-20 board also requires one slot of the computer’s backplane. But remember, from this one slot access is
gained to a maximum of eight accessory boards.

The CA-20 is recommended for use in the Ohio Scientific C2 series and C3 series computers. It can also be in-
stalled in C4P and C8P series systems with some modification to the CA-15 interface.

Since the logic required for the I/O BUS interface is simple, an additional feature was added to the CA-20 board —
a crystal controlied *‘time-of-day™ clock (hardware) subsystem. The operation of the clock, excepting reading time
- and setting time, is totally independent of the host computer. As a matter of fact, with the included on-board, auto-
recharging, battery back-up, the computer may actually be turned off for several months without losing time.

The features of the clock subsystem are as follows:

Hours, minutes, seconds and 1/19 seconds
Day of week

59

Day of month.
Month of year
Four Year calendar

In the C2 and C3 series computers, the CA-2@ board can actually control the power cycling of the entire computer
when equipped with an.optional power sequencer package. This means a time (month, day, hour, etc.) may be pre-
set within the clock subsystem and when that preset time agrees with the actual time, A.C. power is applied to the
entire computer system through the power sequencer. At a later time, the system’s A.C. power may also be re-
moved and the system shut down under software/clock subsystem control. '

For applications where the clock subsystem is not required, the CA-20A will perform all the Sixteen Pin 1/O BUS
functions associated with full-feature CA-2.

HEAD END CAHDS

HEAD END CARDS is a general name used to dﬂscnbe any or all of the special function boards which attach to
the Ohio Scientific Sixteen Pin 1/0 BUS. There are currently five such boards and, with the exception of the CA-22,
they will only interface with the computer via the Sixteen Pin 1/0 BUS.

Please note, as detailed earlier, a CA-15 or CA-2@ board must be used at the *‘computer end™ of the Sixteen Pin
/0 BUS to complete the interface.

In the following pages a brief product and application desmplmn of the currently avatlahle HEAD END CARDS
will be presented.

THE CA-21 BOARD— BIT SWITCHING AND SENSING

The CA-21 is a 48 line parallel I/0 board featuring three 6821 PIAs (peripheral interface adaplers] and prototyp-
ing/interconnect areas.

The use of PlAs in the design allows for maximum interface versatility as any one of the 48 I/0O lines may be con-
figured as either an input or an output. As outputs, each line is capable of driving a minimum of one standard TTL
load.

Additional versatility is added because 24 of the lines, when configured as outputs, may simultaneously function
as inputs. This feature, although somewhat confusing, is extremely useful for apphcalmns such as switch matrix
decoding.

Each of the 48 lines is brought out to two foil pads (suitable for wire wrap stake:s} as well as a location on one of
four 12 pin Molex-type female edge connectors. There are also eight 16 pin DIP socket locations which are intended
for use as protolyping areas. Additionally, the 12 PIA “*hand-shaking™ lines are brought to 12 single foil pads.

The CA-21, with proper buffering, may be used for virtually any computer controlled bit switching or bit sensing
application imaginable. Witha full complement of eight CA-21s interfaced via the CA-20, a total of 384 individually
controllable 1/0 lines are possible!

An interesting application using one CA-21 board would be a complete, if somewhat slow, emulation of the
standard Ohio Scientific BUS.

A more practical application might be augmﬁntmg the standard Home Security System (AC-17P) with ”hard—
wired”’ sensors.

One type of sensor easily added is a standard window ‘‘perimeter detector.” This could be done with commer-
cially available adhesive foil tape. A break-in (through a broken window) could then be detected by sensing a break
in the foil ‘tape. '

Another useful application that could be set up in concert with the AC-12P wireless A.C. Remote Control, is
sensing when a room is entered. This could be accomplished with pressure-switch door mats or door switches.
When room entry is detected, the lights could be turned on or turned off on exit.

For designing any sort of dedicated control system, the CA-21 is an ideal choice. It is possible to easily sense many
types of input (pressure transducers,. flow sensors, switches, etc.) while controlling outputs from a simple single
LED display to a network of solid state relays controlling A.C. power.

THE CA-23 BOARD—EPROM PROGRAMMER

The CA-23 is an EPROM programmer designed for use with the growing families of 5 volt only EPROMS. With
the CA-23 you can program and verify all 1K through 8K byte EPROMs of this type. Note that these parls are often
identified as-8K — 64K bit EPROMS,

The CA-23 can program (or verify) data in two basic ma-des—EFRDM mr‘l‘rum EPROM or EPROM to/from

60

computer RAM memory. Additionally, EPROM data may be read directly into the computer’s RAM memory.

There are four LED indicators on the CA-23. The first.is “*“SOCKET.UNSAFE.” This means that a programming
voltage is present at the socket and if an EPROM is removed or inserted it is likely to be damaged.

The second indicator is “PROGRAMMING."” This means that the EPROM is currently being -programmed.

The third indicator is “‘ERROR.”’ This means that somewhere along the line a prﬂgrammlng altempl was unsuc-
cessful.

The final indicator is **PROGRAM CDMFLE’FE.‘T This means that the program and verification were successful,

The most intriguing application for this product is the creation of ‘‘custom™ parts for the computer or peripherals.
This could range from a new system monitor to a new high level language. It could even include a new character
generator for the CRT or printer. Note, however, tinkering around with the internals of computers and peripherals
requires a fairly high degree of technical expertise. Also, most manufacturer’s warranties are voided by these lypes
of modifications. :

Several OEM (original equipment manufacture) and Research/Development applications will be rmmedtalei_',r
obvious to those involved in that work.

The CA-23, as previously mentioned, is designed for use wnh 1K through 8K byte EPROMS. These parts come
in various package styles and have various product names. For example, Intel’s 2K 'x 8§ part is the 2?!6 Texas
Instruments’ part is known as the 2516.

The CA-23 has both 24 pm and 28 pin zero insertion force sockets for reading, pr-::-grammmg and vﬂrlf}rmg the
EPROMS.

THE CA-24 BOARD—-PROTOTYPING

The CA-24 is a solderless bread-board designed for prototyping, experimental and educational applications.

The bread-boarding is made up of seven solderless plug-strips of the type manufactured by AP Products. Two of
the plug-strips contain a connection matrix of 5 by 54 connections and are used as signal distribution points.
Another pair of 96 location plug-strips are for powering the bread-board area. The actual experimenter area is com-
prised of three plug-strips, each with a 19 by 64 location connection matrix. Additionally, sixteen LED mdmamra
and sixteen DIP switch positions are provided for signal observation and control functions.

Board [/0 is via TTL latches and bi-directional PIA ports as well as direct (buffered) data, signal and control lines
from the Cﬂl‘l’lpl.llﬂl‘ BUS. This method allows you direct interconnection of devices such as E-ESH ACIAs in a{tdltmn
to doing more “‘isolated’ and/or independent circuits.

The CA-24 also contains a “‘clock™ generator which is continuously variable from approximately 25,098 Hz.
through 79,000 Hz. It is also possible to connect the clock to an on-board 16 stage divider chain. This allows division
of the fundamental frequency by as little as 21 (2) to as much as 2'6(65,536).

The applications for the CA-24 are primarily prototyping and experimenting. Parts may be inserted and removed
from the terminal strip blocks over and over. Interconnection of parts is accomplished simply through the use of
solid, narrow gauge wire jumpers. Errors in design or connection are extremely easy to correct.

The CA-24 lends itself very well to structured experiments that are common in the educational enwmnment Itis
an ideal tool to aid in the teaching of computer and campute-,r mterface fundamentals. -

THE CA-25 BOARD—ACCESSORY INTERFACE

The CA-25 is designed to implement some of the functions normally associated with the CA-15 interface board.

It allows direct connection of the Home Security System (AC-17P) and/or the Wireless A.C. Remote Control
System (AC-12P) to C2 and C3 series computers. Additionally, those who own an older Ohio Scientific computer
can now easily connect these systems to il. -

An extremely useful application of the CA-25 is associated with small business systems. Using the CA-25 with
the Home Security System, and perhaps a CA-15V (Universal Telephone Interface with speech symhemzer output),
the computer could do payroll, inventory, etc. by day and **guard’ the shop by night.

THE CA-22 BOARD—-ANALOG I/0

The CA-22 is a high speed analog 1/0 module. Although the CA-22 is classified as a HEAD END CARD, it
differs from the rest of the family in that it may also be plugged directly into the cumputer s standard internal BUS,
This allows for maximum flexibility in the use of the CA-22.

The analog input section of the CA-22 consists of a 16 channel analog multiplexer. This means that up to16
separate signals may be connected dlrﬂclly to the CA-22. Als,ﬂ m::lude.d is a sample and hold circuit followed by the
analog to digital converter circuitry.

61

o T —

The A to D converter is capable of either 8 bit or 12 I:ut eperellen These options are selectable under software
control.

The accuracy of the converter is plus or minus one in lhe least mgmﬁeent bit. The stability of the elreun is rated at
one millivolt drift per degree Celsius.

The A to D conversion is extremely fast. It is capable of digitizing up to 66,000 samples per second in the 8 bit
conversion mode and 28,000 samples per second in the 12 bit mode. Shannon Sampling Theory states that signals
should be sampled at twice the highest frequency present. Therefore, it is possible to convert signals with a frequen-
cy greater than JQK Hz. Clearly, high fidelity audio is well within the spectrum of the CA-22.

The multiplexer has very high impedance inputs and is capable of accepting inputs in the range of — 19 volts
through + 19 volts. The input is jumper selectable for other settings meludmg a single sided range of @ through + 1§
volts.

Due to the indeterminable nature of the actual inputs that may actually be applied to the CA-22, only the multi-
plexer inputs are brought out. Huwever a quad e-p amp is laid out in foil which may be populated in several -:Ilfferenl
modes to handle some of the more “‘common’ input configurations.

The analog output section of the CA-22 consists of two identical high speed digital to analog converters. Each
DAC can convert either 8 bits or 12 bits of data. Data input to the DACs is latched in such a manner that, when in
the 8 bit conversion mode, the other four (of the total of twelve] bits are eentmueuel:-.r output at a predeﬁned value
which may, of course, be-defined under software control.

The output of each DAC is buffered with a high speed op-amp capable of changing output voltage at the rate of 20
volts per microsecond. The standard configuration of each output is bi-polar with a voltage swing of — 1@ volts
through + 19 volts. This is jumper selectable to allow a uni-polar output of @ through -+ 19 volts.

Some additional 1/0 capacity is provided on the CA-22. There are three TTL level inputs and six open collector
logic outputs. These are strappable to be eithér standard TTL level outputs or high-voltage outputs.

The CA-22 can be used for a multitude of analog sensing and/or analog controlling applications.

Using the proper transducers and the 16 input channels, it is possible to monitor the temperature in several zones
of a home or office. By extending this system with a CA-21, precise temperatures can be maintained by switching
the proper controls on and off.

Another interesting, if somewhat obvious application, is in audio pmeessmg Reverberation, phase shifting and
echoing are just a few of the uses implementable.

If blocks of RAM were used for data storage, other experiments such as frequency doubling, etc., could be per-
formed.

If more sophisticated software teehmquee,, such as fast Feuner transforms, are applied to store input -::late1 very
elaborate signal processing becomes realizable. Projects such as audio spectrum analyzers and speech recognition
experiments are certainly practical. Note, in these types of applications, it is likely that some signal pre-processing in
hardware is certainly beneficial —if not totally necessary.

Employing both DAC outputs and the on-board unblanking circuit, X-Y oscilloscope plotting is an interesting ap-
plication. By using these techniques and one or more of the analog inputs, a digital storage scope can be constructed.
Note, both of these applications require access to an oscilloscope capable of X-Y input as well as blanking.

SUMMARY

With the introduction of the 16 pin I/0O BUS Ohio Scientific has epened a new world of interfacing capabilities for
both the large and the small computer user.

Systems ranging from totally automated sampling and control stations to complete R/D setups to educational lab
stations are now available via standard building blocks and standard computer systems.

For pricing and availability, contact the nearest Ohio Scientific dealer.

62 ”

SECTION 15
MODEM AND TERMINAL COMM!J_NICATlONS

Each character stored or moved is represented by 8 bits (ones or zeros). Normally, there is data on eight data lines
(called a data bus), simultaneously. This is convenient when the cost of maintaining multiple lines is low, due to
short line lengths. For longer lines, extra circuits for each line are necessary to maintain data signal fidelity. Also,
the cost of maintaining long data lines must be balanced against the speed and ccrnvemence of having all data bits si-
multaneously available.

Certain devices require serial data handling. Serial data handling treats one bit (off-on) at a time, rather than all
data bits simultanecously. The serial devices are low speed, with no ability to simultaneously transmil or receive
more than one bit at a time. Bits are collected by the serial data device until a complete character is available. Then,
when the complete character has been received, it is sent in parallel (all bits simultaneously) to the computer for
processing. Serial data is handled by an 4 synchronous Communications fnterface 4 dapter (ACIA) which con-
verts the parallel (simultaneous) data into serial data for transmission (or reverses the process for reception).

A simple analog might suggest the function of the ACIA. Cnnszder that the input f n:rm a cc}mputer 15 typically 8
parallel, simultaneous, input bits. L B
A picture analogous to this process can be seen, as in Fig. 18A, by mnsldermg the placmg nf black and white mar-
bles, simultaneously, into the holes in a pipe. - : -

Fig. 18A Marble Placement

If those marbles are now rolled out the left end, a time séquence of marbles is seen, as in Fig. 18B.

Fig. 18B Marble Time Sequence

The ACIA performs the electrical equivalent of this action. For devices limited to low mechanical speeds (such as
printers and plotters) or low data rates (such as telephone lines and modems), this serial (or sequential) handling of
data bits can be tolerated. The advantage is the economy of requiring fewer wires (and the circuits to drive them).
Whereas paraliel transmission requires 8 wire pairs for simultaneous presentation of all 8 data bits, serial transmis-
sion is accomplished by the use of only 1 pair, as illustrated in Fig. 19,

63

STt WS T T e e

e

PARALLEL , SERIAL -~ PARALLEL SERIAL
DATA IN = " DATAOUT - DATAOUT™ DATA IN
=—

— f———]

. . i -
ACIA SRR T ACIA

e
e i e am
L

Fig. 19 Parallel Verses Serial Transmissions | ‘ -

‘The system will normally be set up with the information handling rate (baud rate) set at 1209 bits per second
(1209 baud). For the modem use, this must be changed to 3@@ baud. The two choices are given by

POKE 645121 : REM 1200 BAUD RATE

or
- ~ POKE 64512,2 : REM 300 BAUD RATE

In contrast to the ACIA, Parallel Interface Adapters (PIA’s) handle all 8 bits of a character’s data slmu}taneuusly
These serve as interfaces to the outside (of the computer) world.
The ACIA’s output is available on J8 for the printer output and I9 for the modem connection, as shuwn in
Figure 1.
An. ACIA driver program, which is used to drive a slow printer, is shown in the next section.
The following is a general summary of the sequence of steps necessary to use the C4P as a terminal:
1. Connect a modem to the modem port, J9.

2. Load the modem program provided by Ohio Scientific into the C4P. When it is loaded the computer will re-
spond READY.

3. Dial the number of the remote computer. When the number dialed answers there should be heard a high
pitched tone. Insert the phone in the modem and follow the instructions displayed on the screen. The com-
puter called will probably require the entering of a user code and password. | |

The use of acoustic coupled modems extends the resources of the C4P without requiring commitment of availa-
ble computer slots. The power of the C4P is not limited by this feature.

Ohio Scientific now offers Compuserve packages containing documentation and software designed to enable OSI
personal computers equipped with modems to fully access the Compuserve (formerly Micronet) System. Contact
your dealer for more information. '

~ SECTION 16
PRINTER COMMUNICATIONS

The printer and the modem are served by lhe AC]A Bﬂlh devices require low data rates, due to limited fr&quency
response of the devices (whether from mechanical reasons or electrical reasons).

Either a serial printer or a telephone line modem may be attached to the ACIA output (J8 for printer, J'EJ for
modem, as specified in Figure 1.). However, only one of those devices may be connected at any one time. That is,
power may nol be applied to the printer and modem simultaneously. It is possible to store modem data on disk files
for later printing, so this is not a difficult restriction. Only one device will have its input accepted at one time.

The C4P Cassette based system, which uses BASIC-in-ROM, can output to the printer in the same manner as
output to cassette. If the command SAVE is entered, then all subsequent output which would normally appear on
the screen is routed to both the screen and the printer. Qutput will continue 1o be routed to the printer as well as‘the
screen until the user enters the following sequence of commands: : S .

LOAD <RETURN>
<SPACE> <RETURN:>

These two commands terminate output to the pnnter in the same way that they terminate ﬂutput to IhE cassette re-
corder when the switch is set for cassette input/output.
For example, a program in the workspace can be listed on the printer by the following series of commands:

SAVE
LIST
LOAD
<SPACE=>

As usual, each of these commands should be followed by <RETURN:=. The program will begin listing after the com-
mand LIST is entered. The command LOAD should be entered afier the LISTING is complete. If the printer is not
on line or is connected incorrectly (or if the selector switch is turned to printer when no printer is connected) then
the computer will stall when the command LIST is entered until the problem is corrected or <BREAK> is depressed.

If a program is RUN after the command SAVE is entered the the results of any PRINT statements are displayed
on both the screen and the printer.

9-DIGIT EXTENDED BASIC UNDER OS-65D—PRINTER USE

When 08-65D is being used with C4P MF, output can be directed to the printer by changing the output flag. This is
accomplished by a disk operating system command. The following illlustrates the method of accomplishing this:

DISK!I“IO , @1" — this directs subseguent output to the printer only

DISK!"IO, @2" — this directs subseguent output to the screen only

DISK!I“IO , P3" — this directs subsequent output to both the printer and the screen.

The default mode sets the output flag to send output to the screen. The output flag is automatically reset to “@2"
(the screen) whenever the computer encounters a snytax error or an abnormal condition such as a CONTROL-C
halt to a listing or run of a program.

For the purposes of printer output, setting the output flag to “33” has very much the same effect as entering
SAVE when using BASIC-in-ROM. The output to the printer can be terminated by resetting the output flag to **@2"
with the command DISK!*10 , §2."°

Under OS-65D the command LIST# | can be used to list the contents of the workspace on the printer without the

65

¢F _

necessity of changing the output flag with the D]S!{('“EG“ mmm‘and The program is listed only on the printer (not
on the screen) when this command is entered. : e

A further discussion of the 1/O capabilities under 0S-65D is ccwE:red in the appendix.

Alternatively, PEEKS and POKES can be_ used to address the ACIA port, directly.

The ACIA port may be addressed by, using the AC[.-& control register-address of FC@P hexadecimal (64512
decimal) and its data register of FC@1 hexadecimal (64513 decimal). Reading or writing can be accomplished using
the BASIC PEEK and POKE commands.

The simple program for use of the printer is:

5 REM PRINTER PROGRAM
19 POKE 64512, : REM SET 1200 BAUD RATE
20 A$="NOW IS THE TIME FOR ALL GOOD MEN" -
3p FOR T=1TO 20 : REM PRINT 20 TIMES
40 FOR K=1 TO LEN (A$) |
50 A=ASC(MID$(AS$K,1))
60 FOR DELAY=1TO 2.: NEXT.DELAY
7@ REM WE HAD A SLOW PRINTER
80 POKE 65413 A
99 NEXT K : REM MESSAGE COMPLETE
109 POKE 65413,19 : REM LINE FEED PAPER
. 119 POKE 6451313 : REM CARRIAGE RETURN
" *129 NEXT T : REM DO ALL 20 LINES
139 END
prints the message
NOW IS THE TIME FOR ALL GOOD MEN

twenty times, illustrating the ACIA function. This pmgram was desngned to overcome device |Imllallﬂﬂ5 specifical-

ly a slow printer.
The alternate method of addressing the ACIA fur prmh:r control is called I/0 Commands. Il is detailed in the Ap-

pendix, as are Examples of its apphc:atmns

SECTION 17
'ADVANCED TOPICS

Advanced topics include extensions of previously examined subjects and introduction to new lelES which are of
need to very Epﬂtlﬁc users. A high level of support is ‘available from OSI software. Some aspects have been men-
tioned in prior sections. Details which are required for definitive use can be found in the appendix of this manual or
in the specific manuals on each subject. All of these topics are of an advanced nature, beyond the earlier treatments.

PLOT BASIC

In the graphics section, the character set was examined and produced displays for non-text materials. The ability

to write programs adequate to plot a curve is well within the skill of the user who has read this far. The convenience
of obtaining plotting by using a function, such as SIN(X) for LOG(X), requires adding these new plotting function
names to the reserved list of names in BASIC. For this convenience, and the many details it requires, OS5I provided
an advanced plotting package, PLOT BASIC.
" There are nine functions available in PLOT BASIC, named PLOT#® through PLOTS. These functions allow the
user to plot single squares, lines or rectangles with any of 256 characters and any of sixteen colors in the 32 x 64
mode. Two functions allow higher resolution point and line plots. Two functions allow the user to call, by name, a
previously stored figure to the screen and move it in any of eight directions; off the screen and back on, saving and
restoring any background.

For plc-ttmg purposes, the squares on the screen are assigned Carle.'itan coordinates (x,y coordinates) with the
default origin at the lower left corner of the screen. The position of the origin may be changed by PLOT@. PLOTS
through PLOT4 and PLOT7 and PLOTS are ‘‘standard resolution’’ commands with the x-coordinates of the squares
on the screen ranging from @ to 63 and the y-coordinates from @ to 31. On most monitors, some of the squares with
high or low y-coordinates will be invisible, PLOTS and PLOT® allow the user to reference the screen in a higher res-
olution 64 x 128 mode. Thus, for PLOTS and PLOTS, the x-coordinates range from @ to 127 and the y-coordinates
from @ to 63. PLOT® through PLOT6 do not allow the user to reference coordinates outside the ranges given above.
PLOT7 and PLOTS, however, allow the user to reference coordinates off the screen with both x and y ranging from
—128 to 255. These exhibit a ““wraparound’’ effect with coordinates that differ by 256 referencing the same point,
for example, x = 128 is the same as x = —128 or x = —1 is the same as x = 235.

The PLOTBASIC package provides high resolution while retaining simplicity of use. It can serve applications in
~ business, science, and teaching with equal facility, since the calling function is just another BASIC function.

FILES

In a disk operating system, the efficient use of the disk resource is provided by foresight in file organization.
Short, modular programs to perform a specific service should be stored on disk. Each file can be called by name or by
disk location. The disk resident programs which are called use the same region of memory as a previously run disk
program (called overlaying). The use of disk programs permits large programs, broken into modules, to run without
- the need of much memory. The price paid is the delay in transferring program from disk to memory. Short, re-
peatedly used programs should stay memory resident to prevent the waste of time in threshing about from disk to
memory. Longer, less frequently used programs should be stored on disk and called in for use as needed.

The specifics of storing and recalling files has been covered in Section 9, **Storing Files on Cassette or Disks.” 1/0
distribution, the use of DOS and BASIC commands for detailed handling is covered in Appendix K

Examples of embedded file commands are found in Appendix M, **USR (X) Function.” Examples which bring in
rapidly executing machine code routines, for example, screen clearing routines, require only a single line in the BA-
SIC program in order to be called from disk. In contrast, the equivalent BASIC program would be uncomfortably
slow.

The key to efficient use of disk is modularity of programs, where transfﬂr of programs from disk occupies a small
fraction of the total program running time.

67

T T —

HOME CONTROL AND REAL TIME OPERATING SYSTEMS
REAL TIME CONTROL OF DEVICES

The heart of AC control lies in being able to run programs of immediate interest while a secondary program sits
“'in the background’” waiting to be run. At periodic intervals, set by a hardware timer, the primary program (‘*in the
foreground™ of the computer’s attention) is exited, at which time the secondary or background task is serviced.
Then the primary task is re-entered and execution picked up where it was previously left. Note that all of this is hap-
pening very rapidly. : -

Background tasks are simple; rapidly computed programs which require periodic attention. Updating a clock dis-
play or checking home security status are examples of such a task.

The operating system 0S-65D V3.2 HC contains a program “RTMON" which decides which program, fore-
ground or background, should be run. ' :

In addition, therp are three programs, AC, ACI and AC2 which support the use of AC control accessories. The
program AC contains no buffers; AC1 contains 1 buffer; AC2 contains 2 buffers. When making copies of this disk,
copy only the version of this AC control program (AC, AC1 or AC2) needed.

The demonstration disk will show some examples of the usefulness of AC control.

To facilitate writing personalized programs, the following sections will show the features

1. time of day clock
2. timing events

3. AC control and home security switches

Later sections will show how to integrate these features into a real-time system for personal applications.

REAL TIME CLOCK
TIME OF DAY CLOCK

The clock is a basic building block of a real time control system. The time of day clock does not have to be en-
abled; it runs continually under the 3.N HC operating system. To set the time of day clock, hours are entered into
location 948@, minutes in to 9481, and seconds in to 9482. The commands are

POKE 948p,H (H= number of hours)
POKE 9481,M (M= number of minutes)
POKE 9482,S (S= number of seconds)

The clock is a 24 hour clock which resets the time at 23:59:59 back to §:0:9. .Lﬂcaliﬂn 9493 holds the count of the
number of 24 hours periods (i.e., days), which have been counted.
Time is read by the PEEK command. For example:

1@ REM INPUT TIME TO SET CLOCK
20 INPUT “HOURS, MINUTES, SECONDS":H,M.,S
39 POKE 9480 H:POKE 9481,M: POKE 94825
49 REM NOW TO PRINT OUT TIME
50 H=PEEK(9480):M=PEEK(9481):S=PEEK(9482)
60 PRINT H: “:":M:":":S:“LOCAL TIME"
70 END
will permit setting, then displaying the time. Replacing statemept'?ﬂ with
70 GOTO 50 | |

will continually print the time.

68

The time entry for 2:49 A.M. and 2 seconds, would be
2.40,2 <RETURN>

where a comma separates each numerical entry.

COUNT DBWN TIMER

The count down timer is an event timer which functions like an egg timer. A time count is luadﬂd (set into) the
timer which then counts down to zero. |

Rather than have to check the current value of the timer count, a flag is raised when the count reaches zero.

To operate the count down timer, the count down timer is loaded with the hours in location 224, the minutes in
location 225, and the seconds in location 226.

Starting the count down timer is accomplished by placing a | in Iucatmn 223, Dlsah]mg the cnunt dc-wn timer
(turning it off) requires a @ in location 223. :

A program to set the count down timer and start it running is

19 POKE 2230 |

29 INPUT “HOURS, MIN, SEC COUNTDOWN";HM,S
39 POKE 224 H '
49 POKE 225M

50 POKE 226

60 REM NOW START TIMER

70 POKE 2231

A program could check the one variable, “TEST,” to determine whether the hours, minutes, and seconds had
elapsed by S)

8p TEST = PEEK(224) + PEEK(225) + PEEK(226)
9@ IF TEST=@ THEN GOTO 1999
199 GOTO 89 |
10000 PRINT “TIME IS UP"

The real value of the timer, however, lies in its ability 1o request the services uf the real time mﬂnltnr RTMON.
RTMON permits interrupting user programs when the count down timer reaches zero. This switching of priorities
from one program to an interrupting program allows flexible programming. These uses will be-discussed further
after looking at some other devices and features available for home and appliance control. '

REAL TIME MONITOR, RTMON

The Real Time Monitor, RTMON, acts as a watchdog, responding when either the count down timer counts down
to zero or a PIA device is sensed to be ‘‘active’’. The internal computer hardware interrupts processing every 49§
milliseconds (.4 seconds) to update the count down timer and the time of day clock.

Should either the count down timer go to zero or a PlA device line go “‘active”, then computer control is
immediately passed to the program, RTMON. Within the program RTMUH you may der.:u:le whal action is to be
taken.

A typical RTMON program should deactivate the timer by

POKE 2230

This allows servicing the interrupt without having the timer time out. This would avoid two interrupts occurring
simultaneously; however, this uncertainty of occurrence accounts for only a few microseconds. Examining the
timer contents and the PIA lines of interest will determine whether a PIA or the timer requested service. Before
exiting RTMON the program should ' '

POKE 222,1

69

to re-enable RTMON so the RTMON can be recalled by future interrupts. If there are no further programs to return
to from RTMON, then RTMON can be terminated wlth a return to BASIC by

RUN"BEXEC*" : END

The operating system will then turn control over to the BASIC interpreter.

Within the operating system (specifically the 0S-65D V3.N HC, Home Control Operating System), certain provi-
sions are made for monitoring and responding to all PIA lines. These special provisions are made for the devices
hung on the 48 lines from 5@948 to 50958 (C704 to CTPE hex) and for the 16 lines at 63232° and 63134 (F'.-'ﬂ[".l and
F792 hex).

Tosense an “'active’ state on a PIA line, each register of the PIA is matched to two associated registers. A “‘mask
register’” (this indicates which bits of the PIA are to be monitored) and an “active state register” (this indicates
whether a high level, *1°, or a low level, ‘@,” is the active slale} RTMON will be called by the ﬂp-erahng system if a
bit-is not masked out and has reached its alarm state.

These memory locations are illustrated in Fig. 20 as a map

PIA Input : Mask Active State

Register Register Register
Decimal Bits Decimal Bits Decimal | Bits
Location Location Location .
17) 7 0 7 0

5P948 230 ' 9392

50949 231 9393

50950 232 9394

50951 | 233 9395

50952 | 234 | 9396

5@953 ' 235 9397

50954 236 | | | 9398

50955 237 9399

50956 | | : 238 9400

5P957 ' - 239 9491

SP958 240 94@2

50959 a1 | 9493
A P bit implies *‘ignore . A { bit means look for
the corresponding line.” a @ (low) as the active
A 1 bit implies “‘watch the state in the corresponding
corresponding line.” PIA input register.

Also, see example
for additional restrictions.

: Fig. 20 RTMON Memory Location

lgn{:-re a blt in the PIA data registers when the corresponding bit in the mask registerisa @. If the mask register bi
is set to 1, then the corresponding PIA data register bit is examined.

If a bit from a PIA register (data or control register) is to be ignored (by placing a @ in the corresponding bit posi-
tion in the mask register), then, a 1 must be placed in the corresponding position of the active state register.

The choice of which registers are to be scanned is made by POKEing (placing) the address of the first register Lo
be scanned in 8989 and 8910. The lower half of the address (low byte) is POKEd in 8999 (22CD hex) and the upper
half of the address (high byte) is POKEd in 8910 decimal (22CE hex). Place the number of registers to be scanneu:l
(minus one) in location 8992 decimal (22C6 hex). .

For example, to examine bit 6 of the P1A port at location 50948 decimal (C704 hex), place the bit pattern #1900
PPPP (64 decimal) into the mask register at 23@ decimal. (E6 hex). This will force the ignoring of all but bit 6. The
corresponding active state register at 9392 decimal (24B@ hex) should contain the bit pattern 1811 -1111 (183

70

decimal, B7 hex) in order for a @ to indicate the active state: If a 1 is to be the bit 6 active state, {hen the bit pattern
should be 1111 1111 (255 decimal, FF hex).

If all 8 bits of a mask register are zero (ignore all data bits) then no special value need be placed in the active state
register since it will be totally ignored.

Though examination of the control registers for each port is probably not wanted or ne,eded this ability is pro-
vided (it is possible to examine the interrupt lines of the PIA, for example).

If it is not specified which set of PIA ports to scan, the operating system will choose 50948 decimal (C794 he:-n]l as
the starting value. This is the choice of the CA-12 option PIA's.

A GREENHOUSE EXAMPLE

The following is an AC control example which monitors a home greenhouse. While enjoying normal use of the
computer, it is desired that a low temperature alarm be available “‘in the background.” If the temperature should
drop below a preset value, the operator is to be informed of the event. Additionally, it is considered advantageous to
have an hourly signal sent to the greenhouse to spray the plants.

Both timer and alarm tasks are well suited to the C4P system. These tasks are performed by the real time monitor,

RTMON.,
A circuit which will accomplish the alarm function is drawn in Fig 21,

— OPENS

1 16 FOR

SRR ALARM

3 14| ta—odto

4 13 1K, | | |
5 12| C== 1.F ; I
6 11 - -

7 1@

8 9 'L-EHDUND

J3 (OF FIGURE 1)
Fig. 21 Temperature Alarm

The other available connector pinouts are shown in the appendix. The selected circuit grounds the PIA input PAJ
at address 63232 decimal (F7@9 hex). When the temperature triggers the alarm, a bimetallic thermostat Eﬂr_‘ll'tf.'-ﬂlil:lﬂ
opens and the PIA goes to a high state (due to its internal power connections). .

A 1 microfarad capacitor in the alarm circuit minimizes noise pickup, while the 1K ohm resistor minimizes noise
currents plcked up on the long wires leading to the greenhouse. Tw:sted pair shielded wire, though more costly than
unshielded wire, is advised for extended applications.

No warranty or liability by use of this (or other) user circuit is to be inferred. Good practice is encouraged.

Now to break the software part of this problem into smaller pieces. First, the hourly timer in the main program
should be set to get started. Also, the PIA addresses and masks which the real time monitor will scan need to be set
up.

Once initialized, the 3.1 HC will scan the timer and the PI1A line control to the alarm circuit. When the timer runs
down to zero, the monitor will reset the timer. Also, if the temperature alarm has been tripped, the monitor will
react. In either case, alarm or timer, the monitor, RTMON, will be reset before leaving the RTMON program.

Because the program RTMON is resident on disk and is brought into the user’s work space at the alarm or timer
run out time, the current contents of the work space will be destroyed. If any data must be retained, they must be
stored periodically on a file on disk. If these data are needed, this provision to save them should be made. Generally,
this loss of data or running program is not considered to be a problem, as returnmg the work space to BASIC with
the BEXEC* program would place the user in command of all the cctrnputer s resources. The previously running
program could be called again with only slight inconvenience. -

To use RTMON, it is necessary to have a main program and the real time monitor, RTMON. The main program
(or possibly the program BEXEC*) will initialize and activate RTMON. The main program will be the normally
operating program. Only when an event (timer times out or PIA line is alarmed) occurs will RTMON come into
play. Otherwise, operation of RTMON is transparent to the user. - '

In this example, RTMON will interrupt the operation of the main program when the greenhouse needs help. The
causes for a request for help are (a) the temperature exceeds a preset value on a thermostat or (b) the hour between

71

§ rm e o s — e ——— e

waterings is up, and the sprinkler must be turned on.
In the blocks are the programs

MAIN @

SET TIMER

TIMER=@g7

i SCAN
' : PIA FOR
SET SCREEN .
AND SOUND ‘ o ALARM
1 L l
B SEND - : p——
SET : SIGNAL TO
RTMON WATER PLANTS : : [MESSAGE
ACTIVE .

i i
RESET RESET
Fn_*TMEJH RTMON

2

RETURN ' RETURN

N/ N/

Fig. 22 Flow Chart (RTMON to Water Plants).

LISTING OF RTMON PROGRAM

10 REM RTMON PROGRAM FOR GREENHOUSE
20 IF PEEK(223) =@ THEN GOTO 1000
25 REM CHECK IF TIMER AT ONE HOUR ELAPSED?
30 IF PEEK(9392) < 247 THEN GOTO 200
35 REM 247 IS NON-ALARM STATE
209 REM SOUND TONE ALARM AND PRINT ALARM
219 PRINT"TEMPERATURE ALARM"
215 PRINT PEEK(9392)
220 POKE 57089, INT(49152/440)
230 REM TONE IS IN HEARING RANGE
240 FOR T=1TO 500:NEXT T: REM DELAY LOQP
250 POKE 57989,1 :REM TURN OFF ALARM '
250 POKE 222,1:REM ENABLE RTMON
279 PRINT*IT WAS TEMPERATURE":GOTO 1099
1990 REM NEED TO ACTIVATE SPRAYER
19010 REM TO WATER PLANTS. USE A

72

1020 REM SINGLE PULSE FOR THIS DEVICE.
1025 POKE 223,0:REM MAKE SURE TIMER OFF
1030 POKE 224,1:REM RESET HOURS

1949 POKE 225,0:REM RESET MIN

1050 POKE 225@:REM RESET SECONDS

155 PRINT “TIMER TEST"

1050 POKE 223,1 :REM SET TIMER

1970 POKE 222,1 :REM ENABLE RTMON

1080 PRINT“AT END WE ENABLE RTMON”
1099 END: -

LISTING OF MAIN PROGRAM

19 REM MAIN PROGRAM TO SET UP GREENHOUSE

20 REM

3p POKE 223,0:REM DISABLE TIMER

40 POKE 224,1:REM SET HOURS TO 1

50 POKE 225,0:REM MINUTES AT @

60 POKE 225,0:REM SECONDS AT @

65 REM WATER EVERY HOUR

70 POKE 223,1:REM ACTIVATE TIMER

89 POKE 56832,7:REM TURN ON SOUND AND COLOR

81 REM SETUP PIA

82 POKE 63233,0

83 POKE 63232,0:REM LOOK FOR INPUTS

84 POKE 63233,4:REM REVERT TO DATA HANDLING

o9 POKE 8909,0:REM ADDRESS OF PIA
100 POKE 8919,247:REM ADDRESS OF PIA
119 POKE 8992,0:REM LOOK AT FIRST REG, PORT A ONLY
120 POKE 230,8:REM MASKS 0000 1090 FOR LOOK AT BIT 3
130 POKE 9392,247:REM MASKS 1111 @111 FOR BIT 4

135 REM 247 DECIMAL IS F7 HEX. SELECT F700 PIA. \
149 REM ACTIVE LOW

150 POKE 222,1:REM ENABLE RTMON

160 PRINT “ENABLE RTMON IN MAIN"
170 END

For this example, a short 440 hertz tone pulse is generated to alert the user. The remark, statement 1928, might
be replaced with ACTL commands to turn on and off a watering fixture or an output to a PLA to create a pulse. The
choice would depend on the watering device characteristics. '

The overall flow chart (Fig. 22) is adequate to follow the detailed program listing. ’

73

If the user wished a more detailed response lo the =a1-arms rmnnr madifications within the program framework
would achieve these actions.

If the user wishes to try these programs, files to smre “MAIN” 'and “RTMON"" should be created Then, these
programs could be retained for future use on disk.

RTMON would be stored (after being typed in) by

DISK!"PU RTMON"

and the main program (after typing in) by
DISK!"PU MAIN"

The program would be initiated after receiving control of the computer from BEXEC* by entering
RUN"MAIN" |

Ftﬂferem:e to BEXEC* will be ﬂ:}und in Appendix P,

74

el

APPENDIX A
TROUBLESHOOTING

If any difficulty in procedures in this manual is encountered, first refer to the following troubleshooting guides. If
they do not provide sufficient help for resolution of the problems, proceed to the end of this section. -

1. Order does nor seem complete. First check to see that all packages specified have arrived. Carefully look over
the packing lists, manuals, and this manual to determine what is supposed to be present in your system. If you
have further doubts, check with the dealer or representative from whom you purchased your system.

2. Unit(s) mechanically damaged in shipment. Report damages or losses immediately to carrier. All units are
' shipped by Ohio Scientific fully insured. Under no circumstances should you ship the unit back in such condi-
tion as it would then be impossible to determine where the unit was damaged. This can cause a long drawn-

out dispute with the carrier especially if the unit was transported by different carriers. '

3. User has difficulty in following manual because of high level of technology involved. Suggestions: obtain assistance
from local Ohio Scientific dealer or representative. If you ordered factory direct, or are at a considerable dis-
tance from the dealer, contact your local hobby club and see if any members can assist you. Hobby club mem-
bers are generally very willing to help out, which is a major reason they are in the club. Current club activities
are listed in BYTE, Kilobaud Microcomputing and Interface Age. Any local computer store should be able to
assist you in becoming a computer club member.

4. Unit does not power-up. Carefully check power connections. Check to see if unit is plugged in, that the power
switch is on and that power is present at the power outlet. If so, turn the unit off and unplug it. Check the 2
amp fuse at the back of the unit.

5. Unir does not respond properly to kevboard. Verify that shift lock key is down.

6. Problems remain after checking with the above procedures. Carefully inspect the PC board portion of the com-
puter for foreign matter such as a wire cutting or something leading out from the PC board. Also check to see
that all PC boards are properly seated, and that any ribbon cables are properly seated in their sockets. If the
unit light is only dimly lit, remove about half of the PC boards. If the light comes up to full brightness with
these out, put those boards back in and pull the other ones out. If the same condition occurs, it means that
there is a power supply malfunction and that the unit will have to be returned for repair. If the power supply
folds back when some PC boards are out, and not with others, you should be able to isolate the board causing
the foldback. That board most likely has foreign matter across it, causing the short on the board.

7. Power supplies look fine, bur computer does not seem fo reset at all or properly. Symptoms: nothing comes out on
serial terminal or screen doesn’t clear on video system. Solution: again, give the system a careful visual in-
spection. At this point, it would be invaluable to have access to another Ohio Scientific computer system by
way of a dealer or another computerist. If neither is available, and you do not wish to or are not able to attach
the actual circuitry of the system, it will most likely be necessary to return the unit for repair.

8. System works fine in machine code, but in BASIC consistently sends SN error message (Syntax error). Carefully
refer to the example given in the BASIC User’s Manual.

IN CASE OF DIFFICULTY

If you encounter a problem with your system, first carefully look over the trouble-shooting hints in your proce-
dures. The great majority of problems encountered on new computers result simply from the user’s unfamiliarity
with the computer system. If you decide that you cannot resolve the problem yourself, contact the representative or
dealer from whom you purchased the computer. Your local OSI dealer/representative should be able to help you by
providing guidance on operating procedures, and in the case of an actual computer malfunction, should be able to
substitute PC boards and subassemblies to isolate the problem. He should then also provide the service of getting
the replacement or repair for the malfunctioning unit.

75

5. e

COLOR TUNING (HETERODYNING ADJUSTMENT)

If color has been selected and does not appear or if a “*barber pole™ effect is seen at color boundaries, a simple
operator adjustment will correct these problems.

The C4P with color option has crystal oscillators to set the rate of display of the image and the color information.
A shaft on a potentiometer (see Figure 1) provides adjustment of the relative rates of these oscillators. Normally,

adjustment is made after the circuits have warmed up for half an hour. Additional adjustment should not be neces-
sary once the computer has warmed up.

THE MACHINE ORGANIZATION

The high density and modularity of the C4P system is defined by the board structure.

TOP
MOTHER BOARD

540 BOARD -/

VIDEO
POWER

SUPPLIES (2)

o

. 527 BOARD

24K BYTES
MEMORY _/

, i A
l/’OPTION BOARD ,/
(EXTRA MEMORY, /

/ VOTRAX,....)

—— — — —

505 BOARD
CPU

A15
CONNECTOHR
BOARD

542 BOARD
KEYBOARD

Fig. 23 Board Layuut

This system permits economical extension of systems as computing demands increase.

76

APPENDIXB
DETAILED A-15 BOARD PIN CONNECTIONS

The connectors shown on the A-15 board have the pin connections detailed in Fig. 24. Reference to schematic
information accompanying equipment is advised if more extensive use than the manual examples is anticipated.
Nomenclature is specified in the schematic diagrams. This listing-is intended to provide pin outs of the PIA’s and
the printer/modem in support of the manual examples, only.

1 J2 051 /0 BUS - Jt J8 SERIAL PRINTER
i a8
& e 100D AS 232 OUT = Se=r—o—2—+ RS 232 OUT
1001 =28 == 10D1 : - ~~o—t—e- S 202 OUT
002 - == 10Dz CTS e CT5
1003 »-E2. == 1003 S CTS
1004 — lrnlﬂm Ra -—-—— PULLLP
1005 =22 1005 PRy Y— == ==t PULLUP
HODE ~= — = 10D8 Lot GHD
1oD7 ~12’: 2 —e 1007 e NOTE 2 I
ICHAD = 10AD
B 26 5 BELOW
I0AT == I JO MODEM
IORW =25 3 oR/W " 2
OB VMA = 1002 VMA a S—=AS 2320UT
LAZ = T LAZ RS EH'IH-I--& 5 RS 232IN
LA3 T LA DGO = o= DCD
+5V o—a=e=VCC ATS = = ﬂ—g—-ﬂTS
r-grqu TTK CLK
% g RKOK
CTSM = = = 0sa= CTSM
1 J3 PORT A | i
PAD = L PaD
PAT D 2, pal ,
e ERM Ji J5 JOYSTICK “A'
- = 1
PAS _:3; = PA3 R7 -—: 5
PAd el < = P4 CR =z 3
PAS ~= = PAS C1 - 1~
PAG — 5 PAB
PAT —abt = PAT z -
3 Sg— GND =
2 [1 5 ooe
= W P - J6 JOYSTICK “B”
RE 1 e MISC -
s BE W e CAR 2
B2 o INTRUDER 2.
FIRE =
NS4 4'%‘}:&# B
TYP FOR 4 B
4 J7 KEYPAD “A"
J J4 PORT B - | IR
PED = L FED 3= ; i::g
PRI 3 P8I A2z 4
PB2 > ~— P2 R1 - =
PR3 :=” 5—- P83 cr T B
PB4 e =—e PB4 -~ £ 2
PBS = ——~ PES cs :
PEG —= = PEG
PB7 ?ﬂ N : PB7 JIBKEYPAD “B"
L Gm b l Iu L EE 1
Ci == 50.F w13 vee 41 ———a e
G2 B14F f—tae VGG a3 5
T Cs— Yoo C2==5]
+ B VoG 3=

NOTES: 1. All ynused ping on J8 + J8 are connecled. lo pads.
2 Install A9 and jumpars only for spacial printer,

Fig. 24 A-15 Board Pin Connections

7

APPENDIX C
MEMORY MAP (RAM)

Within a computer, different programs and programmers will lay claim to memory locations. Though these loca-
tions are not needed by all programs, prudence encourages the making of a list of all the locations known to have
been committed to different operating systems and utility programs. If use of these locations is avoided the risk of a
program’s failing for unexplained reasons is minimized. The reason is generally that a value needed by a system pro-
gram was found destroyed by a user program.

Also, knowing the reserved locations allows the taking advanlage of these locations. For example, the memory
which is dedicated to screen display could be used as extra slorage (though it'messes up the display by doing this).
(Also, values off the screen can be read by looking into the memory location corresponding to the screen position.)

‘Though programming can be ac-:ﬂmphshﬁd well without needing this map, the pre.cadmg justification merits this
115!

C4P MEMORY

Decimal Hexadecimal

Location Location Use
Popp 00pp } 6502 Page Zero
@255 ' PAFF }
$256 p109 } ' 6502 Stack
@511 @1FF (Page 1)
ggég g%gﬂ } Transient program area for user’s Ianguﬁge pProcessor
8960 - 2309 /O Handl

9819 2658 } e

© 9829 265€C . Fl Dri
13826 2A4A } Oppy EHIVEIs
19827 "2A4B : :
11896 2E78 } Disk Operating System (DOS)
11897 2E79 } Page @1/1 Swap Buffer
12664 3178
12665 3179 -
12920 3278 } DOS Extensions
12921 3279 } Source file header information
12925 327D
12926 327E } Source File
TO END OF MEMORY :

78

;—H.H‘H

s T Ty,

o

MINI-FLOPPY DISK ORGANIZATION

It is useful to know how information is placed on the disk, in order to plan efficient use of the disk.

Each mini-floppy is organized into 4@ tracks, numbered from @ through 39. Track @ is near the outside edge of the
disk while track 39 is close to the center. All tracks are circular tracks similar to the tracks on a photograph record.
See the diagram below. ' '

Each track may be subdivided into sections and pages. A page is a block of 256 bytes while a sector must be an
integer multiple of pages (up to 8 pages, of course). BASIC programs are limited to integral multiples of tracks
(2tracks, not 1-1/2 pages) but machine code progams may be in sectors of variable page lengths. Several machine
code routines (of various or similar sizes) may be saved on one track in this manner.

For example, the disk directory found elsewhere in this section shows that tracks 6, 9, 11 and 12 contain various
combinations of machine code programs in segments. Specifically, track 12 has four one page sectors. Oné should
note that the BASIC program BEXEC* on track 14 comprises one 8 page sector.

OSI software utilizes single sided, single density soft-sectored disks. Soft-sectored disks have one index hole
which provides a timing reference for hardware purposes.

When information is stored on the disk, it is good practice to assign the file of information a **file name.”” File
names are constrained to 6 or fewer characters, the first characler being a letter.

Certain tracks are dedicated to the disk operating system, as shown in the table below.

TRACK USE

B DOS-part 1

1 DOS-part 2

2-6 9-1/2 Digit BASIC

7-9 Assembler/Editor (ASM)
10-11 Extended Monitor (EM)

12 Sector 1 —Directory Page 1
12 Sector 2—Directory Page 2

12 Sector 3—BASIC Overlays

12 Sector 4—GET/PUT Overlays

13 COPIER/TRACK® Utility
14-39 User and/or utility programs

When a new disk is placed in operation, it is initiated to place timing marks on the disk and check disk quality. To
clean a file of a disk which is in service (in contrast to cleaning the entire disk), the “*ZERO™ program is utilized.

The disk directory, the entries into which are made by the CREATE program, does the bookkeeping of placing
file names into the directory. By keeping the directory up to date, efficient use of this bulk storage medium can be
enjoyed. .

79

MINI-FLOPPY 5-1/4 INCH DISK
Sector S Length
or Start of in Go
Pﬁum Track Format Transfer Pogn Address | Comments
- il] | . Isl page overlaid by 166 111
05-65D V3 Part [1 [] ZADD 8 (T means track)
BASIC Pari |] L p2pg B
BASIC Part 11 3] AR B
BASIC Part 111]] 1209 L
BASIC Part 1V 3 | 1A -~ 8 20C4-21C3 overiaid by 1 12,3
| BASIC Parnt V 6 [2200 1
Assembier Part | 7 1 ¥]
Assembler Part 11] I PARD - 8
Assembler Part 111 E]] 1200 5
EM Part |] i 1709 8
[EM Part 11 11 1 T IFPR 4
Directory Page | 12 I ZE79 I Overlaid by T 12, 4 on OPEN
Directory Page 11 12 2 2E19 | Owerlaid by T 12, 4 on OPEN
BASIC Overlays 12 3 20C4 1
PUT/GET Overlay 12] 2ET9]
[COPIER/TRACK P Utility 13 1] 5
BEXEC" 14] 321F g .
T COMPAR 39] PP 5 200 Not present on all disks
T 2 20 2 '
80

__ APPENDIX D
DISK BASIC szTEMENTé AND ERROR LISTINGS

DISK BASIC: STATEMENTS

~ In the following examples V or W is a numeric variable, X is a numeric expression, X$isa sIrmg Expressmn lor]
is a truncated integer. See OSI's BASIC Reference manual for more detail.

NAME
INPUT

DEF
DIM

END
FORNEXT

GOTO
GOSUB, RETURN

IF...THEN

IF...GOTO
ON...GOTO

DATA

PRINT

READ

- EXAMPLE

10 INPUT A

1@ DEF FNA (V) =V*B
110 DIM A (12)

999 END

10 FOR X=.1 to 19 STEP.1

20
30 NEXT X

50 GOTO 100

100 GOSUB 500
600 RETURN

10 IF X=5THEN 5
10 IF X=5 THEN PRINT X

10 IF X=5 THEN PRINT X:Y=Z

10IF X=5GOTO 5
100 ON | GOTO 19,20,30

10 DATA 1,37

10 PRINT X
20 PRINT “Test’

499 READ V, W

81

COMMENTS

Variable A will be accepted from the
terminal. A carriage return will terminate
input.

User defined function of one argument.

Allocates space for Matrices and sets all
matrix variables to zero. Non-dimensioned
variables default to 18.

Terminates program (optional).

STEP is needed only if X is not
incremented by 1. NEXT X is needed
only if FOR NEXT loops are nested, if
not, NEXT alone can be used (variables
and functions can be used in FOR
statements).

JUMPS to line 180

Goes 1o subroutine, RETURN goes back
to next line number after the GOSUB.

Standard IF-THEN conditional with the
option to do multiple statements.

Same as IF-THEN with line number.

~ Computed GOTO

If I=1 then 10
If =2 then 20
If 1=3 then 3P

Data for READ statements must be in
order to be read. Strings may be read in
DATA statements.

Prints value of expression. Standard
BASIC syntax with ,;"" formats.

Reads data consecutively from DATA
statements in program.

REM

RESTORE

STOP

DISK BASIC FUNCTIONS
FUNCTION

ABS (X)

INT (X)
RND (X)

SGN (X)

SIN (X)"
COS (X)-

TAN (X)
ATN (X)

SQR (X)
TAB ()

USR (1)
EXP (X)

FRE (X)

LOG (X)

POS (1)
SPC (1)

STRINGS

10 REM -

109 STOP

. This is an abbreviation of REMARKS, for
non-executed comments.

500 RESTORE _ Restores initial values of all data

statements.

Stops program execution, reporis a
BREAK. Program can be restarted via
- CONT. :

COMMENT

For X<=@ ABS(X) =X
For X<PABS(X) =-X

'INT (X) = largest integer less than X

RND (§) generates the same number always.

RND (X) with the same X always generates the same sequence of
random numbers |
NOTE:[(B—A)*RND (1)+ Algenerates a random number between B
and A.

If X9 then SGN(X)=1
If X=0 then SGN(X)=9
If X<P then SGN(X)=-1

" Sine of X where X is in radians.

Same for COS, TAN, and ATN (ARC TAN).

- Square root of X.

Shaces the print head I spaces.

E';e.e /0 section

eAX where e=2.71828.

Gives number of Bytes left in the work space

Natural log of X. To obtain common logs use Common
log(x) =LOG(x)/LOG(18).

Gives current location of terminal print head.

Prints 1 spaces, can only be used in print statements.

Strings can be from @ to 255 characters long. All string variables end in $, such as A$, B9$, and HELLOS.

DISK BASIC STHIﬁi?: FUNCTIONS

ASC (X$)
CHRS$ (1)

Returns ASCII value of first character in string X8.

Returns an I character string equivalent to the ASCII value above.

82

LEFTS (X$.) . Gives left most I characters of string XS$.

RIGHT$(X$,1)
MID$ (X$,1,J)

Gives right most | character of string X$

Gives string subset of string X$ élariing at Ith character for J

characters. If J is omitted, goes to end of string.
LEN (X$) ' _ Gives length of string in byles. '

STR$ (X) | Gives a string which is the character representation of the numeric
expression of X.
Example X=13.1

X$=S8TR%(X)
X§=31" -

VAL (X$) Returns string variable converted to number. Opposite of STR$(X).

DISK BASIC COMMANDS

NAME EXAMPLE
LIST LIST

LIST 100—
NULL - NULL 3
RUN RUN

RUN 200
NEW | NEW
CONT CONT
LOAD LOAD

DISK BASIC OPERATORS

SYMBOL EXAMPLE
= A=10
LET B=1¢
- . -B
<SHIFT N> XA4

83

COMMENTS
Lists program

Lists program from line 189 to end of
program. Control C stops program listing
at the end of current line.

" .Inserts 3 nulls at the start of each line to
- eliminate carriage return bounce

problems. Null should be § when entering
paper tapes from Teletype readers. When
punching tapes NULL = 3. Higher"
settings are required on faster mechanical
terminals.

Starts program execution at first line, All
variables are reset. Use an immediate * ,
GOTO to start execution at a desired line.

GOTO 209 with variables reset.
Deletes current program.

Continues program after Control C or
STOP if the program has not been
modified. For instance a STOP followed
by manually printing out variables and
then a CONT is a useful procedure in
program debugging.

Used in cassette and Disk BASIC only.

COMMENTS

LET is optional

-

. Negation

X to the 4th power

. — L . 4 .

(CAD with C negative and D not an
integer gives an FC error.)

* . C=A'B Multiplication
| D= L..fM | Division

+ Z=L+M Addition
- - J=2851-X Subtraction
<> 10 IF A< =B THEN 5 MNot Equal
> B>A B greater than A
< B<A B less than A
o= = ' B<=A B less than or equal 1o A
S = EI={A_ B greater than or equal to A
AND IF. B=A AND A=C

THEN 7 If borh expressions are true then 7.
OR IF B>A OR A=C

_ THEN 7 It either expression is true then 7.

NOT IF NOT B< =X

THEN 7 If B NOT =A then 7.

AND. OR, and NOT can also be used in Bil manlpulalmn mode lor performing Boolean operations of 16 bit 25 com-
plement numbers (—32768 1o +32767)

EXAMPLES
EXPRESSIONS RESULT
63 AND 16 16
—1 AND 8
40R 2
10 OR 10 10
NOT @ —1
NOT 1 -2

OPERATOR EVALUATION RULES:

Math statements evaluated from left to right with * and / evaluated before

+ and —. Parentheses explicitly determine order of evaluation.

Precedence for evaluation

"”F'“,‘"F"f"""r“‘f-”!*-‘:—

By parentheses

A
Negation
*/

| —

= <> > L= B

NOT
AND
. OR

DISK BASIC—ERROR LISTING

Errors can arise in several contexts. Errors in the BASIC program will be indicated by a two letter mnemonic code.
The codes and their interpretations are:

84

ERROR CODE ' ' MEANING .

BS Bad Subscript: Matrix outside DIM statement range, etc.

DD | - Double Dimension: Variable dimensioned twice. Remember subscripted
variables default to dimension 1. '

FC Function Call error: Parameter passed to function out of range.

1D ' Illegal Direct: Input or DEFIN statements can not be used in direct
mode. L

NF NEXT without FOR:

oD Out of Data: More reads than DATA _

oM Out of Memory: Program too big or too many GOSUBs, FOR NEXT
loops or variables.

ov Overflow: Result of .cah:ulatinn too large for BASIC.

SN Syntax error: Type, etc.

RG RETURN without GOSUB.

us Undefined Statement: Attempt to jump to non-existent line number.

/@ Division by Zero |

CN . . Continue errors: Attempt to inappropriately continue from BREAK or
STOP.

LS : Long String: String longer than 255 characters. r

oS Out of String Space: Same as OM

ST String Temporaries: String exﬁressiﬂn too mmlpllex,

™ Type Mismatch: String variable mismatched to numeric variable.

UF Undefined Function. |

DOS ERROR MESSAGES
CODE MEANING

1 Cannot read sector (parity error)

| Cannot write sector (reread error)

Track zero write protected against that operation
Disk is write protected

Seek error I.itral:iv: header does not match track)
Drive not ready

Syntax error in command line

Bad track number

Cannot find track header within one rev of disk

Cannot find sector before one requested

m > © © N~ @ O b W N

Bad sector length value

85

—tm—m—

D

Cannot find file name in directory

Read/Write attempted past end of named file

CONVERTING OTHER BASICS TO RUN ON OSI 6502 BASIC

STRINGS
OTHER
DIM A$ (1,J)
AS (1)
AS (1,J)

Multiple assigﬁments: B=C=0 must be rewritten as B=@:C=@. Some BASICS use \ to delimit multiple state-
ments per line. Use **:"". Some BASICS have MAT (Matrix Operation) functions which will have to be rewritten

with FOR NEXT loops.

osi .
DIM AS(J)

MID$ (A%,1,1)
MID$ (AS,I,J—1+1)

BASIC ERROR CODES

DD

FC
D

 NF
oD

OM

oV
SN

RG
Us

B
CN

LS
0s
ST
™

UF

CODE

D

DEFINITION
Double Dimension: Vanable dimensioned twice. Remem-
ber subscripted variables default to dimension 10.

F g Function Call error: Parameter-passed to function out of

range.

| g™ lllegal Direct: Input or DEFIN statements can not be used

in direct mode.

N "™, NEXT without FOR:

0]

©

-

v O

/ JPPF LRP-LE

- v o r

L

i~

Out of Data: More reads than DATA

Qut of Memaory: Program too big or too many GOSUBs,
FOR NEXT loops or variables

Overflow: Result of calculation too large for BASIC,

Snytax error: Typo, etc.

RETURN without GOSUB

Undefined Statement: Attempt to jump o non-existent
line number

Division by Zero

Continue errors: attempt to inappropriately continue from
BREAK or STOP

Long String: String longer than 255 characters
Qut of String Space: Same as OM
Slriné Temporaries: String expression 100 complex.

Type Mismaltch: String variable mismatched to numeric
variable

Undefined Function

APPENDIX E
POKE AND PEEK LIST

The following features of OSI BASIC are useful for several applications. The user should be extremely careful
with these statements and functions since they manipulate the memory of the computer directly. An improper
operation with any of these commands can cause a system crash, wiping out BASIC and the user’s program.

STATEMENT/FUNCTION - COMMENT

| PEEK (1) Returns the decimal value of lhe specified memory or 1/0 location.

(Decimal)

Example: X=PEEK ('Ml}
Checks to see if LIST is enabled (76 indicates that it is enabled).

POKE 1,J Loads memory location I (decimal) with J (decimal). I must be
between @ and 65536 and J must be between @ and 255. Example: 1§
POKE 64256, 255 loads FB@® with FF (hex).

USEFUL BASIC POKEs

As systems develop, different locations are committed to hold parameters. Many of these parameters have been
mentioned in the text material. These parameters are collected here, along with some other useful parameters
which may be needed by an advanced programmer. Some parameters appear several times, since they are relabeled

by other utility programs.
Caution, care must be taken when POKEing any of these locations to avoid system errors and subsequent soft-

ware losses.

LOCATION ' NORMAL

DECIMAL HEX CONTENTS USE

23 17 132 : Terminal width (number of printer characters per line). The
default value is 132. Note, this-is not to be confused with
the video display width (64 characters).

24 18 112 Number of characters in BASIC’s 14 character fields (112
characters = 8 fields) when ﬂutpumng variables separated by
commas.

120 78 127 Lo-Hi byte address of the beginning of

121 79 50 "BASIC work space (note 127=3%7F, 58=§32).

132 84 * Lo-Hi byte address of the end of the

133 85 . BASIC work. space. (*contents vary according to memory size
such as 255($FF) and 95($5F) or $5FFF=24575 for 24K)

222 DE ()} Location to enable or disable RTMON (real time monitor). 1

' enables and @ disables RTMON.

223 DF D Location to start count down timer. A 1 starts the timer, and
a P stops it.

224 ED) Contains the nﬁ_mher of h;lurs for t_irnﬂr to count down.

225 E1 0 Contains the number of minutes to count down.

226 E2 @ Contains the number of seconds to count down.

87

LOCATION

DECIMAL HEX
23p-241 E6-F1
249 F9
548 224
549 225
741 2E5
750 2EE
1797 705
2073 819
2209 898
2888 B48
2893 B4D
2894 B4E
2972 BOC
2976 BAD
8708 2204
B722 2212
8902 22C6
8917 2205
8954 22FA
8960 zama_

NORMAL
CONTENTS
@

@

10

10

32

173

27

2.

SN A

USE

Identifies the 1/0 masks used for external polling of AC
events, i.e. determines which PIA lines are scanned.

Should contain the latest value at 56832 (3DE®@) which is a
“write only’’ register. This location does not change the
display format but acts to maintain the format during ACTL
use.

Hi-Lo byte address for AC driver; with no huﬁ“ers these
locations (with AC enabled) will contain $327F

Control location for “*LIST"". Enable with a 76, disable with

. a 1. _

Control location for *“NEW.”" Enable with a 78, disable with
a 10. :

Controls line number listing of BASIC programs, enable with
a 32, defeat with a 44, :

“CONTROL C" termination of BASIC programs. Enable
with 173, disable with 96.

The monitor .ROM directs Track @ to load here at $2208.

A 27 present here allows any null input (carriage return
'only) to force into immediate jumping out of the program..
Disable this with a @. Location 8722 must also be set to .

Alternate “*break on null input’’ enable/disable location. |
A null input will produce a *“REDO FROM START”

message when 2893 and 2894 are POKEd with 28 and 11
respectively.

Normally a comma is a string input termination. This may be
disabled with a 13 (see 2976).

A colon is also a strong input terminator, this is disabled
with a 13 (see 2972).

Output flag for peripheral devices (see peripheral section).

Null input if =@, normal input if = 27.

Determines which registers (less 1) RTMON scans (see the
AC control section.) -

USR(X) Disk Operation Code:
@-write to Drive A
3-read from Drive A
6-write to Drive B
Q-read from Drive B

Location of JSR to a USR function. Preset to JSR §22D4,
i.e., set up for USR(X) Disk Operation.

Has page number of highest RAM location found on O5-
65D’s cold start boot in. This is the default high memory

" address for the assembler and BASIC.

88

LOCATION NORMAL

DECIMAL HEX CONTENTS USE

8993 2321 — [/O Distributor INPUT flag

8994 2322 - ~ 1/0 Distributor OUTPUT flag

8995 2323 |- " Index to current ACIA on 55@ board. If numbered from 1 to
15 the value POKEd here is a 2 times the ACIA number.

8996 2324 - Location of a random number seed. This location is
constantly incremented during keyboard polling,

{20111 . 2328 7D Pointer to Disk Buffer (Usually $3E7D)

9001 . 2329 3E

90@2 - 232A — First Track Disk 1

9003 232B — Last Track Disk 1

9004 232C — Current Track in Buffer 1

9005 232D - Buffer 1 Dirty Flag (Clear=0)

Locations 996 to 9@13 Pertain To Disk 2

opD6 232E 7E Pointer to Disk 2 Buffer Start .

opD7 232F 3A " This area used for Disk 2 data transfer operations. (Usually
$IATE)

o008 2330 7E Pointer to Disk 2 Buffer End (Usually $427E)

9009 2331 42

9p10 2332 — First Track Disk 2

9011 2333 - Last Track Disk 2

9p12 2334 - Current Track in Buffer 2

9013 2335 - Buffer 2 Dirty Flag (Clean=)

9098 238A — Pointer to Memory Storage Input (Lo and Hi Byte).

9p99 2388 — Memory is dedicated for use as file.

9105 2391 R Pointer to Memory Storage Output (Lo and Hi Byte). Use

9196 2392 - of memory as a file, .

9132 23AC TE Disk Buffer 1 Input Current Address (Lo and Hi Byte)

9133 23AB 32 Default value is $327E.

9155 23C3 7E Disk Buffer 1 Output Current Address (Lo and Hi Byte)

9156 23C4 32 Default Value is $327E '

9213 23FD 7E Disk Buffer 2 Input Current Address (Lo and Hi Byte)

9214 23FE SE Default value is S3IETE

9238 2416 TE Disk Buffer 2 Output Current Address (Lo and Hi Byte)

9239 2417 3E Default value is $3ETE

9368 2498 - - Indirect File Input Address (Hi Byte) {Lo=0@)

9392 24B0 — 1/0 Status used by ACTRL. See AC control section.

9403 24BB —

9480 2508 - . Real Time Clock, Hours (HC Systems only)

9481 2509 —. Real Time Clock, Minutes (HC Systems only)

89

LOCATION

DECIMAL HEX
9482 - 250A
9483 2508
9543 - 2547
9554 2552
9666 25C2
9667 25C3
9680 23D@
9682 25D2
9683 25D3
9770 262A
9796 2644
9822 265D
9823 265F
9824 2660
9825 2661
9826 2662
9976 - 26F8
10950 2ACSB
11511 2CF7
12042 2FPA
12921 3279
12922 327A
12925 327D
12926 327E
15997 3E7D
15098 3ET7E
. 19069 '4A7D
50944 cC700
- 5@948 C704
to
5@959 CTQE

NORMAL
CONTENTS

to

USE

Real Time Clock, Seconds (HC Systems only)
Real Time Clock, Days (HC Systems only)

Content is hex OS Entry Point. Under Machine Monitor
Load 2547, then *“GO". '

Pointer to Indirect File (Hi Byte only) for output (Lo=99)

When POKEd with N (@-63) and a LIST command is given,
this will move the left hand margin to the right N spaces
(dashes will echo on the left unless the cursor is removed).

When POKEd with N (207-215) and a LIST command is
given, this will move the scroll up 4* (215-N) lines.

Cursor symbol character designation, for video screen.

Next Position for Cursor on video screen

Display control parameters. Single Space = 64, Double
Space=128 Quad Space=255; Two columns=32.

Entry point to Keyboard Swap Routine
Sector for USR(X) on disk
Page Count for USR(X) Disk. Read or Write.

Pointer to memory for USR(X). (Lo and Hi Bytes) USR(X)
will reside in location pointed to.

Contains track number for USR(X) on disk

Disable **:”" Terminator. See Location 2976 comments.
Console terminal number. Video terminal is 2.

Used by Disk Page §/1 Swap Used by Random Access File

Calculation routines to set record size.

Start of work space header.

If contains 32, then have no buffers
If contains 3A, then have 1 buffer:
If contains 42, then have 2 buffers

Number of tracks to load from disk.
Disk 1 Buffer Start
Disk 1 Buffer End
Disk 2 Buffer Start

Disk 2 Buffer End

OSI BUS PIA

P1A register’s location. See PIA section
for use.

90

LOCATION NORMAL
DECIMAL HEX CONTENTS
53248 DOPP '

to to
55295 D7FF ~—

57344 EQRD

to to
59391 E7FF
56832 DEQQD
57088 DFQQ
57089 DF Q1
63232 F700
64512 FCOD

USE

Video screen memory storage. Video

screen memory is 8 bit (1 byte) storage
locations.

Video color image storage. Only 4 bits are
available for use. '

Screen Format (64 X 32 characters, or 32 X 32), sound,
color selected. See video section for POKEs.

Joystick A,B; Also Tone; Also Polled Keyboard location.

D/A Converter Port. (Also frequency divider rate) This
location can only be POKEd. See tone generation section.

PIA Port address. Hume security devices share this location
with normal PIA lines.

ACIA Port address. Printer and modem share this location.

91

MEERRREFEE TR I e e

"APPENDIX F
. PIANO KEYBOARD

FREQUENCY IN HERTZ

The kéyboard, with its musical scale notation, may be useful in programming tunes on the tone generator or DAC

feature of the C-4P. A quarter note is approximately 0.2 seconds in duration.

34.7
388

465
519

778

825
1838
1165

13806
1556

1850
207.7
2331

. 277.2
31

ared
T415.3
4662

554:4

7400
8306
9323

11@a.7
12445

14620
1661.2
18646

2785
24890

29599
33224
37283

44349
49788

59199
66449
7458.6

27

41.2

437

i

490
559

61.7

65,4

ol | 1|
[W
[TH
[
el

824

ar3

N

8.0
1188

1235

1388

——

£33

164.8

1746

v

=,

2489

A

261.6 Middle C

.
L

32986

3482

—

4839

523.2

:“m:m:H:u 587.3

659.2

696.4

7830
860

9878

)

13465

e 11747

13185

13959

15680
17688
19756

20938

2249.3

i

26379

27938

:'

313589
Jo2a.0

3951.1

-LEI?’

41868

I — TR

52740

50876

-

62719
7428

79022

BaT2g

e e B I I B

s i e R s s i e e s B s
. e el S S St mel wmt i el S S et

Fig. 26 Keyboard

92

L B B B N A (S R S R [S e

T e e e e e e e e —

L e e . e B B B B e e B I B

s e e e B N [[QL i -

-
—————|-—--.-|.-.
= = =1 == =m -
=t i

-

T

e R

L B =

L

APPENDIX G
DISK UTILITY PROGRAMS

Some commonly used disk utility programs are provided, and their descriptions follow below. A more detailed
description of these utilities is found in the OS 65D User’s Manual. Utility programs serve a housekeeping service,

maintaining disk files in order and permitting update of these files.
The first utility used, when a file is no longer needﬁd or room must be made on the dlsk for a new file, is the

DELETE utility.

DELETE UTILITY
The DELETE utility is invoked by
RUN"DELETE" <RETURN>
As in any utility where the risk exists of deleting valuable programs or ﬂala, the utility program requires
PASSWORD? |
to which the user-responds’
 PASS <RETURN>
The utility then requests the name of the ﬁlé to be deleted as
FILE NAME?

the response to which is to name the file to be deleted. Upon deletion, the file name will be missing from the direc-
tory. When a file is DELETEd, only the name is removed. The program or data which resided on disk will still be
present. To erase the data which is present in a file, invoke the ZERO utility.

RENAME UTILITY

For convenience, it is sometimes desired to change file names. The directory entry for file name can be changed
by ' :

RUN"RENAME" <RETURN=

The utility requests the
OLD NAME? |

Respond with the existing file name to be changed. The program responds .
RENAME OLD NAME TO?

Type the new file name as the response. File names may be 1 to 6 characters, with the first character a letter.
Upon completion of the RENAME utility, the user is returned to BASIC.

CHANGE, THE UTILITY FOR WORK SPACE AND iNPUTfOUTPUT
CHANGE

The CHANGE utility services Input/Output parameter changes. The normal (default) value for printer width is
132 spaces. These are the printable characters, which get padded by blanks at output. Carriage return and line feed
are automatically added beyond these 132 spaces. Additionally, the number of printer fields (the number of varia-
bles which can be printed across a page) has a default value of 8, one less than the number of whole 14 character col-
umns that will fit within 132 printable characters Any changﬂ in printer width will change the number of printer

- fields accmdmgly

93

. ——— e

. To invoke the CHANGE utility, type
RUN"CHANGE" <RETURN=>

The program output and the kind of input possible to enter in response are shown below. Any unacceptable
response will result in an error message and/or a repeat of the request for input.

CHANGE PARAMETER UTILITY
THE TERMINAL WIDTH IS SET FOR 132
DO YOU WANT TO CHANGE IT (Y/N)?
Enter YES or NO. If YES is entered, the program requests a new value for the terminal width,
NEW VALUE?

Enter a new value from 14 through 255.

The next option to change is available memory. Since the default value is the maximum memaory available, any
change will reduce the memory available for BASIC or ASSEMBLER use. By denying memory allocation to BASIC
and ASSEMBLER, room may be reserved for machine language programs.

The CHANGE utility, after the prior Input/Output changes, will reply:

BASIC & ASSEMBLER USE xx K WORK SPACES (yyy PAGES)
WOULD YOU LIKE TO CHANGE THIS (Y/N)?

The work space is the main memory available to the system software. Each K (1024 bytes) contains four 256 byte
pages. A change to this parameter will make a portion of highest memory unavailable to systems software. Note that
such memory will not be included within LOAD/PUT files.

Enter YES or NO. If YES is entered, the program requests the number of pages to be used by system software.

HOW MANY PAGES SHOULD THEY USE?
Enter a number of pages from 5@ through 191. The program continues with:
CHANGE BASIC’'S WORK SPACE LIMITS (Y/N)? _
Enter YES or NO. If NO is entered, the program terminates. Iff YES is entered, the program requests the following:
© HOW MANY 8 PAGES BUFFERS DO YOU WANT BEFORE THE WORK SPACE?

Enter @, 1 or 2 to reserve that many track buffers at the beginning of the work space. Note that device 6, memory
buffered 1/0, uses the first buffer by default while device 7 uses the second buffer by default. Of course, these
defaults can be changed with appropriate POKEs. If no buffers are specified, the program asks:

WANT TO LEAVE ANY ROOM BEFORE THE WORK SPACE?

Enter YES or NO. If the entry is NO, the program outputs the address of the start of the BASIC work space as shown
below. If YES is entered, proceed to the “HOW MANY BYTES?" question below,
Il one or more buffers was specified, the program continues with:

WANT TO LEAVE ANY ADDITIONAL ROOM?
Enter YES or NO. If YES, the following question is asked:
HOW MANY BYTES?

Enter the number of additional bytes to be allocated before the start of the work space.
The program then outputs the new address for the start of the work space and the total number of bytes reserved
for buffers, etc. : :

THE BASIC WQHH SPACE WILL BE _SET TO START AT aaaaa
LEAVING bbbb BYTES FREE IN FRONT OF THE WORK SPACE
IS THAT ALRIGHT? | |

T —

Enter YES or NO. If the answer is NO, the program requests that an exact lower limit address for the work space be
specified.

NEW LOWER LIMIT? |
Enter a lower i;mit address. The program then confirms this value by outputting:
bbbb BYTES WILL BE FREE BEFORE THE WORK SPACE
The program then continues with: |
YOU HAVE xx K OF RAM
DO YOU WANT TO LEAVE ANY ROOM AT THE TOP?
Enter YES or NO. If YES, the following question is asked:
HOW MANY BYTES?

Enter the number of bytes of Random Access Memory (RAM) to be allocated between the top of the work space
and the end of main memory. The program then outputs:

THE BASIC WORK SPACE WILL BE SET TO END AT cccce
LEAVING dddd BYTES FREE AFTER THE WORK SPACE
IS THAT ALRIGHT? |

Enter YES or NO. If NO is enlered the program requests that an exact number limit address for the wnrk space be
specified.

NEW UPPER LIMIT?
Enter an upper limit address. The program then confirms this value by outputing:
eeee BYTES WILL BE FREE AFTER THE WORK SPACE.

Note that the reservation of space gfier the work space is not recorded on disk with a program when it is saved in a
file. The allocation is only recorded as a RAM resident change to the BASIC interpreter and remains in effect until
explicitly changed again, or BASIC is reloaded by typing BAS in the DOS command mode. Later, running a program
that results in an **Out of Memory™ (OM) error may be the result of.a reduced work space that is no longer
required. Program output continues with:

YOU WILL HAVE ffiff BYTES FREE IN THE WORK SPACE
15 THAT ALRIGHT?

Enter YES or NO. If NO is entered, the Change Parameter Utility Program restarts from the beginning. Otherwise,
the requested changes are made, the work space contents are cleared and the program terminates.

DISK COPY

Creating backup copies of disks is a wise precaution. The backup copy provides protection against inadvertently
destroying an important program, either by writing over the program or physically damaging the disk. Two utilities
are provided for disk copying on the system disk.

Copying a disk requires two disk drives. (If a dual disk system is not owned, the OSI dealer can provide these ser-
vices.) In a dual disk system, one drive will be labeled **A”’, the other drive will be labeled **B"". Since it is intended
that material on one disk be overwritten with material from another disk, extreme caution is urged in following the
order of instructions. Otherwise, it is possible to end up with two copies of the wrong disk!

First, select a disk on which to make a copy. This can be a new disk or a spare old disk. This disk should be
initialized, a process of placlng information on disk for timing purposes. Since this process will overwrite the entire
disk, make sure this disk is truly available.

To initialize the disk, enter the operating system (From BAS[E type EXIT). Place the disk ONTO WHICH a
copy is 10 be made in drive B. In response to the system prompt, type

g5

A* SE B <RETURN=
Reply to the system response by
B* INIZ <RETURN>
The system will ask
ARE YOU SURE?
If this is affirmative, then type
YES

If any error message is reported, discard the disk as damaged or faulty. No errors will be reported for successiul
initialization. Now when the system prompt is shown, return to use Drive A by replying

B* SE A

Before using the master disk, caution encourages the covering of the rectangular notch on the side of the disk
with a piece of black electrical tape. This will “WRITE PROTECT"" the disk against inadvertently overwriting data
and programs to be kept. This tape may be removed later. Now the master disk is ready to be copied.

Place the master disk in drive A. The already initialized disk (ONTO which the copy is made) should be in drive B.
CALL in the copy utility from disk by typing

A* CALL 920p=13.1 <RETURN>

This will load the copy routine at location P20@ hex. To execute the copy routine, type
GO 0209 <RETURN>

The result will be the choice
SELECT ONE:

1. COPIER

2 TRACK @ READ/WRITE
Respond

71 <RETURN->

to select the copier routine. (The TRACK § READ/WRITE is used to restore track @. This is typically needed if one
powers down a disk drive with a disk in the drive.) :
The question will be asked

FROM DRIVE (A/B/C/D)?

Reply

A
The dialog continues:

TO DRIVE (A/B/C/D)?
Reply

B

Tracks are selected by replying to the prompt
FROM TRACK?

by
0

TO TRACK (INCLUSIVE)?

96

39
Since adequate care has been taken to this point, the response Lo

ARE YOU SURE?
is
YES <RETURN>

Each track number, as it is copied, is displayed on the video screen.

CREATE A DISK FILE

It is useful to be able to name a region of disk for program or data storage. The CREATE utility is set up for this
purpose. It reserves room on the disk for user programs and enters the file name into the directory for future refer-
gnce. ' ' -

To illustrate CREATE, turn the computer on and bring up the disk operating system (0S-65D V3.N). This proc-

ess is called **booting up’’ the system. When the BASIC prompt

OK

appears, type
RUN“DIR" <RETURN>
Respond to the question _
LIST ON LINE PRINTER INSTEAD OF DEVICE #27

by answering

NO <RETURN>

A listing of the disk directory appears. A typical directory listing follows:

0S-65D VERSION 3.N

—DIRECTORY —
FILE NAME TRACK RANGE
0565D3 @ —12
BEXEC* 14—14
CHANGE 15—16
CREATE 17—19
DELETE 20—2p
DIR 21—21
DIRSRT 22—22
RANLST 23—24
RENAME 25—25
SECDIR 26—26
SEQLST 27—28
TRACE 29—29
ZERO 3p—31
ASMPL 32—32

5@ ENTRIES FREE OUT OF 64

97

The 10 directory files use up 19 of the 64 available directory entriés. Fifty (5@) entries remain free.

If any track between @ and 39 does not have a file name, the user can use that track for his purposes. Now it is sug-
gested that a file called SCRTCH be created. It is a good idea 1o have such a file for storing programs during develop-
ment stages.) File names consist of six ‘or fewer characters; the first character must be a letter. Type

RUN"CREATE" <RETURN:
When asked for a password, respond with
PASS <RETURN:
Then, the computer will respond with
'FILE NAME?

Respond with
SCRTCH <RETURN:>
The computer response

FIRST TRACK OF FILE?

will be answered with
39

(or whatever lrau_:k was clear) _
Assuming there is only 1 track to copy, the prompt -

NUMBER OF TRACKS IN FILE?
is replied with
1

MNow when

RUN"DIR"

is typed you will see this new file “*SCRTCH" on the disk. .

It is common practice 1o create a scratch file **SCRTCH.” It is possible to store 2K bytes (approximately 2009
characters) on a track. Take the memory size in Kbytes and subtract 12K (the approximate system requirements),
leaving the BASIC work space size. For examiple, a 24K system needs 24K — 12K = 12K bytes of storage. Since 2K
bytes fil on a track, the entire BASIC work space could be stored on 6 tracks. Small programs will obviously require
far less disk storage. '

98

APPENDIX H
HEX TO DECIMAL TUTOR

Within computers, calculations are made in zeros and ones, a binary system. This representation of numbers is
more convenient than on traditional base 1@ (decimal) system. For compact notation, the binary representation is
often written by grouping multiples of 2, specifically powers of 2*2*2*2*=16. This notation, base 16, is called a hex-

. adecimal number system.
The manual’s illustrations of the ASC and CHRS commands can be used to write a program to convert decimal

' numbers (counting in base 1) to hexadecimal numbers (counting in base 16).
To count in the base 1 numbering system, the symbols @, 1, 2, 3,4, 5, 6, 7, 8, and 9 are used, 1§ symbols in all.

A place holder notation is employed to represent a number, so lhat
123 = 1"1QA2 + 2*10A1 + 3*10A0 = 100+ 20 + 3
= 1"100 + 2*10 + 3*1
=100+ 20+ 3

(where A indicates “‘to the power™).

In the other case, base 16 (hexadecimal) counting will require 16 symbols. By common agreement the symbols
are®,1,2,3,4,5,6,7,8,9, A, B,C, D, E, F. Here A hexadecimal cﬂrrﬂspnndstn 19 dﬁcmml Bhexadeclmal cor-
responds to 11 demmdl elc. Therefore, the number

123 hexadecimal = 1*16A2 + 2*16A1 + 3*"16AQ decimal " -
= 1*256 + 2*16 + 3"1 decimal
= 256 + 32 + 3 decimal = 291 decimal
Similarly, the number 3A hexadecimal is
3A hexadecimal = 3"16A1 + 10*16A@ decimal
= 3'16 + 19*1 decimal
= 48 + 10 decimal

= 58 decimal

This much calculation is a sure candidate for a computer program, Also, in some of the advanced programming
techniques, it will be necessary to be able to convert from one system to another. This problem of number system
conversion provides a chance to use the ASCII conversion commands in the programming. Moreover, this program
is readily modified to permit data entry into programs in either hexadecimal or decimal. For occasional conversions,
there is also provided a decimal to hexadecimal conversion table elsewhere in the appendix. Now look at the ASCII
code table in Appendix [.

Symbols @ through 9 have ASCII codes of 48 to 57 decimal. By subtracting 48 from this ASCII decimal code, the
results are the numerals in the range @ to 9. For example, the ASCII code for 3 is given as:

ASCIl Code for symbol “3" = 51
If we subtract 48 from 51 (the ASCII code value of the number 3), we get the numeric value, 3.
ASCIl code for symbol 3" = 48 = 51—-48 = 3

This observation permits the change of the code representation of numbers § 1o 9 into the numbers, themselves.
Similarly, the symbols A to F are represented by ASCII codes of 65 to 7@ decimal. By subtracting 55 from this
code, the decimal value which the hexadecimal notation implies can be obtained.

99

i aEm o mems e meTd

In summary,

1. the ASCII code for the symbol “*A" = 65
2. the number A hexadecimal = 19 decimal
3. thus the ASCII code for “*A™ — 55 = 6555 = 1@

permit the conversion of values for the ASCII symbols A to F. This conversion can be used to complete the
algorithm for conversions from hexadecimal to decimal. -
To go from decimal to hexadecimal (the reverse direction), note how remainders from division vield the separate

digit’s representation. For example, in base 19, for the number 123, do successive divisions, and observe the re-
mainder;

10/ 123
1@/ 12 + remainder 3 A
16/ 1 + remainder 2 A

@ + remainder 1 A

yields the base 1§ representation when read in the direction of the arrow. Trying this in base 16 to find the hex-
adecimal value of 2@} decimal

16/ 20
16/ 1 + remainder 4 A

@ + remainder 1 A
gives the hexadecimal value of 14 when read in the direction of the arrow. This checks since
1*16A1 + 4*16A0 = 20
Slightly harder is converting 28 decimal
16 / 28

16 /+1 + remainder 12 = B hexadecimal A

@ + remainder 1 = 1 hexadecimal A

giving the hexadecimaal value of 1B. Next, combine these two conversion algorithms in a flow chart, Fig. 27, shown
in overall form.

It is common practice to indicate hex numbers by use of a leading $, for example, DEP@® hex = $DE@).

100

COMVERT TO
HEX OR DECIMAL

SUM =9 INITIALIZE SUM
FOR
l=1T(4
FOR
EACH
DIGIT CIVIDE BY 16

AMD SET
Tl =HREMAIMDER

TERM = DIGIT* 16A
{DIGIT POSITION)

LAST TERM?

*HOTE
ASCH DIGIT MLUEST
BE COMNVERTED TO
DECIMAL VALUE

-

SUM =58+ TERM

1

{

PRINT ASCI
TERM SYMBOLS

i

Fig. 27 Flow Chart (Hexadecimal to Decimal)

101

e s Ee—— m— s i o

1@ REM HEX AN OSI| PROGRAM TO CONVERT -
20 REM 1) HEXADECIMAL (BASE 16) TO DECIMAL OR
3¢ REM 2) DECIMAL TO HEXADECIMAL: L ROEMER 28 MAY 1979
35 PRINT” TYPE “:PRINT” 1 FOR HEX TO DECIMAL
36 PRINT" 2 FOR DECIMAL TO HEX"
49 INPUT “YOUR CHOICE IS"; CHOICE
50 IF CHOICE=1 THEN GOSUB 1000: REM HEX TO DEGIMAL
60 IF CHOICE=2 THEN GOSUB 20@9: REM DECIMAL TO HEX
7@ IF CHOICE < 1 AND CHOICE < 2 THEN GOSUB 3p00
80 END
109 REM CONVERT EACH CHARACTER TO ASCIlI CODE
1009 REM HEX INPUT TO DECIMAL OUTPUT
19190 INPUT “YOUR HEX NUMBER IS”; A%
1020 L=LEN(A$)
1030 SUM=0
19490 REM WHEN EXAMINE CHARACTERS, LOW POSITION
1050 REM IS AT RIGHT HAND
1960 FOR K=1 TO L
1070 M=L+1-K
1080 T2=ASC(MIDS(AS,M,1))
1100 S1=SUM+16*(K—1)*(T2-55)
1110 S2=SUM+16*(K—1)*(T2—48)
1130 IF T2> 64 THEN SUM=S1:REM CHECK IF HEX CHAR> 9
1140 IF T2 <64 THEN SUM=52:REM OR <9
1150 NEXT K
1160 PRINT “DECIMAL VALUE IS"; SUM
1179 RETURN
1180 END ‘
200® REM DECIMAL INPUT WITH HEX OUTPUT
2010 INPUT “YOUR DECIMAL IS"; D
2020 IF D> 65535 THEN GOTO 2600
2039 T(P)=D
2040 FORI=1TO 4 1
2050 T()=INT(T(I—1)/186)
2060 ClH{)=T(-1)=T()*16
2070 K=|

102

2¢p8P IF INT(T(1))=0 THEN GOTO 2200

2090 NEXT |

2200 FOR I=1TOK

221p REM: REVERSE ORDER OF DIGITS FOR PRINTING
2220 CH$(K+1—1)=CHR$(48+CI(})}

2230 IF CI{l)> 9 THEN CHS$(K+ 1—1) =CHR$(55+CI(I)
2240 NEXT |

2250 ZIPS/=""

226@ FOR I=1TOK

2270 ZIP$=2ZIP$+CHS(I)

2280 NEXT |

2290 PRINT “HEX"; ZIP$

230@ RETURN

231p END

2609 PRINT “TOO LARGE A VALUE"

2610 END

3pP@ PRINT “YOUR CHOICE SHOULD BE 1 OR 2"
3010 PRINT “RUN AGAIN IF YOU WISH CHOICE"
3p20 RETURN |

3030 END

103

L L L o e e —

HEXADECIMAL-DECIMAL CONVERSION

2F%2REINDBesE02e

el Sl e

eaRI2RYBRLNRY

el

HENWEMMMMﬁHMWEMﬂ
== = == OO O O
8998552885825

T eREan R -0

e Lt Lot N |

IQBNBIREIBIZON

RIS R

T _.I.n..__.

TSRS ot

B ROBe-RT

-

TRAR23B25238

e

1896
212
ﬂd

et Tt i

— T W .

P
8%

211

2 3RENRIRIIRILE

1111112

HE

328552825 8Y

T g —

241

CLyeISENEIRONS

224
240

§283322583325358

266 2867
283
293
m?
47
383
379
3as
411
427
443
459
475
491
506 507

260 261
276 277
292 293
309
325
341
as7
373
388 389
405
421
437
453
469
485
501

82889382882 80882

= e e T

855
671
687
703
719
735
751
767

L]

670
886
702
718
734
750
766

226 527
258 ﬁ%
574 575
281
607
623
639

542
580
808
- g22
638
654

525
541
557
573
589
B05

556

524
540
sT2

RRYTRRERRRIEAREE

L

S

e33338583850 8385

8239399398383368

BEEBOTBL B8 on s B
R R

m —Im 3%%5% m
L= L el L3 [
Lk ol ol ol ol ol ok ok of S 8 = -I_-I_.I

mmm51?mmﬁmmemWH

= = e D

T T T P R e

ga33senesgeNmsge

— = o e DD OO O

.1|.u.|.l|.1|l....l.11|... T g -
1

1346?91
._1....| = e e e %) O O O

._.I...I._.I.-III_-I...I e e

30D = b 3 AN v P) T Y
m 2“5

WHﬁEEdD NDTOOND T

G888 -CI2EISNAAN

T . g i . e e

IR v~ P I — L= P)
o Hdm?m EME?

T T

o Ol 00 o O D D [
g32g8 3BT IBITRR

T e

P BT F TN LLY = T = P £

mm O AT e OB 3 04 (A
LR Sk S o Sl o T H s N AT T

_.I

T R e e

1031

- 11&2222

P e e e

§2eEg88TLTBoRERR

T T T O T P e g

238088198 mmmmm

.-.I..I....l-lll_.l LaRatEatl
_.I.-I.__.I..I T e e e e

gegezogenysy

3951? W3 v = T = P
-

T T T T T T T e -

ML

5__1-.:. m 00 W0 v

mmmn-m.l“ll‘m?» .n._..

AT T = e

ol = Lol .nUn...-.nu_
§38583830838793

AT T P =

e

3289993285285852

104

2EEET8

=883

on
m
=]
S R R R T ——— Y

(4] S-S T [l %] §
REENGEROBLGRR S
RS p p—— R— — S ——— — W
33
g

g

SEQ
SFO

aro
880

-

ERoaRs

1664

JeEgCE

L Ly
=0

o o e
e Lo -
ad = == LM

88
SRR

3]
R
—

R

EIBEEIER

AR ————
—h

s
&

mggmmg
—i ~4Ln
€0 G~ == O

e
B85
on
] e

‘-J'-I‘-ul"-d.:m
r-Fihetrt:s

2451
2467

2547 .

HEXADECIMAL-DECIMAL CONVERSION

§825438800
5

R
SRR

2252

SPni
BB~

ke i i ol
WE
.
b b il el ki e el ki ks ik ik
F-3
s
E-3

1909

b ki, ki ik il i o, il . ki

SESREE
BREECRRECREREASS

85

3
L]

I3 B D i P

ek ik o
-

832

o8

£838e

3858

B

R —
o] e 0 T
43%“%
ok MmO

e s — s e . Sl k. . i

i
e |
SH3SE

53¢

Pudi i B D RS D
e
BrRhGamms

]
8N
O &

1591

s] =l el e = €T TR D CRCR O
BAABZSEIRANG

282808

e A TR R T
§28%8
L ==

o

75

6

2039

i B2 PO P G e
— ot i i — —k

BRI RS

213
2329
2345

2361
2377

2409
2425
2441

2457

2473 -

2489

2521
2537
2553

88

e B Tl a0 G Gad
E258SGERS

e
38

e by e ek ik ik i el b .
O fe OO RO

Do B

2378

2410
2426
2442
2458
2474

2
26522

‘2554

s iy i i ik ik

S
i B =

[B = SR

s ol i i ek kb ok e e i . k=

1678

s el ki, ke
'HI“‘I"!IE
#MH

O e LR

2556

BB

sl et e s e s s ek ekt ks il

ik i el e b ek 2 i s =k
5555588
o et ERD LD =] =

R p————)
R L8
et

ARIRIEERR

B e D
EEEJEL*UJEGPﬂ-ﬂIﬂEhhﬂdﬂnﬂﬂ

§B32R28RRR8%2

ggmﬂgﬁ
—
W=

488E

§mgnnnaa§§u
- =JiUAL Bha b |
DRSO b o &
— . i s s . ik s e e i el o ki ki

i Ll Ll L Lk v
ganze

§35058585

=

Bos

GEBAE

1631

28BIBBRS

et
it

1967

99992900
Qo0 EEBQE

28

HEXADECIMAL-DECIMAL CONVERSION

0 1 2 3 4 5 <] T 8] A
2560 2561 2582 2564 2585 2568 2567 2568 25688 2570
2578 2577 257B 2579 2680 2681 2582 2583 2oB4 2585
2582 2593 2594 2595 2596 2587 2598 2599 2601 2802

2600 2810 2611 2612 2613 2614 2615 2616 2617 2818
2624 2625 2626 2627 2628 2629 2630 2621 2632 2833 2634
2640 2641 2643 2644 2645 2646 2847 2648 2849 2650
2656 - 2687 2658 2660 26861 2662 2663 2664 2665 2666
2672 2673 2674 2675 2676 2677 2678 2679 680 2681 2882
2689 2690 2691 2692 2603 2694 2605 2696 2697 2698
2704 2705 2706 2707 2709 2710 2711 2712. 27113 2714
2720 2721 2722 2723 2724 2725 2728 2727 2728 2729 2730
2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2748
2752 2753 2754 2758 2757 2758 2759 2780 2761 27g2
2768 2789 2770 21N 2772 2773 2774 2775 2776 2777 2778
2784 2785 2786 2787 2788 2789 2790 27¥1 2792 2793 2794
2800 2801 2802 2803 2804 2806 2808 28089 2810
2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
2832 2833 2834 2835 2838 2839 2840 2841 2842
2848 2849 2850 2851 2852 2853 2854 2855 2856 2B57 2B58
2864 2865 2866 2867 2868 2889 2870 2871 2872 2B73 2874
2880 2881 2882 2883 2884 2885 2886 2887 2889 2880
2896 2897 2898 2899 2900 2901 2902 2903 2004 2805
2012 2813 2914 2915 2816 2917 2918 2919 2920 2927 2922
2028 2929 2930 2931 28933 2034 29 2037
20944 2045 2946 2047 2048 2849 2050 2951 2952 2953 2954
2060 2961 2962 2963 2064 2065 2068 2067 2969 2970
2976 2077 2978 2979 2980 2981 2982 2983 2984 2986
2992 2093 2004 2005 2096 2007 2098 2000 J000 3001 3002
3008 3009 3010 3011 3012 3013 3014 3015 2016 3017 3018
3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034
2040 3041 3042 3043 3044 3046 3047 3048 3049 3050
J036 3057 3058 3059 J060 3061 3062 3063 3064 3066
3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
3088 3089 3090 30 3092 3093 J096 3097 3098
3104 3105 3106 3107 3108 3109 3110 3111 312 313 314
3120 3121 3122 323 3124 3125 3126 3127 328 129 3130
J136 3137 3138 N30 3140 3141 3142 3143 3144 3145 3146
3162 3153 3154 3155 3156 3157 3158 3159 J160 161 3162
J168 31689 3170 T J172 N7 N4 NTS 378 NTT 78
J184 3185 3186 3187 3188 3188 3190 31N 3192 3193 3194
3200 3200 3202 3203 3204 3205 3206 3208 32089 3210
J216 3217 3e 3219 3220 3221 3222 3223 3224 3225 3228
3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242
3248 3249 3250 3251 3252 3253 3254 3255 J256 3257 3258
3264 3265 3266 3267 3 3269 3270 3271 3272 3273 3274
3280 3281 3282 3283 3284 3285 3287 J288 3289 32390
3296 3297 3288 3299 3300 3301 3302 3303 3304 3305 3308
S22 333 3314 3ns 3316 337 38 3319 3320 A3 3322
3328 3329 3330 3331 3332 3333 3334 3335 3337 3338
G344 3345 33468 3347 3348 3349 3331 3352 3353 3354
3360 3361 3362 3363 3364 3365 3368 3367 3370
3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386
3392 93 3394 33985 3396 3397 3388 3399 3400 3401 3402
3409 3410 3411 3412 3413 3414 3415 3416 3417 3418
3424 3425 3426 3427 3428 3429 3430 343t 3432 3433 3434
3440 3447 3442 3443 3444 3445 3445 3447 3449 3450
456 3457 3458 3450 3460 3461 F463 d464 3465 3466
Jd7d 3473 3474 3475 476 3477 3478 3479 , 3480 3481 3482
3489 3480 349 3402 3493 3494 3405 2496 3497
3504 3505 3506 3507 3510 351 3512 3513 3514
3520 3527 3522 3523 3524 3525 3526 3527 3528 3529. 3530
3536 3537 3538 9 541 3544 3545
952 3554 3555 3556 3557 3558 3559 J560 3561 3582
3568 3569 3570 35N J572 3753 3574 3575 3576 3577 3578
3584 3585 3586 3587 4588 3589 3580 359 3502 3593 3594
3600 3801 3602 3603 3605 3606 3607 3608 3809 3610
. 3616 3617 3618 3619 3620 3621 3622 3623 J624 3625 3656
3632 3633 3635 3636 3637 3639 3640 3841 3642
3648 3649 3650 3651 3652 3653 3654 3655 J656 3657 3658
JE64 3665 JE6T JE68 J669 36T0 3671 672 3673 3674
3680 3681 3682 3683 3684 3E85 3EBE 36B7 < |
J696 3697 3698 3700 3701 3702 3703 3704 3705 3706
3r12 3713 3714 3715 3arie 3717 378 3719 ara0 ava1 avee
728 3729 3730 3ty 3732 3733 3734 3735 3736 3737 3738
3744 3745 3746 3T4T J748 3749 3750 3751 ars2 3753 3754
3760 3761 3ITE2 3763 3764 3765 3766 3767 3768 3769 3770
© 376 3TT¥ aTre 3779 3780 3781 372 3783 3784 3785 37E6
3792 3793 3794 95 796 3707 3798 3799 3800 3801 3802
3808 3809 3810 3811 3812 3813 23814 3815 3818 3817 3B18
3824 3825 3826 3827 3828 3829 3830 38N 3832 3834
106

0
FOO 3840
F10 3856
F20 ag72
F30
F40 3904
FS0 3920
FE0 3936
F70 3952
FB0 3968
F30 3984
FAD 4000
FBO 4016
FCO 4032
FOO 4048
FEQ 4084
FFO 4080

4066
4082 4083

HEXADECIMAL-DECIMAL CONVERSION

HEXADECIMAL-DECIMAL INTEGER CONVERSION TABLE

EI1E KADECIMAL

DECIMAL
4098

8192
12288
16384

20480
24576
28672
32768
36864

40960
45056
49152
53248
57344
61440

98304
102400
106496
110592
114688

126976
131072

3847
3879
389

3811
J927

3959
3975

4007
4023
4039
4055
4071
4087

107

o

3gs2 3853 3854 3855
3868 3BE9 2870 38N

3886
3900 3901 2202 3903
3ge 3,17 3818 399
3934

3932 3833 3935
3948 3949 3950 3995
3064 3965 23966 3067

3980 3981 3982 3883

30996 3997 3998 3999

4012 4013 4014 415

4028 4029 4030 4031

4044 4045 4045 4047
4062

4076 4077 4078 4079
4092 4093 4094 4085

390 207 “?‘??F

L I i i 3. 5 R

APPENDIX |
ASCIl CODE CHART

The most common ASCII code values for printed characters are:

DECIMAL VALUE HEX VALUE SYMBOL
32 20 Space
33 21 !
34 22 "
35 23 ' #
36 24 $
37 25 U
38 26 &
39 27 '
40 28 (
4] 29)
432 2A *
43 2B +
44 2C
45 2D -
46 2E .
47 2F /
48 1) @
49 31 1
59 32 2
51 33 3
52 34 4
53 : 35 5
54 36 6
55 37 7
56 38 8
57 39 9
58 A :
59 iB :
of ic <
61 3D =
62 . JE =
63 iF ?
64 40 @
65 4] A
66 42 B
67 43 C
68 ' 44 D
69 435 E
14 46 F
71 47 G
712 48 H
73 49 I
74 4A J
75 4B K

108

14

76
17
78
79
30
81
82
83
34
85
86

87

88

89

99
91
92
93
94
95

4C
4D
4E
4F

P

51
52
33
54
55
56
57
38
59
5A
5B
5C
5D
5E
5F

109

S SN E IOV OZE

APPENDIX J
CHARACTER GRAPHICS AND VIDEO SCREEN LAYOUT

2 %2 5 %5 6 36
|
i
1. ; | 1
;E)
7 37 B8 38 9 $9 10 SA 11 $B 12 $C 13 §D
N
L
| | i
14 %E 15 &F 16 $10 17 %11 18 %12 19 %13

11

21 %15 22 $16 23 $17 24 $18 25 $19 26 $1A 27 $18B

#

28 $1C 29 81D

32 520 33 21 34 $22

"\d

35 $23

42 $2A

49 $31

56 $38

63 &3F

70 %46

|
36 H24

43 $2B

o0 $32

57 $39

64 $40

71 347

37 825

44 32C

21

&

58 $3A

HERN

65 $41

72 $48

38 $26

52 $34

Eu

59 $3B

| ENEEN

66 $42

73 549

111

39 %27

a0 $28

46 $2E

47 $2F

93 §35

67 543

61 $3D

-

74 B4A

68 544

75 534B

48 $3p

55 $37

|l |

62 $3E

69 $45

76 $4C

77 $4D
84 554

C

B

"
ek

91 %5
98 $62

I N

]
@5 $69

112 %70

78 B4E

B85 §55

92 $5C

-

99 $63

-

106 3$6A

79 $4F

80 $50

87 857

94 $S5E

81 $51

88 558

89 359

11

90 $5A

95 $5F

[

|

101 $65

107 36B

113 $71

114 %72

108 $6C

Ll

192 $66

i

109 $6D

115 §73

112

116 $74

97 $61

11111

103 $67

110 $6E

104 $68

L1

111 $6F

1]

L1

117 %75

i

118 §76

119 §77

126 S$7E

133 85

140 $8C

147 $93

154 $OA

[L]

120 %78

et

127 57F

134 $86

141 "$8D

121 $79

128 %80

135 3887

142 3$8E

148 594

155 $9B

149 $95

156 $9C

122 $7A

129 581

136 $88

143 $8F

150 $96

157 $8D

113

L

123 §7B

130 %82

137 3§89

144 $90

Fd -
| P
T

151 $97

158 $9E

124 $7C

131 %83

138 $8A

145 391

152 398

159 3$9F

1256 §&7D

132 $84

139 $8B

146 $92

153 $99

160 $AQ

161 $A1

168 $A8

175 $AF

182 3BE

189 $BD

fhee

196 $C4

162 $A2

176 $BO

183 $B7

I

190 $BE

197 $C5

[P ET1]
163 $A3

170 SAA

177 $B1

184 §B8

i

198 $C6

164 3$A4

= 11 1]
L |

185 $B9

192 3CQ

199" $C7

114

165 BAS

]

P B

172 SAC

186 $BA

193 $C1

166 B$A6

173 $AD

180 3$B4

187 $BB

194 3$C2

201 $C9

167 $A7

181 $BS

188 $BC

195 $C3

202 $CA

210 $D2

217 $D9

224 $EO

‘231 BET

238 S$EE

204 $CC

211 3D3

218 3DA

|

225 3E1

232 GE8

239 S$EF

205 $CD

i
212 D4

219 3DB

226 $E2

1 o

240 SFO

206 $CE

213 $D5

220 $DC

227 $E3

234 SEA

L1

241 $F1

115

214 $D6

g

=

221 $DD

228 SE4

235 3EB

242 §F2

215 $D7 216 $D8

—

- oy

222 $DE 223 3DF

229 $ES

230 9$E6

236 $BEC 237 $ED -

243 5F3 244 FF4

245 $F5 |

L1

246 §F6

111

252 $FC

253 $FD

K

247 SF7

254 SFE

248 $F8

L1

'

255 §FF

116

249 $F9

250

SFA

251 BSFB

HEX

DeCa

D740
D780
D7CP

DEC +@

+5

+ 10

+15 + 20

+25

53248 [

53312

53376

53440

\ |

53504

53568

53632

53696

\

DEC +0

+10

+10

+15 + 20

Video Map (3232 Format)

+30 +40

+25

+30

+60

53248

53312

+10

+20

+30 + 40

Video Map (32 64 Format)

117

+50

+60

54751
24815

54943

5071
55135
55199

DEC

53311
53375

53567

53631 -

53759
53823
53887
533851
54015

54143
54207
54271

24527
54591

54719
54783
54847
54811
54975

55103
55167
55231

HEX

D@1F
D@sF

D@DF
D11F
D15F
D19F
D1DF
D21F
D25F
D29F

D31F

HEX

DOaF
D@7F

D13F
D17F

D1BF
D1FF

D27F
D2BF
D2FF

D37F
D3BF
D3FF
D43F
D47F
D4BF
D4FF
DS3F
DSTF
DSBF
DSFF
DB3F
DE7F
D&BF

D73F
D77TF
D7YBF
D7FF

APPENDIX K

0S-65D USER’S GUIDE

This section is intended to be used as a quick reference guide only for complete details on 0S-65D please refer to

the 0S-65D User’s Manual.

COMMANDS

ASM

BASIC
CALL NNNN=TT.S

DIR NN
EM

EXAM NNNN=TT

GO NNNN
HOME

INIT

INITTT
IO NN,MM

10 MM

IO NN

LOAD FILNAM
LOAD TT

MEM NNNNMMMM

PUT FILNAM

PUTTT

RET ASM

RET BAS

RET EM"

RET MON

SAVE TT,5=NNNN/P

Load the assembler and extended monitor. Transfer control to the:"
assembler.

Load BASIC and transfer control to it.

Load contents of track, “"TT"" sector, **S™ to memory location
ENNNNT.

Print sector map directory of track “*NN".

Load the assembler and extended monitor. Transfer control to the
extended monitor.

Examine track. Load entire track contents, including formatting
formation, into location “NNNN™,

Transfer Control <GO> to location “NNNN".

Reset track count to zero and home the current drive's head to track
ZEero,

Initialize the entire disk, i.e., erase the entire diskette (except track #) -
and write new formatting information on each track.

Same as “‘INIT”", but only operates on track ““TT"".

Ehange:sl the input 1/0 distributor flag to *‘NN”’, and the output flag to
i.l.MM'l'l.

Changes only the output flag.

Changes only the input f.lag

Loads named sﬁurﬂe file, “FILNAM™ into 'rﬁemnry.

Loads source file into memory given starting track number *TT".

Sets the memory [/O device input pointer to ““NININN", and the output
pointer to “MMMM™, '

Saves source file in memory on the named disk file “FILNAM.”
Saves source file in memory on track *“TT", and following tracks.
Restart the assembler.

Restart BASIC.

Restart the Extended Monitor.

Restart the Prom.Monitor [viﬁ RST vector).

Save memory from location *“NNNN on track ““TT" sector *‘S™ for
“P*" pages.

118

SELECT X Select disk drive, X"~ where “*X"" can be, A. B, C, or D. Select
enables the requested drive and homes the head to track §.

XQT FILNAM Load the hle, “FILNAM™ as if it were a source file, and transfer
control to location $327E.

NOTE:
—Only the first 2 characters are used in recognizing a command, The rest up to the blank are ignored.
—The line input buffer can only hold 18 characters including the return.
—The DOS can be reentered at 9543 ($2547).
—File names must start with an “A” to “*Z" and can be only 6 characters long.
—The dictionary is always maintained on disk. This permits the interchange of diskettes.
—The following control keys are valid:

CONTROL — Q continue output from a CONTROL-S
CONTROL — 5 stop output to the console

CONTROL — U delete entire line as input

BACKARROW delete the last character typed.

SHIFT — O delete the lasl character (polled keyboards)

- ERROR NUMBERS

I —Can’t read sector (parity error).
2—Can’t write sector (reread error).
J—Track zero is write protected against that operation.

4—Diskette is write protected.

. -5—Seek error (track header doesn’t match track).
~ 6—Drive not ready.

- 7—S8yntax error in command line.

8—Bad track number,

9—Can’t find track header within one rev of d-iskeue,
A—Can’t find the sector before the one requested.
B—Bad sector length value.

C—Can’t find that name in directory.
D—Read/Write attempted past end of named file!

MEMORY ALLOCATION

PPPP— 22FF BASIC or Assembler/Extended Monitor
2200—22FE Cold start initialization on boot

2300 —265B [nput/Output handlers

265C—2A4A Floppy disk drivers

2A4B—2E78 05-65D V3.9 Operating system kernel
2E79-2F78 Directory buffer

2F79—3178 Page 9/1 swap buffer

119

31793278 DOS extensions
- 3279—327D Source file header

327E— Source File -

DISKETTE ALLOCATION

g—1 0S-65D V3. N bootstrap-loads to $22@0 for 8 pages). |
2—6 9-1/2 Digit Microsoft BASIC. |

7-9 Assembler-Editor (if present)

10-11 Extended Monitor (if present)

12 Sector 1 —Directory, page 1.

Sector 2—Direclory, page 2.
Sector 3—BASIC overlays.
Sector 4—GET/PUT overlays.

13 Track®/Copier utility (loads to $8200 for 5 pages).
14—38 User programs and OS-65D utility BASIC programs.
39 Compare routine, on some disks only.

I/0 FLAG BIT SETTINGS
INPUT:

Bit @— ACIA on CPU board (terminal).

Bit 1—Keyboard on 549 board.

Bit 2—UART on 55@ board.

Bit 3—NULL.

Bit 4—Memory input (auto incrementing).

Bit 5—Memory buffered disk input.

Bit 6—Memory buffered disk input.

Bit 7— 550 board ACIA input. As selected by index at location $2323 (8995 decimal).
OUTPUT:

Bit @—ACIA on CPU board (terminal).

- Bit 1=Video output on Sﬂ board.

Bit 2—UART on 550 board.

Bit 3—Line printer interface.

Bit 4—Memory output (auto incrementing).

Bit 5—Memory buffered disk output.

Bit 6—Memory buffered disk output.

Bit 7—55@ board ACIA output. As selected by index.

120

9 DIGIT BASIC EXTENSIONS
INPUT # (DEVICE NUMBER)

INPUT “TEXT";# (DEVICE NUMBER)

PRINT # (DEVICE NUMBER):
LIST # (DEVICE NUMBER)

WHERE (DEVICE NUMBER) FOR OUTPUT IS:

1—ACIA terminal

2—540 video terminal

3—550 ACIA UART port

4—Line printer

3—Memory output

6—Memory buffered disk output (bit 5).
7—Memory buffered disk output (bit 6).
8—550 ACIA output

9—Null output

(DEVICE NUMBER) FOR INPUT IS:

1 —-ACIA terminal

2—=540 keyboard

3—=550 ACIA UART port

4—Null device

5—Memory input

6—Memory buffered disk input (bit 5).
7—Memory buffered disk input (bit 6).
8—550 ACIA input

9—Null Input

EXIT
RUN (STRING)

DISK ! (STRING)

DISK OPEN, {DEVICE), (STRING)

DISK CLOSE, (DEVICE)

DISK GET, (RECORD NUMBER)

(input is set to new device, output is set to null device. If
device number > 3, null inputs are ignored.

(print “TEXT"" at current output device, then function as
above).

(print output for this command at new device).

(list program or segments of program to new device).

Exit to 0OS-65D V3. N

Load and run file with name in (STRING).

Send (STRING) to 08-65D V3. N as a command line.

Open sequential access disk file with file name,
(STRING) using memory buffered disk 1/0 distributor
device number 6 or 7. Reads first track of file to memory
and sets up the memory pointers to start of buffer.

Forces a disk write of the current buffer contents to cur-
rent track. .

Using last file opened on the LUN (logical unit number) 6
device, a calculated track is read into memory. Where that
track is: INT (REC.NUM)/24+base track given in last
open command. .

121

DISK PUT ' It also sets both memory pointers to: 128*(REC. NUM.)
' —INT(REC. NUM.)}/24)) +base buffer address for LUN
6 device. Write device 6 buffer out to disk. The effect is

the same as a “‘DISK CLOSE,6".

EXTENSIONS TO ASSEMBLER

For more details refer to the OSI Assembler Editor and Extended Monitor Reference Manual.

E Exit to 0S-65D V3i.N

H{HEX NUM) | Set high memory limit to (HEX NUM).

M(HEX NUM) Set memory offset for A3 assembly to (HEX NUM).

I{CMD LINE) Send (CMD LINE) to 0S8-65D V3 as a command to be executed and
then return to assembler.

CONTROL-I Tab 8 spaces. Also:

CONTROL-U 7 spaces.
CONTROL-Y 6 spaces.
CONTROL-T "~ 5 spaces.
CONTROL-R 4 spaces.
CONTROL-E 3 spaces.
CONTROL-C Abort current operation.

EXTENDED MONITOR

For more details refer to the OS] Assembler Editor and Extended Monitor Reference Manual.

ITEXT Send “TEXT" to 08-65D V3 as a command.
@NNNN Open memory location **NNNN" for examination.
Subcommands:

LF—0Open next location.

CR —Close location.

DD —Place “*DD" into location.
' —Print ASCII value of location.
/—Reopen location.
Uparrow—Open previous location.

A ' Print AC from breakpoint.

BN, LLLL Place breakpoint **N°* (1-8) at location, “LLLL™.

|+ Continue from last breakpoint.

DNNNNMMMM Dump memory from ‘“NNNN" to “MMMM™.

EN - Eliminate breakpoint ““N’".

EXIT Exit to 0OS-65D V3. N _ .
FNNNNMMMM=DD Fill memory from ““NNNN"" to *“MMMM™ —1 with DD
GNNNN Transfer control to location ““NNNN",

122

HNNNN,MMMM(OP) -

I

K

L
MNNNN=MMMM,LLLL

NHEX)NNNN,MMMM

O

=)
QNNNN

RMMMM=NNNN,LLLL
SMMMM,NNNN

T

V

WTEXT) MMMM,NNNN

X
Y

Hexadecimal calculator prints result of “NNNN"(OP)*MMMM”’
where (OP) is + = * /.

Print break information for last breakpoint.
Print stack pointer from breakpoint.
Load memory from cassette.

Move memory block “*MMMM" to **LLLL"™ — 1 to location ""NNNN"
and up in memory.

‘Search for string of b:.rtés “HEX" (1-4) between memory location
*NNNN" and “MMMM™-1.

Print overflow/remainder from hex calculator.
Print processor status word from breakpoint,

Disassemble 23 lines from location “*“NNNN". A linefeed continues
disassembly for 23 more.

IReIucat& “NNNN" to “LLLL" -1 to location “MMMM"
Save memory block, “MMMM?™ to “NNNN"—1 on cassette.
Print breakpoint table.

View contents of cassette.

Search for ASCII string “TEXT" between “MMMM"" and
HNNNNT—1

Print X index register from last break.

Print Y index register from last break.

NOTE: All commands are line buffered by OS-65D. Thus only 18 characters per line are allnwed and CONTROL-U

and BACKARROW apply.

SOURCE FILE FORMAT

RELATIVE DISK
ADDRESS

@
1
2
3
4
5

and on . . .

DIRECTORY FORMAT

MEMORY

ADDRESS USAGE

$3279 Source start (low)
$327A Source start (high)
$327B Source end (low)
$327C Source end (high)
$327D Number of tracks req.
$327and on.. Source text

Two sectors (1 and 2) on track 12 hold the directory information. Each entry requires 8 bytes. Thus there are a
total of 64 entries between the two sectors. The entries are formatted as follows:

P-5 ASCII 6 character name of file
6 BCD first track of file
7 BCD last track of file (included in file).

123

TRACK FORMATTING

The remaining tracks are formatted as t‘-:::lluws:'
— 10 millisecond delay. after the index hple
— a 2 byte track start code, $43 $57
— BCD track number
— a track type code, always a $58

" There can be any mixture of various length sectors hereafter. The total page count cannot exceed 8 pages if more

than one sector is on any given track.
—Each sector is written in the following format:

—previous sector length (4 if none before) times 88@ microseconds of delay
—sector start code, $76

—seclor number in binary

—sector length in binary

—sector data

DISKETTE COPIER

The diskette copy utility is found on -track 13, sector 1. It should be loaded into location 20 with a *‘CA
@20@=13,1. To start it, type “G@ §209"". To select the copier lype a **1"". Destination disks must be initialized prior
to copying. .

TRACK @ READ/WRITE UTILITY

~ This utility permits the reading.nt‘ data on track @ an}r'ﬁfhere into memory. .ﬂ_u'lsu the capability is available to write
any block of memory to track @ specifying a load address and page count. The track zero format is as follows:

— 1P millisecond delay after the index hole
—the load address of the track in high-low form

—the page count of how much data is on track zero

124

APPENDIX L
MACHINE MONITOR, 65V

The machine monitor provides a simple way to examine and modify memory contents. Data or programs are
entered using hexadecimal (base 16) notation. Programs must be entered in machine code using hexadecimal nota-
tion. A thorough treatment of the Machine Monitor and its uses is found in OSI's 65V Primer.

The machine monitor provides a simple command structure. The machine mnmmr is entered after typing
<BREAK> when the C4P gives the prompt

H/D/M?
- Then type
M

—

The machine then responds with
DODD XX

where XX are two hexadecimal characters. The mmputer is now in the machine monitor mode dmpla:-,rmg the con-
tents of location 0P
To load a given location (address) with data or program, type a period:

-~

This will select the addressing mode. If the machine were already in the addressing mode, it will remain in the

addressing mode. Now type the desired address. If an entry error is made, reentering the address will remnvg the old

value.
To enter data into the selected memory location, A transfer to the data entry mode is required. This is done by

typing a slash:
/

e —

Data may now be entered as two hexadecimal characters. As in the address mode, an incorrect entry can be cor-
rected by typing the correct value. To increment to the next sequential location, press

<RETURN=>

Upon completion of loading, the program may be executed at its starting address (for illustration, hexadecimal
address §200); type the starting address and then the Letter **G™ as

D200G

(The period entry caused a return to the address mode.) The program will start executing. {The machine monitor
goes to @200 to start.) -

ILLUSTRATION

Load a program which places grahics character 250 (hexadecimal FA) into mid video screen location 54320 {Hﬁx-
adecimal D43@) — An assembly language program and its machine code would be

HEX LOCATION MACHINE CODE ASSEMBLY CODE COMMENT .

D200 A9 FA is symbol for
LDA #3%FA eastward tank
P2 FA
@202 8D

125

—— e . o

HEX LOCATION = MACHINE CODE ASSEMBLY CODE COMMENT

D203
D204
D205
0206
D207
D208

30 STA $D430 ~ Tank to midscreen
D4 |

EA . NOP |

4C ' : JMP 30205 Jump back to NOP
@5

@2

This program should place an eastward point tank (character 25@) near mid video screen. The machine monitor in-
structions would be ' '

Al this point, the tank should appear mid video screen.

<BREAK>
0200

/A9 <RETURN=
FA <RETURN>
8D <RETU RN>
3p <RETURN>
D4 <RETURN>
EA <RETURN>
4C <RETURN>
@5 .::HETUFIN:-;
@2 <RETURN>

D200G

=

For the cassetle user, the command L permits loading program from cassette. Upon typing L, all ASCH com-

mands are accepted from the audio cassette rather than the keyboard. Cassettes are prepared with a aulo-loading

program at their beginning. Examples of this are the Extended Machine Code Monitor cassette and the Assembler/
Editor casseite. When the program is loaded, the cassetie playback unit may be rewound and turned off.
In summary, the Machine Monitor commands are

/—Use Data Mode
.—Use Address Mode
G —Start execution at the address presently displayed on video screen.

L—Transfer control to the audio casette.

Some of the hexadecimal locations which the Machine Monitor uses are

FE@M)—Start of Monitor (restart location)

FEQC — Restart with clear video screen, other Machine Monitor parameters unchanged
FE43—Entry into Address Mode, with initialization bypassed

FE77—Entry into Data Mode, with initialization bypassed

These entry points may be useful to incorporate into other programs.

A more comprehensive discussion of the 65V Monitor is included in the 65V Primer, OSI'’s introduction to 6502
assembler coding. ' :

126

R VS -

~ APPENDIX M
USR(X) ROUTINE

The speed of machine code execution can be combined with the simplicity of BASIC by using the USR(X) func-
tion. The linking of machine code and BASIC programs is accomplished by the single BASIC statement

X=USR(X)

The USR(X) function permits leaving the BASIC program, execuling a machine language routine, and then re-
turning to the original BASIC program. To call the USR(X) routine in BASIC, a pointer to the location of the
USR(X) routine must have been stored. In disk BASIC, these pointers are at 22FC hexadecimal (8956 decimal) lor
the low half of the hexadecimal address and 22FB hexadecimal (8955 decimal) for the high half of the hexadecimal
address.

Cassette based C-4P systems, using BASIC-in-ROM, use @#@@B hexadecimal (11 decimal) and @@PC hexadecimal
(12 decimal) to store the low and high half of the USR(X) routine address, respectively.

Typically, the operator will want to protect the machine language (code) program by placing it in high memory. If
BASIC's “*end of memory™” pointer is moved to a value at least two pages (512 decimal words) down from the physi-
cal value of **‘end of memory,” this memory area can be saved from use by any other routine. For example, on a
24K system (24576 decimal, 69P@ hex) these limits would be

24576
- 9512
24064
The equivalent calculation in hex is
6000
— 200
SEQP

Therefore, setting SEPP hex as “‘end of memory™ will give a 512 byle clear region for calculations. This **end of
memory'" value should be stored with the high order two hex digits in location 2308 hex (8966 decimal) i.e., POKE
8960,94.

Since the “‘end of memory™ value will need to be stored with a POKE command in BASIC, first convert SE@) hex
to 9409 decimal.

5E Da hexadecimal
94 @p decimal +

Since the address of end of memory requires two bytes for storage, two POKEs are necessary. The POKE command
requires decimal values as operands. Therefore, each half of the hex address must be converted inlo decimal, one
half at a time. Conversion was accomplished by looking up the decimal conversion in the table provided in the ap-
. pendix. The high order hex equivalent digits are stored by

POKE 8960 , 94 .

end of memory pointer high memory boundary

The lower half of the *‘end of memory™ is assumed al the page end (P9).

Next, choose the lower end of this now protected memory (above the official *‘end of memory™) to store the
USR(X) routine. Place the address of USR(X) in the location pointer to where BASIC expects the USR(X) address.
The address of USR(X) can be loaded by using POKEs. The two address parts of USR(X) can be POKEd into the

127

location which stores USR(X)'s address by
POKE 895500 = REM—LOW BYTE OF USR(X) ADDRESS
POKE 895694 = REM—HI BYTE OF USR(X) ADDRESS
REM INTO USR(X) POINTER

Now a program, USR (X), needs to be written to be stored in memory starting at SEQ® hex (24064 decimal). Please
note that this last decimal value is the result of converting all four hex digits of SE@@ at one time, rather than finding
the decimal equivalent of each half of the address. The earlier conversions of ha]t" of the address were for storage
convenience, and were not for evaluating the whole address value.

EXAMPLE: A SCREEN CLEARING ROUTINE

To illustrate the USR(X) routine, a routine to clear the CRT terminal screen will be written. The letter “* A" will
be placed at each screen position, sequentially to illustrate the speed of this routine. Of course, replacing the letter
“A’" with the symbol for a blank would produce a general screen clearing. This program is described by a flow chart
in Fig. 29 which is reduced to assembly language in Fig. 28 and restated without comments to show sequential loca-
tions in Fig. 30. In this example, the last statement is an RTS (return from subroutine), which returns from lhE sub-
routing to the calling BASIC program.

In the example, the 6502 microprocessor’s accumulator will be used as the register for data transfer. The X-regis-
ter and the Y-register will be used as counter registers. This usage will be economical in terms of data transfer time,
since the accumulator is the central point for transfer purposes. The X- and Y-registers are serviced with increment
and decrement commands to aid counting operations.

HEX DECIMAL MACHINE ASSEMBLER
LOCATION LOCATION CODE CODE COMMENT

*=35E09 Set program counter on SE@@
SEAP 24064 A9 4] — LDA #3841 Load accumulator with ASCII A

Sy el e 2%
SE@2 24966 AP P8— Load page count
SE@4 24068 A2 pPp— LDX #5300 Load column counter at zero
SE@6 24070 9D @@ D9 STASD@@A. X Store A’ at each screen position
SEP9 24973 E§— — INX . Increment column on screen
SEPA 24974 DP FA— BNG $5E@6 If columns not complete, loop to store “A™
' again
: et .
SEPC 24076 EE 98 SE INC $5E08 if columns complete, increment
page (4 line) counter
SEBF 24979 88— — DEY ‘ .Decrement page count
27
SE19 24080 D@ F4 : BNG $5E@6 . If not complele page count,
loop to store A’ again
,6&‘ Eel VIE 262
SE12 24082 A9 DPp— LDA #5D@ If page complete, then reset
_ screen address
ey

5E14 24084 8D @8 5E STA $SE@8 Restore operand of page count

S5E17 2487 60— — RTS Go back to calling program
Fig. 28 Screen Clearing Assembly Language o

128
= SIRRTING ADDRESS

5l

LOCATION SEPD HEX

PUT LETTER
A" IN
ACCUMULATOR

PUT PAGE
COUNT INTO
¥ REGISTER

L

PUT COLUMN
COUNT TO ZERD
IN X REGISTER

i

HOT
EQUAL

NOT
EQUAL ZERD

STORE LETTER "A” WHICH
IS IN ACCUMULATOR AT

{SCREEN) ADDRESS =

CONTENTS OF X REGISTER

CONSTANT {D00g)

1

INMCREMENT
X VALUE BY 1
fie x=x+1)

IF
COUNT OF
COLUMNS IN X 15
NOT UPTO

INCREMENT
¥ REGISTER
{PAGE COUNTER)

INCREMENT
¥ BY 1
lig, Ye=¥Y—1)

IF ¥ COLNT

EQUAL ZERD

IS NOT ZERO

LOAD ACCUMULATOR
WITH STARTING
HIGH ADDRESS
OF SCREEN

i

Fig. 29 Flow Chart (Screen Clearing Routine)

129

- MACHINE CODE MACHINE CODE

HEX LOCATION DECIMAL LOCATION (HEXADECIMAL) (DECIMAL)
SE@D 2464 A9 169
SEQI 24065 4l 65
SE@2 24066 AP 169
SE@3 24p67 P8 g8 Y
SE@4 24968 A2 162
SEQS 24069 o 9
SEP6 24079 9D 15T
SEQT 24071 00 0
SEQ8 24072 DY . 208 30
SEQ9 24073 ES 232
SEPA 24074 | D@ 208
SE@B 24075 FA 250
SERC 24076 . - - EE 238
SEQD 24077 p8 8
SEPE 24078 SE 94
SEQF 24979 . 88 - 136
SEID 24080 D@ 208
SEI 2481 F4 244
SE12 24082 A9 169
SE13 24083) 08 32
SEl4 24084 N 8D 141
SEIS 24085 98 3
SE16 24086 SE 94
SEI7 24087 60 96

Fig. 30 Screen Clearing Assembly Language Showing Sequential Locations

By converting the hexadecimal machine code into decimal values, the code can be POKEd into the desired
memory locations. This is a handy method to enter machine code routines while in BASIC. A BASIC program Lo
store this machine code at the required locations is

5 REM CLEAR SCREEN FROGRAM . i
1@ RESTORE : REM SETS START OF DATA LIST
. 29 P=24064 : REM START AT 5E@P HEX
30 FOR I=1TO 24
40 READ M : POKE P.M
5&! P=P+I|
60 NEXT |
70 DATA 169,65,160,8,162
80 DATA 0,157,0,208,232
99 DATA 208,250,238,8,94
100 DATA 136,208,244,169,208
110 DATA 141,8,94,96
120 END
RUN <RETURN>

130

Running this program places the desired machine code:routine in memory. Now exit from BASIC by typing

EXIT <RETURN>

At this time, the machine code routine can be SAVEd in high memory on disk. For example, use track 39 of the
disk, starting at sector 1, and respond to the prompt

Al
with
SAVE 39,1=5E00/1 <RETURN>=

This saves the program located at SE@@ hexadecimal, starting on track 39 at sector | for 1 page {256 bytes). This pro-
gram can be reloaded from disk by responding to the prompl '

Ai
with
CALL 5E@QQ=2391

The machine code routine would thus be read off track 39, sector 1 into RAM at SE@@. This screen clearing routine
may be run as follows, reloading the program under BASIC. This reloading under BASIC may be done by typing

DISK!"CALL SE@Q=39,1"
Therefore the BASIC program segment

9P POKE 8955,0 : POKE 8956,94: REM SET USR(X) ENTRY POINT

1@0 DISK!“CALL SE@@=239,1" : REM USR(X) STORED EARLY IN PROGRAM

1000 X=USR(X): REM SCREEN CLEARING ROUTINE INVOKED

including USR (X), would provide a screen clear at a far faster rate than possible with the BASIC program.
An additional feature of USR(X) is the ability to transfer parameters between a BASIC program and a machine

language program.

PASSING PARAMETERS

The machine language routine begins by calling a routine the starting address of which is a $3#@@6. This routine
converts the argument X into a 16 bit two's complement number which is then stored. The storage location of this
number depends upon the BASIC used, as follows:

HIGH BYTE LOW BYTE BASIC USED
SPRAE $OPAF ROM BASIC
SPPB1 $PaB2 65D
The value of X is now available for the machine language routine.

- The machine language routine ends by placing the value to be returned to the BASIC prngram in the accumulator
(high byte) and the Y register (low byte); then calling a subroutine that starts at $#@@8. This subroutine will pass the
value to the BASIC program as USR(X) and then return control to the BASIC program.

131

EXAMPLE

An example is given in this section of a program in 65D BASIC and a machine language routine that are linked by
and have parameters passed by the USR function. In the example, the argument of the USR f unction is an integer H
between @ and 255. The value of H is passed to the machine language routine which then returns as USR (H) the
number of times the character whose ASCII value is H appears on the video screen.

The BASIC program:
1@ POKE 574,0
20 POKE 575,64
30 INPUT “ENTER CHARACTER";A$

40 H=ASC(A%)
50 N=USR(H)
60 PRINT N
70 END
The machine language routine:

10 .passing parameters to USR function

20 K=USRI(C)

30 .C=character number @<=C<=255

40 ;K=count of how many times the character

50 , appears on the screen 60

D 3FFC *=33FFC

80 3FFC 6C0600 CALL JMP (6)

o0
100 4000 JSR CALL
1190 4000 20FC3F START JSR CALL integerize C
170 4003 ASB2 LDA $B2 the result
180 4005 A2D0 LDX #$D0
199 4007 BE1949 STX COMP+2 screen addr (hi)
200 400A A200 LDX #@
210 400C 8E1840 STX Comp+1 screen addr (lo)
220 4A(QQF BE3649 STX COUNT)
230 4012 BE37490 STX COUNT +1 initialize counter
240 49015 AQD8 LDY #8 - this many pageé per screen
250 4017 DDFFFF COMP CMP $FFFF.X : dummy address
260 401A DD@8 BNE END
2790 401C EE3740 INC COUNT+1 | count it
280 401F DPP3 BNE END .
200 4021 EE3640 INC COUNT | do this if o half rolls over

132

300 4024 E8 END' INX

310 4925 DOFO 'BNE COMP

320 4027 EE1940 ~ INC COMP+2

33p 402A 88 | DEY

340 4028 DPEA BNE COMP
350 4@2D AD3640 LDA COUNT

360 403D AC3740 LDY COUNT+1

379 4P33 6CO8P0 JMP (8)

380 4036 09 COUNT BYTE 00

380 4041 00

These two programs can be combined into the following one; the machine language routine is directly POKED into
memory after converting each hex instruction to its decimal equivalent. '

2FOR =P TO 2
AREADV
6 POKE 163801V
8 NEXT
1@ FOR I=@ TO 55 . e 3 .
20 READ V
30 POKE 16384+1V
49 NEXT
50 POKE 574,0
60 POKE 57564
70 INPUT“ENTER CHARACTER";A$
80 H=ASC(A$3)
99 N=USR(H)
100 PRINT N
110 DATA 10860
120 DATA 32,252,63,165,178,162,208
130 DATA 142,2564,162,0,142,24,64
14 DATA 142,54,64,142,55,64,160,8
150 DATA 221,255,255,208,8,238,55
160 DATA 64,208,3,238,54,64,232,208
170 DATA 240,238,25,64,136,208,234
180 DATA 173,54,64,172,55,64
190 DATA 1088000

133

bl G i oA

USING THE ASSEMBLER '

The preceding USR(X) program was shown in Assembly language. The C4P system supports an assembler. The
Assembler/Editor could have been used for creating the program module which was SAVEd on disk.

To use the Assembler/Editor, boot up the system. Once in BASIC, request (after the OK prompt)
EXIT <RETURN=>
Type (after the operating system prompts, shown uﬁderiinéd]
A" ASM <RETURN-=

to get the Assembler, and enter the i::mgram (the same USR(X) program as before) after the Assembler prompt.

10.* =$5E00

20 LDA # $41

30 LDY #$08

40 LDX #$00

50 STA $DOOP,X

60 INX

.70 BNE $5E06 | | -
80 INC $5E08 | |
9P DEY

190 BNE $5E06

110 LDA #3D@

120 STA $5E08

130 RTS

A

The Assembler file will assemble the program and store it at SE@@ hexadecimal (24964 decimal), The machine code
program has again been stored in memory at SEP® hexadecimal.

At this point, the use of the operating system to SAVE the program on disk would be the same as shown in the
previous section, i.e., typing

SAVE 39,1=5EP@1 <RETURN>

~would place the machine code on disk. Running the previous BASIC program segment

9p POKE 89550 : POKE 8956,94
10® DISK!“CALL SE@P=39,1"
1000 X=USR(X) ‘
RUN

will result in the same screen clearing routine to be run. _

The Assembly language listing provided the machine code needed for the USR(X) loading. Even if the Assem-
bler is not used to create the USR (X) program module, the extensive editing routines of the Assembler/Editor en-
courage its use.

Note, for more detail on the Assembler/Editor see the Ohio Scientific Assembler/Editor Manual.
Finally, an often used USR(X) routine to color the video background is given. This illustrates the brevity and

simplicity of USR(X).

134

Example: Color Background N
This BASIC program sets up an ASSEMBLER subroutine under the USR (X) function. The subroutine changes

the background color of the entire screen. Note, if a disk system is not used then the BASIC code; DISK!**CA
4FDO=136,1""; must be removed from the program.

To save the assembler program (created by, this BASIC program) on disk, type DISK!*‘SA 36,1 =4FDO/1" after
running the program. This will allow the calling of the program from disk in any other BASIC program by the com-
mand DISK!*“CA 4FDO=36,1"" instead of running this BASIC code.

Use the following code in BASIC (after the assembler program is loaded into memory) to execute the assembler
routine. NOTE: this must be done after the subroutine is in memory.

POKEB8955,208: POKE8956,79

This is the high and low addresses to tell the computer where the USR(X) function is located in memory.
POKE 20433, (choice, §-16)

This is choice of color background.

X=USR(X)

This is the BASIC command for jumping to an assembler subroutine specified by the previous POKEs.
100 FOR |=2p432T020473:READ X:POXE IX:NEXT |
200 DATA162,14,169,0,141,242,79,169,224,141,243,79,173,242,79
210 DATA24,105,1,141,242,79,173,243,79,105,0,141,243,79,201,232
220 DATA240,6,142,0,224,76,220,79,96,0,2

Use of this code or the method should increase the versatility of the computer, both in the speed of its response
and the ease of use. B

135

. W ——

~APPENDIX N
EXECUTING A DISK RESIDENT MACHINE
LANGUAGE PROGRAM

To access a desired machine language program, there is an alternative to use of the BASIC routine
X=USR(X)

Assume there is a machine code program stored on a d15k ﬁle named “FILE."” The alternate method is used under
the DOS. The response should be

A* XQT FILE <RETURN=

where FILE is the name of the machine language program on disk (ﬂr it can be the track number where il is stored).
Under BASIC, this is accomplished by

DISK!"XQT FILE"

In order to use the XQT command, however, some computer housekeeping is required first.

The XQT command brings a machine code program from disk and stores it at location 12921 decimal (3279 hex-
adecimal). When the machine code is stored on disk, some housekeeping is done. The first four bytes on the file
used will contain a **header™ which is labeling information provided by the assembler. The next (fifth) byte will
contain how many tracks are to be loaded to contain the program. Then, from the sixth byte to the end of the file,
the machine code, program is stored.

When a machine code file is loaded by the XQT command into memory starting at 12921 decimal (3279 hex-
adecimal), program control will have to skip over the header and track length information and start with the
program stored at 12926 decimal (327E hexadecimal).

The following is a map of how the prcngram is expected Lo appear on disk. A]sn a map of how the file will be stored
In memory.

XQT FILE STORAGE IN MEMORY

I-DEGIMAL HEX

+LOCATION LOCATION CONTENTS
12921 3279
12922 J27A

- 12923 327B File header created by Assembler
12924 327C
12925 327D Number of disk tracks to be loaded
12926 327E "+ Start of first program instruction
12927 : 327F -

136

= — - T —

XQT FILE STORAGE ON DISK

' / DIRECTION OF ROTATION

<
HEADER INFORMATION WRITTEN NUMBER OF TRACKS TO BE
BY THE DOS WHEN THE FILE IS] LOADED. THIS IS LOADED INTO

- ORIGINALLY PUT ON THE DISK. . MEMORY. LOCATION 327D HEX.

With the housekeeping conventions eslablished, start by creating a file called FILE] which will contain an assem-
bly language code. This program has not been converted into machine code yet. The program shown will store the
message “*ANY ASCII CHARACTERS™ at locations D74 hexadecimal (55104 decimal) which is in the lower left
hand side of the video screen. Enter the program as follows

A* ASM <RETURN:=

The computer will reply
0S| 6502 ASSEMBLER

COPYRIGHT 1976 BY OS|
Then enter the assembly language code. ,
19 ‘=$327E { SET ORIGIN

.20 LDX #0 { SYMBOL COUNTER INITIALIZED -
_3pLBL1 LDA MSGX I

. 40 BEQLBL2

. 50 STA $D740,X

. 60 INX

.79 BNE LBL1

. 80 LBL2 JMP LBL2
. 99 MSG BYTE 'ANY ASCII CHARACTERS'

- 10D BYTE D
. 110 END
This can be étﬂred in the previously created file—FILE]—by typing
IPUT FILE1

When this file is already on disk it could be recalled by typing
ILOAD FILE1

In either case, the source program is not yet ready to be assembled, i.e., converted into machine code. When it IS
converted to machine code, the assembled (converted machine code) program will be stored at a location (address)

137

2009 hexadecimal bytes displaced from the assembly language program. A memory displacement or offset,
arbitrarily chosen here as 2009 hexadecimal (valid for 24K machines), must be established in order 1o be within
memory available and above the region needed by the assembler program, by typing

M2009

and then
A3

The Assembler/Editor will now assemble the program and leave it at a location offset by 200@ hexadecimal from the
intended program origin. Now exit the assembler by typing

EXIT

The assembled (machine code) program should now be placed at the final destination of 327E hexadecimal, which
is where the XQT command will place the first machine code program step. The Extended Monitor provides the
means of relocating the program from location offset by 2000 hex above the destination of 327E. The previously
used region (327E hex and up) is no longer needed by the Assembler/Editor.

To invoke the extended monitor from the DOS type

-E_"H' . .
The extended monitor prompt is a colon. Type
. M 327E=527E,5298

The difference between the first two numbers is the offset value previously used. The last number is one more than
the last memory location required, all in hexadecimal. The Assembler/Editor provides the address of each instruc-
tion in the listing. By subtracting the last address from the first address in the listing, the hexadecimal length of the
machine code (not including the last instruction) can be calculated. Shorter programs, of course, would require less
memory. L Te L :

The integer number of tracks to store the machine code program needs to be determined. Each disk track can
store 2K bytes of code (length of approximately 2099 decimal).

Since the example is 19 hexadecimal in length (25 decimal), far less than one track is required (even if the five
locations needed for the header are added). The information about the track requirement is put in location 327D by
responding 1o the colon prompt by

. @327D |
The @ symbol is <SHIFT P>, The Extended Monitor permils the storing of data in 327D ﬁ:}.llc:wE‘ng' the prompt
327D/ '
Reply with
21
the nurnl:;‘ (two hexadecimal digits) of tracks required. The next response is -
. EXIT <RETURN> |

In earlier examples in the manual, files (called scratch files) were created for incidental use. Now is the time 1o
use one of those files named “*“SCRTCH"™ to store the machine code program. This machine code program is stored
by responding 1o the prompt ' '

A*wilh PUT FILE2
The XQT command can now be verified by responding to the prompt
A*with XQT FILE2

The message “"ANY ASCll CHARACTERS" should appear on the screen.

The details of this section have been rather involved. By using machine code, the housekeeping responsibilities
within the computer have had to be accepted. In return, considerably faster running programs are obtained. Storage
requirements of the programs are also reduced. If the speed and'compaciness of machine code is needed within the
convenience of BASIC programming, the XQT command may prove worth the demands on the user.

138

APPENDIX O
INDIRECT FILES

The indirect file is an uncommonly powerful mechanism to manipulate and combine separate programs.

The need for the indirect file arises from two characteristics of the operating system. First, in order to do editing,
the editor needs to know where a given stalement resides in memory. When ‘Assembly language programs are
stored. a somewhat compressed form (1okenized) is used 1o save memory. This makes it difficult to know where a
given statement is located in memory. Second, in order to load two BASIC programs (assumed to have compatible
statement numbers), i.e., the same statement numbers haven’t been used in both programs, LhE operating system
would wipe oul the first program when it loaded the second.

These potential problems encourage the placing ofthe ASCII coded text sequentmlly into a single file in memory
(similar to a file on disk). Also, it is desirable (o be able to keep the two loaded modules (programs) together, con-
tiguous, without garbage in between. The disk file handling routines do not give the fine control that the indirect file
does. In an indirect file, the individual characters can be pointed to in a string of text. For these reasons, indirect file
handling has been developed under the 0S8-65D V3.N system. The indirect file provides a method of temporarily
storing ASCII code.

The indirect file is stored in high memory. The address of the indirect file is stored in 9554 (high byte only). The
low halfl of the indirect file address is assumed to be §. For a 24K sysiem, the POKE to store the high address byte is

POKE 9554,80

The high byte of the indirect file address, for different memory cﬂnﬁgumliuns s

Memory Size POKE 9554 with Decimal
24K 8@
32K 96
40K - 112
48K 128

These suggested memory allocations provide a balance between indirect file size and avallahle user work space. In a
24K system, this allocation of memory allows 4K bytes for the indirect files. Additionally, the indirect. file input
address must be POKEd at location 9368 with the same table value. For a 24K system this is

POKE 9368,80

FIRST EXAMPLE: COMBINING TWO PROGRAMS

The goal is to take the first of two programs and temporarily store it in the indirect file. Then it will be desired to
enter a second program into the BASIC work space, but the LOAD command normally causes uverwrmng of the
first-program.

In order 1o avoid overwriling of one program by another, indirect files allow the use of the steps:

F—

. clean out the work space by t}rpi.ng
NEW

enter a program from the keyboard or a disk file
store the newly entered program in an indirect file
clear the work space again. This time, it is done only Lo illustrate that the old program is removed.

enter a new program (with statement numbers that do not cnnﬂn:i with the first program).

o o W e

bring the indirect file back into the work space. Hﬂw I:rmh pmgrdms are in the work space and have been
merged together. .

139

Now to apply these steps in a short example.
The commands to combine two short programs would be

POKE 9554,80 : REM SET INDIRECT FILE OUTPUT FOR 24K SYSTEM
POKE 9368,80 : REM INDIRECT FILE INPUT FOR 24K SYSTEM

The first program is then typed
10 PRINT“TEST1" : REM SHORT EXAMPLE!

The program is translerred to indirect file by typing

LIST <SHIFT K= <RETURN= Note: at the same time pressing
<SHIFT K==

The listing will appear on the video screen and the pru;.,mm will be mnsferred lo the indirect file in upper memory,
Now close the indirect file by Iypmg

SHIFT M<RETURN=> Note: at the same time pressing
<SHIFT M>=]

The symbols
1]

will be displayed, along with an error message
7SN ERROR

which should be ignored.
Typing
NEW

will assure that the program is removed from the BASIC work space.
Now enter the second program

20 PRINT"TEST2"
The command
LIST

will assure that only statement 2@ is in the work space.
Typing

<CONTROL X=

will transfer the indirect file back into the work space. Either the RUN command or the LIST command shows that
both programs are now resident in the BASIC work space.

This example has been extremely shorl. Be cautioned that a large program in the BASIC work space could over-
write the indirect file.

SECOND EXAMPLE: CREATING A BUFFER FOR A BUFFERLESS
PROGRAM

This example illustrates adding a buffer to a previously writlen program which lacked a necessary buffer. The
original program could be loaded from its file, say FILEL, by

DISK!"LO FILE1"

Note: at this point PEEKS could be done 1o verify that no buffer was in front of the program, FILEL. Again, POKE
the indirect file 1/0 addresses for 24K systems

140

POKE 9554.80
POKE 9368,8p

Typing |
LIST <SHIFT K> <RETURN=>
and
<SHIFT M> <RETURN>

writing FILE1 into lhe indirect file and clnsmg that ﬁle
Type

NEW

to remove FILE] from the BASIC work space. Run the program “CHANGE" lo create the needed buffer. Now,
reload FILE1 from the indirect file by typing

<CONTROL X><RETURN:>

The original program with its newly acquired buffer is now resident in the BASIC work space. This program can be
stored with the PUT command back on its original disk file (caution, the program is now larger by the buffer size,
one or two tracks) by

DISK!"PUT FILE1"

This completes the examples. Since the indirect file stores its data as ASCII characters, it may be useful for file
manipulation programs. There is a potential for greater utility than these examples with other &ppllcalmns The
indirect ASCII file is a subtle but powerful tool for experienced programmers.

141

- ———— ———— " —

APPENDIX P
BEXEC*

BEXEC*® is the program which links the operating system and the end user programs. It is run by the operating,
system prior lo turning control of the computer over to the user. BEXEC* typically provides setting critical
parameters, such as specifying the input and output devices, and disabling or enabling certain entries, such as the
<CONTROL C=> entry to permit interrupting user programs. The demonstration disks and the operating system
disks each have a program called BEXEC®. These versions may be used by copying the BEXEC* program for use in
the users program development. However, it will often be desired to set some initial parameter (i.e., POKE some
location) or run some initial program (such as a screen clearing program) prior lo reverting to input to the BASIC
system.

To start with an example of one:
10 REM BASIC EXECUTIVE
20 REM
24 REM SETUP INFLAG & OUFLAG FROM DEFAULT
25 X=PEEK (10950): POKE 8993, X: POKE 8994, X
39 PRINT : PRINT “BASIC EXECUTIVE FOR 0S-65D VERSION 3N : PRINT
49 PRINT
50 GOTO 10@
6@ PRINT : INPUT “FUNCTION";A$
70 IF A$="CHANGE" THEN RUN “CHANGE"
80 IF AS="DIR" THEN RUN "DIR"
99 IF A$="UNLOCK" THEN 10000
100 PRINT
119 PRINT "FUNCTIONS AVAILABLE:"
129 PRINT “CHANGE—ALTER WORKSPACE LIMITS”
130 PRINT “DIR—PRINT DIRECTORY"
149 PRINT “UNLOCK—UNLOCK SYSTEM FROM END USER MODIFICATIONS"
150 GOTO 60
10000 REM
10919 REM UNLOCK SYSTEM
10920 REM
10930 REPLACE “NEW" AND “LIST"
10040 POKE 741, 76 : POKE 750, 78
1050 REM
10P60 REM ENABLE CONTROL—C

142

10070 POKE 2073, 173

10080 REM

10099 REM DISABLE “"REDO FROM START"
10109 POKE 2893, 55 : POKE 2894, 8

19110 PRINT : PRINT “SYSTEM OPEN" : END

The BEXEC* program shown sets the input and output devices to be the keyboard and video display and prompts
the user to use the DIRectory or CHANGE utilities. If these utilities are not requesled, the editing and debugging
features of **NEW™, “LIST"", and <CONTROL C= are enabled. In certain programs (such as the example used in
the section on Joystick use), the user may wish to disable these optional utilities prior to running programs. BEX-
EC* provides the ideal time to take care of these housekeeping functions.

Demonstration or game disks often require special provisions to be made. BEXEC* provides the opportunity to
make these changes, including the guiding of the user by program prompts. To simplify use of demo or game disk, it
is often convenient 1o start The user in his/her program. For example, to run a program (here called DEMO), the
last statement in BEXEC* could be

RUN"DEMO"

In this manner, BEXEC* can take care of routine keyboard entries and simplify user response. As in most
endeavors, simple is better.

143

APPENDIX Q
I/0 DISTRIBUTION-

Use of multiple input and output devices can be accomodated without the need for specialized PEEKs and

POKEs, by using the 1/0 distribution system which is available under the DOS and BASIC. The following is an
illustrative example using the ACIA.

The simplest way to send data to the ACIA is to inform'the Disk Operating System (DOS) that the ACIA is 1o be
an output port. The command, resp-::mdmg to the DOS prompt

Ai
IS
10 .01

This assigns the ACIA as the sole system output port.
The general form of 1/0 distribution is

IO ,nn to assign input devices only
' ID mm to aasugn uutput devices only
ID nnmm to assign both input and output devices

A blank must be used in the command, as illustrated. Note that these numbers, nn, mm are in hexadecm‘lal (base
16). Each device number assignment must be a lwo dagn number selected from the following list:

HEX NN INPUT DEVICE CODE HEX MM OUTPUT DEVICE CODE
| 00 Null | 00 Null _
@1 Serial Port (ACIA at FCOQ) @1 Serial Port (ACIA at FC@P)
@2 Keyboard on 549 Board @2 Video on 540 Board
@4 UART on 550 Board P4 UART on 550 Board
P8 Null ﬂB Line Printer
" 19 Memory - ' ' 10 Memory
20 Disk Buffer 1 20 Disk Buffer 1
40 Disk Buffer 2 4 Disk Buffer 2
B0 550 Board Serial Port 80 550 Board Serial Port

Each of the device codes lisled is a hexadecimal value corresponding to one bit or device. For example, the ACIA
(device @#1) is given by bils

0000 0001
and the video board (CRT terminal) is device #2, given by bits
| PO00 0010 |
Both devices can be used simultaneously by specifying the device with a bit pattern
2000 DD11 ' S !

144

which is hexadecimal §3. Therefore

10 .03

Will send data 1o the CRT terminal and the device on.the ACIA pnrt smlullanr.:nusly Muillple oulpul devices may
be used (in contrast to only single input devices).

OTHER DEVICES

For other devices, il is probably easier to accept the device handlers built into the BASIC programs. Under
BASKC, the devices are numbered sequentially, 1 to 9. This renumbering is distinct from the previous 1/0 com-
mand example. Under BASIC, the devices which are available are

DEVICE . DEVICE -

NUMBER INPUT DEVICES NUMEEH OUTPUT DEVICES
1 Serial Port (ACIA) "1 Serial Port (ACIA)
2 Keyboard on 540 Boeard 2 Video on 549 Board
3 UART on 550 Board 3 UART on 550 Board
4 Null 4 Line Printer
5 Memory 5 Memory
6 Disk Buffer 1 6 Disk Buffer 1
7 Disk Buffer 2 7 Disk Buffer 2
8 550 Board Serial Port 8 550 Board Serial Port
9 Null _ 9 Null

The DOS 1/0 command previously discussed remains in effect until it is reset or an error occurs. Il an error occurs,
the default value is set {start up value). In contrast, the device numbers above can be assigned for each input/output
operation as needed. For devices other than those set up by the DOS 1/O command, the device assignments

immediately above could be used.
For example, to read from the keyboard and write on the printer allached lD the ACIA, the fﬂilﬁwmg mstruclmns
could be used:

10 INPUT #2,A$: REM KEYBOARD INPUT . o L
20 PRINT #1,A$: REM TO PRINTER ON ACIA
30 LIST #1 : REM AND LIST PROGRAM, TOO

RUN
Yielding the input prompt

?

After l:.rpmg a message (72 characters or Iess} and a <RETURN=, the message and the program will be prmled on the
serial printer.

DISK USE

As an input/outpul device, disks can be used in a similar manner.
However, prior lo using the disk, the user should provide for protecting his buiffer areas by running the CHANGE
program as

RUN"CHANGE"
Respond to the terminal width change with

NO <RETURN>

and respond to a request 1o change the BASIC and ASSEMBLER use of memory by
NO <RETURN=

but respond to the work space limit change by

145

YES <RETURN>
The CHANGE program will ask “*how many 8-page buffers before the work space.” (Remember each page contains
256 characters.) There are only two valid responses here (1 and 2) '
I. if only one file is 1o be used

2. two files must be open simultaneously

For the example that follows. 1 is sufficient. No additional room is required, so respond
~ NO <RETURN> - |

to that guestion. It is also nol necessary 10 request any room al the top for this example..
The small differences between a disk and other devices are the need 1o open a disk file by name as

‘ DISK OPENG, "“FILE1"
and to close the ﬁké when finished by

DISK CLOSE.6

These last lwo statements can be used 1o store a string received from the modem. The input from the modem would
be

INPUT #1,A%

where the string A$ must have as its last character <RETURN:=.
Combining these three stalements into a program 10 wrile a single message on disk

" 19 DISK-OPEN,8, “FILE1” :REM OPENS DISK (W/ONE BUFFER) =

20-INPUT #1,A$. :REM LISTENS TO MODEM
30 PRINT #6A$ ~° :REM ECHOS TO DISK

- 40 DISK-CLOSE;6 :REM CLOSES DISK FILE
50 END | |

Likewise, we could later recover the data by the program
19 DISK OPEN,G, "FILE1"

20 INPUT #6.A%
30 PRINT #2,A%
40 DISK CLOSE 6
5@ END

In this problem, writing and reading was done sequentially. Modifying the program to. accept multiple messages
requires that they be stored sequentially. '
It is possible to inspect the sequential disk- file by

RUN"SEQLST"
which provides a listing of the file when the information requested is given. The computer responds
SEQUENTIAL FILE LISTER
TYPE A CONTROL C TO STOP
FILE NAME?
Respond with the file name ol a sequential file
FILE1

=

s

146

and a listing of the file will be printed. Upon reaching the end of the disk file, the message -
ERR #D ERROR IN 100

will indicate completion of the listing.

Caution: be aware that when using the SEQLST utility to inspect files which have BASIC programs stored in
them, the display will look different than the original text. The reason for this is that the BASIC program stores
BASIC source programs in a shorthand, called a tokenized form.

Another popular way is to transfer the disk file (say it was stored on track 39) by the CALL statement

DISKI"CALL D3p@=239,1"

which writes the file contents onto the middle of the CRT screen. Note that some apparent garbage will be addi-
tionally printed here due Lo the unused portion of the disk file's being printed, too. '

To handle data in a random order, for example extracting the 20th data item from a file, it is'not necessary o read
the 19 prior data items. The use of random data items, also called records, is particularly useful when examining a
large set of data. Such data might be a set of customer accounts, a checking account history, or even temperature
records for given days. In all these cases, the need arises Lo extract a specific record, without looking at all the prior
records.

To aid in understanding the handling of random records, visualize a pointer whmh miarks the start of a record. The
GET command moves this pointer at the start ol a given record. For example,

DISK GET,2

places the pointer in front of the first record. Similarly;

DISK GET,5

places the pointer in front of the sixth record. This method makes it easy Lo locate a remrd on the disk, hnweuer it
is wasteful of disk storage capability. -

Each record uses a large disk area (128 bytes). The value of 128 byles is preset by the operating-system.

A random (not sequential) input record may be terminated by the PUT command. This will close 1he present rec-
ord from further input.

A simple program to wrile three records on disk file **SCRTCH™ and then GET the second record from that file,
would be - -

10 REM PROGRAM WRITE TEST
20 REM OPEN THE DISK FILE SCRTCH
30 DISK OPEN, 6, “SCRTCH"
4@ REM LOOP THREE TIMES TO END OF LOOP
50 FOR TIME=1TO 3
60 REM PLACE 128 BYTE RECORDS ON DISK BY
70 REM (A) POSITION POINTER WITH A GET COMMAND
80 REM (B) PASSING THE MESSAGE TO THE DISK BY PRINT GﬁMM.ﬁND :
99 REM (C) CAUSE THE RECORD TO BE WRITTEN BY PUT COMMAND ..
190 DISK GET, TIME-1
110 INPUT #2A%: REM TYPE IN ANY PHRASE FROM KEYBOARD
120 PRINT #6,AS% : REM PLACE IN MESSAGE BUFFER

130 DISK PUT : HEM TRANSFER MESSAGE BUFFER TO DISK
140 NEXT TIME

150 REM END OF LOOP

147

160 RCRD=2 :
170 DISK GET,RCRD-1 : REM POINTER AT START OF RECORD 2

180 INPUT #6,A$. REM READ DISK's SECOND RECORD
190 PRINT #2,A$. REM AND OUTPUT TO CRT (TERMINAL)
200 DISK CpﬁSE.ﬁ |

210 END

The use of sequential and random disk files permits simpler control and bookkeeping than the CALL and SAVE
or LOAD and PUT commands which were used for earlier file handling. This is one difference between record han-
dling as compared to file handling.

MORE DEVICES

Memory can also be treated as a device. When accepting data from memory (Random Access Memory or RAM)
as the input device, the DOS uses the address found in locations 238A (low address hall) hexadecimal and 238B
(high address half) hexadecimal to determine what memory region to use. After each input, the address is incre-
mented by one location. Memory, as an output device, is specified by the contents of 2391 (low address half) hex-
adecimal and 2392 (high address half) hexadecimal.

To load the address of memory to be used as an input device into 238A and 238B, and also load the address
memory 1o be used as an output device into 2391 and 2392, DOS provides the command

MEM mrnrnm nnnn

mmmm is the addre&s of memory to be regarded as an input device (its starting address) and nnnn is the address of
memory to be regarded as an output device (its starting address). For example,

MEM 5000,5500

would load the locations

LOCATION .
DEC HEX CONTENTS
Input 9098 238A 00
Address 9099 238B - 50
Output 8105 2391 1)
Address 91@5 2392 55

which establishes memory locations 5088 and up to be used as an input device and lDEdlIGI‘IS 55@@ and up to be used
as an output device. No end of these memory regions is specified, so the user is cautioned in their use.

Finally, a device called the null device is provided. The null device permits writing programs without having to
worry about the physical device characteristics. For example, a program could be tested which would normally print
on the printer; by assigning the null device, no paper would be wasted while the program is checked out.

148

T N =

——

e S L e e —

e —TE s arww m hpm w

--
--

|||||||||||||||||||||||||||||||||||||||
lllllllllllllllllllllllllllllllllllllll
||
llllllllllllllllllllll
ll
ll

.................................

llllllllllllllllllllllllllllllllllll
lllllllllllllllllllllllllllllllllllllll

--

To Digital Conversion
Appliance Control

.......................................

ASM (Assembler)
ASM Extensions

Back Arrow
Backpanel Connectors
Barber Pole

lllllllllllllllllllllllllllll

...................................

BASIC Errors
BASIC-in-ROM (Cassette)
BASIC (Disk)

BASIC Extensions

BASIC Programming

Baud Rate

........................

BEXEC L, 11, 71, 141
Block ... 78
Break............. e e 5,6, 41
Breakpoint. 121
BUS, 16 PiInl/O....................... 59, 60, 62
Bytes Free......... e . AP 95
C
CA-LS 59
CA-20 . e 59
O 60
A e e 61
A= e e 60
A2 e 61
CA-25 ... S P 61
Calculator Mode......... e 13
Cassette S :
BASIC-in-ROM, 14
Cold Start ..., 5
Control Shift 8, 35
Data Recovery 35
Data Storage, 35
Load. ... 9, 33
Save [e 34
Change Utility e L.... 10,94
Character Graphics 109
Character Manipulation R .. 15
Character String e, 24 82
Clock, Timeof Day.......... 68
Code, Machine Language....................... 31
Cold Start ..., 20
Color Graphics.t 27
Color, Inverted. i, 29
Color S . 10
Color Tuning ittt 76
Combining Programs 139
Computer Setup
Casselle 4
Disk ... 4
Computer Interface to 16 Pin I/OBus 59
Conditional Statement. 15, 24

Connections
Closed Circuit Video. oo e ns 2
T T 77
LT (= o T 2
Control C..o i e 41, 122
Contral E. . ..o et eee s 122
Control O ... i et i 119
Control Q@o.. oo iaircanans 119
Control R e 122
Control S. .o i 119
Control Shiflt. 8
Control T. ... e, 122
Control U. e 122, 123
Control Y .. e 122
Conversions
Analog to Digital 62
Digital to Analog 31, 62
Hexadecimal to Decimal Chart............... 104
Languagesoooiriiiiiiiiii e 38
(04T 1= (R 124
DY e e et e 95
Countdown Timero mnnnnrnnsn 69
(=T | (=R 97
D
1 A U 41
Data Register (PIA) 54, 59, 60, 71
Defaull. . ..o e 24
Delete (Rles) ... e, 03
Device Numbers it 120
Devices. e 144, 147
Digital 1o Analog (D/A) Converter....... 30, 31, 62
DICiONArY . . et 119
Dimension (DIM) 24, 81
Direct Video (modifications) 2
Directory
DIR . e 8, 10, 11, 97
Disk Directory Listings 11, 97
Format............... A, 11, 97, 123
DIR SRT (Sorted directory)................. 11, 97
Disk
Allocations.cvin... 79, 80, 120, 123
BASIC Commands 6, 81-84
Care ol e 1
S 5 1= 124
L+ T+ 95
Extensions e 65, 121
1/0 (OPEN, GET, PUT, CLOSE)............ 146
Organmizationo ae i an s 38
PrOZramsooeineaieii s 7, 36, 37
Read/Writeo 36
LTS) 1 1= 10
Track Formattingciiuen.n. 80, 122

Track @ Read/Writeovrnnrerennnnnn.. 04
Ulties . . e 94
DOS (disk operating system)
Commands, 38
Errors. 85
E
EMCommando, 38
Entries Freet i e e es 97
A o PN 60
BASIC-in-ROM i 85
Disk BASIC e 84
DS . e 83
o NUMBBIS . . ot 118
Extended Monitoro, 38, 121
Extensions to Disk BASIC 65, 119
Extensions to Assembler...................... 121
External Switches.o iiiin i iiiannes 54
F
S =T 67
A CCESS .+ vttt e et e 10, 33, 139, 142
0 = =T 97
1= = 93
Indirect i 139
- Source Formatling.0 . ..o iiiiann. 123
Flag Bit Setting, 1/Oo ... 119
Flow Chart Explanation 17
Frequency (piano keyboard) 92
G
Generator, Tone, 30
GET/PUT Overlays.vininenreennn 80
Graphics e 108
Greenhouse Example, 71
" H
Head End Carpsot iiiaeiininearnnns 59, 60
Heterodyningccoiiiiiiinnnnniriineenny 76
Hexadecimal to Decimal
Tables.o i ieiecnasanaananana 104
Tutor and Conversions.coveeievenannen 99
Home Securityooiiiiiiniiiiiiiiananan, 52
150

e

I
Indirect Files.o 138
Inverted Video 29
/0 (input/output)
ANAlOE . . e 61
| T S 119
Distributionou it e aeenns 143
Flag Bit Setting. iiiiiiann. 119
J
Joysticks 42
K
Keyboardo i, 40, 92
Keypads.o e 47
Key Usage..........coiiiiiiiiiiiiiiainenns 41
L
Labeling.coiini i e 13
Languages 31, 38, 67, 124, 133, 135
= 16
LSt e 83, 121
Loops, Explanationof. 20
LUN . e e 120
M
Y S 41
Machine Code Language 31, 124, 135
Machine Organization.............coviiiran.n. 76
Memory
ANOCALION .ot e e e e e 118
MaD .o e 19
Move e 82
Video Maps.ot 28
MID S . e e .16
Modem e 60, 63
Monitor, Extended s 121
Monitor (machine) it iiirniin... 124
Real Time (RTMON) l, 71
Multiplexer.t 61, 62

151

N
NEW o e 124
N O OMS . . .ottt et i e ie i et it 7
3 [T B R S A S e e e B S e 147
0
Organizations
Maching. ...ttt e i 76
Operating System.t ineinianenns 38
Floppy Disk 78
0S-65D User'sGuide.o iiviin... 116
P
Page e 78
Passing Parameters ooty ... 131
Peripherals.t 63, 65, 67
PIAData............ccoiiein.... 54, 55, 60, 71
Piano Keyboardo, 92
Plot BASIC e 67
POKEsand PEEKs 87
Pound Sign....... ..o it 120
Power
I35 L o 8
I 6
PRINT ..o et c i, a1
o 1110 R 63
Program Mode ... 13
Prototypingot i e e 61
R
RAM .. e 33, 78
Read/Write
LT 35
DHSK o e e e 36
Track B .. e 26
Real Time
Clock ..o e e 68
Control. e e 68
Monitor (RTMON) 54, 69, 70, 72
Remarks e e e 15
RENAME it 93
L= 0 1 o o 5,6,9, 4]
RF Modulator/Standard TV 2
Right® ... 16
ROM . e e 14
RUN . e i it inaeaens 8.9 13

S Troubleshooting. ovvvt et eenns 75
Screen Cleaning Routine (USR-X)-.". 127 Tutor, Hexadecimal to Decimal 99
SCRTCH. . ..ot e 36, 98
T 78
B T 52 U
SEQLST [sequennal file lister) 145 .
Shift (O). 14, 41 UnbocK .. e e 7,19, 12
Shift (P) ..ot e 41 UpAmowiiiiiiiiiiiiaiaianan. 123
o} 41 USR(X) Function.coovuiirinrnennan 67, 126
Source File Format 123
SOUN . . . e 30
Space Bar. s 41
SUHNGS - oo 15 | v
Euhscnpted Varlabies 21, 24 Video
0y T o A 62 ConNectionS . .ot e e e e 2
Switches (external)coov... 54 Close CIFCUIL. . oo v e e e e e e, 2
Syntax (Error) ...t 75 Direct (modifications).covvirnnnrr... 2
System Organization 38 RFEFmodulator.................ociiiiiiean.... 2
Memory Map............coiiiiiiiinnens 78, 115
~ Screen Layout. 0 0 S5 O .. 110
T
Telephone Interfaceooovreiiiernnnrnnnnn. 63 X
Terminal Communicationscvufhenunn. 63
Time - XQr
Control. . .o 68 File Storage.0iiniiieieiieannnnn 135
Of na}. Clock . .%o e 68 Filnam Commandot ininnn... 118
Monitor (RTMON)t 69
Timer (countdown), 69
Tone Generator iineeannns 30 7
Track Formattingccovovnnn. 80, 123
Track @ Read/Write 96, 124 Zero Utility. o e 80
152

. .
L T LU

NOTES

OHIO SCIENTIFIC

1333 S. Chillicothe Road - Aurara, OH 44202
Phone: [216)562-3101

Printed In US.A.

C4P Operalors Manual

