Sept. 1978

Pomons of this Manual are

© 1978 by Ohio Scientific Inc.
©® 1978 by Micro Soft Inc.
1978 by Digital Research Inc.
CP/M is a registered trade
mark of Digital Research Inc.

{od

I

b

Lo

IO |

nd

bd A3 b)

Microsoft CP/M BASIC:

Addendum to Microsoft BASIC Manual
for Users of CP/M Operating Systems

A CP/M version of BASIC (ver 4.5) is now available from Microsoft.
This version of BASIC is supplied on a standard size 3740 single density
diskette. The name of the file is MBASIC.COM. To run MBASIC, bring up

CP/M and type the following:
A>MBASIC <carriage return>

The system will reply:

xxxx Bytes Free

BASIC Version 4.5

(CP/M Version)

Copyright 1977 (C) by Microsoft
Ok

You are now ready to use MBASIC. MBASIC is identical to Altair
Disk BASIC version 4.1, with the following exceptions: ‘

1. MBASIC requires 17K of memory. (A 28K or larger CP/M
system is recommended).

2. The initialization dialog has been replaced by a
set of options which are placed after the MBASIC
command to CP/M. The format of the command line

is:

A>MBASIC [<fi]enamea [/F:<number of f}iesg
[/M:<highest memory location>]

{tems enclosed in brackets are optional.

If <filename> is present, MBASIC proceeds as if a
RUN <filename> command were typed after initiali-
zation is complete. A default extension of .BAS
is used if none is supplied and the filename is
less than 9 characters long. This allows BASIC
programs to be executed in batch mode using the
SUBMIT facility of CP/M. Such programs should in-
clude a SYSTEM statement (see below) to return to
CP/M when they have finished, allowing the next
program in the batch stream to execute.

If /F:<number of files> is present, it sets the
number of disk data files that may be open at any
one time during the execution of a BASIC program.
Each file data block allocated in this fashion re-
quires 166 bytes of memory. |If the /F option is

omitted, the number of files defaults to 3.

The /M:<highest memory location> option sets the
highest memory location that will be used by MBASIC.
In some cases it is desirable to set the amount of
memory well below the CP/M's FDOS to reserve space
for assembly language subroutines. In all cases,
<highest memory location> should be below the start
of FDOS (whose address is contained in locations 6
and 7). If the /M option is omitted, all memory up
to the start of FDOS is used. .

NOTE

Both <number of files> and <highest memory location>
are numbers that may be either decimal, octal (pre-
ceded by &0) or hexadecimal (preceded by &H) .

Examples:

A>MBASIC PAYROLL.BAS Use all memory and 3 files,
load and execute PAYROLL.BAS.

A>MBASIC INVENT/F:6 Use all memory and 6 files,

o load and execute INVENT.BAS.

A>MBASiC /M:32768 Use first 32K of memory and
3 files.

A>MBASIC DATACK/F:2/M:&HA000
Use first 36K of memory, 2

files, and execute DATACK.BAS

The DSKF function is not supported by MBASIC. Use
CP/M STAT. "

The FILES statement in MBASIC takes the form
FILES[<filenames] . If <filename> is omitted, all
the files on the currently selected drive will be
listed. <filename> is a string formula which may
contain question marks (?) to match any character
in the filename or extension. An asterisk (*) as
the first character of the file name or extension
will match any file or any extension.

Examples:

FILES

FILES ''*=.BAS"
FILES "'B:*.*
FILES ""TEST?.BAS"

1

IR T

Lo

i

Caed i

o)

j

i

10.

11.

12.

13.

14,

15.

16.

17.

The LOF{x) function returns the number of records
present in the last extent read or written (usually
by a PUT or GET).

CSAVE and CLOAD are not implemented.

LLIST and LPRINT assume a 132 character wide printer
and write their output to the CP/M LST: device.

All filenames may include A: or B: as the first two
characters to specify a disk drive, otherwise the
currently selected drive is used.

Filenames themselves follow the normal CP/M naming
conventions.

A default extension of .BAS is used on LOAD, SAVE,

MERGE and RUN <filename> commands if no ''."' appears
in the filename and the filename is less than nine

characters long.

The error messages ''DISK NOT MOUNTED', "DISK ALREADY
MOUNTED!, ''OUT OF RANDOM BLOCKS'', and "FILE LINK
ERROR" are not included in MBASIC.

The CONSOLE statement is not included. .

To return to CP/M use the SYSTEM command or state-
ment. SYSTEM closes all files and then performs a
CP/M warm start. Control-C always returns to MBASIC,
not to CP/M.

If you wish to change diskettes during MBASIC opera-
tion, use RESET. RESET closes all files and then
forces CP/M to re-read all diskette directory infor-
mation. Never remove diskettes while running MBASIC
unless you have given a RESET command. The RESET
statement takes the place .of the MOUNT and UNLOAD
statements in Altair BASIC.

MBASIC will operate properly on both Z-80 and 8080
systems.

MBASIC does not use any of the restart (RST) in-
struction vectors.

The FRCINT routine is located at 103 hex and the
MAKINT routine at 105 hex (add 1000 hex for ADDS
versions). These routines are used to convert the
argument to an integer for assembly language sub-
routines.

18.

19.

20.
21.
22,

23.

24,

25.

26.

27.

If the LEFTS or RIGHTS string functions have zero
as the number of characters argument, they will
return the null (length zero) string.

The ERR() Disk error function is not supported as
CP/M handles all disk error recovery.

Control-H (backspace) deletes the last character
typed and is echoed to the terminal.

RESTORE <line number> may now be used to set the
DATA pointer to a specific line.

All error messages and prompts are printed with
lower case characters when appropriate.

Control-S may be used to cause program execution to
pause. In the suspended execution state, control-C
will cause a return to BASIC's command level, and
any other character will cause the program to resume
execution.

The EOF function may be used with random files. |If
a GET is done past end of file, EOF will = -1,

This may be used to find the size of a file using a
binary search or other algorithm.

LSET/RSET may be used on any string. The previous
restriction to FIELDed strings has been eliminated.

The string function INPUTS(<number of characters>
[,[#]<file number>]) may be used to read <number of
characters> from either the console or a disk file.
If the console is used for input, no characters will
be echoed and all control characters are passed
through except Control-C, which is used to interrupt
execution of the INPUTS function.

VARPTR(#<file number>) returns the address of the
disk data buffer for file <file number>.

[

9

i

Commands:

AUTO CLEAR
FILES 'LIST
NEW NULL

- SAVE SYSTEM

Program Statements:

DEFNx ; DEFDBL

DIM END

GOSUB , GOTO
ON...ERROR ON...GOSUB
REM RESUME
WAIT

Input/Output Statements:

CLOSE DATA
- KILL LINEINPUT
PRINT PUT
gger ators:
. \
OR XOR
> <=

 Arithmetic Functions:

ABS ATN

CSNG ~ ERL
INP INT
POS RND
SQR TAB

Sstring Functions:

ASC CHRS
LEFTS LEN -
SPACES "~ STRINGS

Input/Output Functions:

CVD CVI
LOF MKDS$

CONT
LLIST
RENUM
TRON

DEFINT

ERASE
IF..THEN[ELSE]
ON...GOTO
RETURN

FIELD
LSET
READ

MOD
IMP

CDBL
ERR
LOG
SGN
USRn

FRE
MIDS
STRS

cvs
MKIS

DELETE
LOAD
RESET
TROFF

DEFSNG
ERROR
LET
ouT
STOP

GET
NAME
RESTORE

NOT
EQV
<>

CINT
EXP
LPOS
SIN
VARPTR

HEXS
OCTS
VAL

EOF
MKS$

EDIT
MERGE
RUN
WIDTH

DEFSTR
FOR
NEXT
POKE
SWAP

INPUT
OPEN
RSET

Cos
FRE
PEEK
SPC

INSTR
RIGHTS

LOC

Microsoft Disk BASIC also supports files on multiple £floppy
disks:

Sequential files with variable length records
Random files (record I/O)

Complete set of file manipulation
statements: OPEN, CLOSE, GET, PUT, KILL, NAME,
etc.

Up to 255 files per floppy disk

Runs standalone or under CP/M or ISIS-II operating
systems '

"Microsoft BASIC

Reference Manual

bd Lod L

Ll

Copyright, 1977 MITS, Inc.
Reprinted with Permission

L L

:

'

Microsoft BASIC

Overview

Microsoft BASIC is an extensive implementation of BASIC for
8088 and Z-80 microprocessors. Its features are comparable
to those of BASICs found on minicomputers and large

mainframes.

Current Versions of
Microsoft BASIC

Microsoft BASIC is currently in its fourth major release
(4.3). Each release consists of four different versions of

BASIC:

1. 4K version: Stripped down version to run in
minimum memory. Includes direct statement

execution, dynamic dimensioning of arrays = and.

multiple statements per line.

2. 8K version: Standard version. Includes string
manipulation and multiple dimension arrays. (Also
available for 6809 and 650x series MPUs.)

3. Extended version: Requires 16K of memory.
Features = include integers, double precision, EDIT,
AUTO, RENUM, PRINT USING, etc.

4. Disk version: Requires 20K of memory. ‘All
features of Extended version plus random and
sequential file access on floppy disk.

The different versions are generated from the same source
files wusing conditional assembly switches. Each version is
upward compatible with larger versions.

Y

!

B |

i

1

3

1

BASIC Reference Manual Addenda, April,
Page 2

Page 59, last line:
520 CLOSE #1
CHANCE TO:
520 CLOSE 1
Page 70, CLEAR [<expression>] explanation:
Same as CLEAR but sets string space to the value . . .
CHANGE TO:
Same as CLEAR but sets string space (see 4-1) to the value .
Page 70, CLOAD <string ex@ression> explanation, second line:
. . . character of STRING expression> to be .

CHANGE TO:

. . . character of <STRING expression> to be . .

Pagey71:
CSAVE*<array name> 8K (cassette), Disk
CHANGE TO:

CSAVE*<array name> 8K (cassette), Extended, Disk

Page 75. Insert the following after LET and before LPRINT.
ADDITION:
LINE INPUT LINE INPUT "prompt string'; string variable name

Extended, Disk

1977

LINE INPUT prints the prompt string on the terminal and assigné all
input from the end of the prompt string to the carriage return to
the named string variable. No other prompt is printed if the prompt

ri i ,

10.

string is omitted. LINE INPUT may not be edited by Control/A.
Page 76, POKE explanation, second line:

. . . If I is negative, address is 65535+I, .

'CHANGE TO:

. . . If I is negative, address is 65536+I, .

1.

BASIC Reference Manual

Addenda, April, 1977

Page 33, sub-paragraph b:
LINE INPUT [''<prompt string>",]; <string variable name>
CHANGE TO:

LINE INPUT [''<prompt string>'";] <string variable>

Page 40, Paragraph 5-3b, line 9:
The of the <integer expression> is the starting address of . . .
CHANGE TO:

The <integer expression> is the starting address of . . .

Page 41. Insert the following paragraphs between Paragraphs 3 and 4.
ADDITION:

The string returned by a call to USR with a string argument is that

string the user's routine sets up in the descriptor. Modifying [D,E] does

not affect the returned string. Therefore, the statement:
C$=USR(A$)

results in A§ also being set to the string assigned to C$. To avoid
modifying A$ in this statement, we would use:

C$=USR(A$+")

so that the user's routine modifies the descriptor of a string temporary
instead of the descriptor for AS.

A string returned by a user's routine should be completely within
the bounds of the storage area used by the original string. Increasing
a string's length in a user routine is guaranteed to cause problems.

Page 49, last paragraph, line 7:

. . . leading $ signs, nor can negative numbers be output unless the sign

_ 1s forced to be trailing.

CHANGE TO:

. . leading § signs.

%

—

e

[

L e

Ty

| n S s Y

g
3

'

i

A ke ;

Lo ¥

Lo

an—]

oennd dorcd

{ WS SR PR S W

11.

12.

13.

14,

15,

l6.

17.

"BASIC Reference Manuai Addenda, April, 1977

Page 3 :
page 80, OCTS:
oCT$ OCTQ(X) ~ 8K, Extended, Disk
CHANGE TO:
ocT$ oCT$ (X) Extended, Disk
Page 81:
SPACE$ SPACES (1) 8K, Extended, Disk
CHANGE Té:
SPACES$ SPACES$ (1) Extended, Disk

Page 91, line 4:
. . . question (see Appendix E).
CHANGE TO:

. . . question (see Appendix H).
Page 95, first paragraph, line 3:

For instructions on loading Disk BASIC, see Appendix E.

CHANGE TO: ,
For instructions on loading Disk BASIC, see Appendix H.

Page 103, line 11:
C (in extended) retains CONSOLE function.

CHANGE TO:

C (in Extended and Disk) retains CONSOLE and all other functions.

Page 112, Paragraph 4, Line 3:
USRLOC for 4K and 8K Altair BASIC version 4.0 is 111 decimal.

CHANGE TO:
USRLOC for 4K and 8K Altair BASIC version 4.0 is 111 octal.

Page 114, third paragraph, line 2:

. by the first character of the STRING expression>.

CHANGE TO:

18.

BASIC Reference Manual Addenda, April, 1977
Page 4 i .

. « . by the first character of the <string expression>. Note that the
program named A is saved by CSAVE"A",

Index, line 12:
ADDITION:

NULL . L) . . L] L] L4 Ll . . L 72

g

e

o

¥

i

Page 2

CONTENTS

1. Some Introductory Remarks.

1-1

Introduction to this manual
a. Conventions
b. Definitions
Modes of Operation
Formats
a. Lines-AUTO and RENUM
b. REMarks
c. Error Messages
Editing - elementary provisions
a. Correcting Single Characters
b. Correcting Lines
c. Correcting Whole Programs

Expressions and Statements

Expressions .
a. Constants
b. Variables
c. Array Variables - the DIM Statement
d. Operators and Precedence
e. Logical Operations:
f. The LET Statement
Branching and Loops
a. Branching
1) GOTO
2) IF...THEN...[ELSE]
: 3) ON...GOTO
b. Loops - FOR and NEXT Statements
c. Subroutines - GOSUB and RETURN Statements
d. Memory Limitations
Input/Output
a. INPUT
b. PRINT
c. DATA, READ, RESTORE
d. CSAVE, CLOAD
e. Miscellaneous
1) WAIT
2) PEEK,POKE
3) OUT, INP

Page 3

Functions

1 1Intrinsic Functions .
-2 User-Defined Functions - the DEF Statement
2 Errors

. Strings

1 String Data

-2 String Overations
a. Comparison Operators
b. String Expressions
c. Input/Output

4-3 String Functions

5. Extended Versions

5-1 Extended Statements
5-2 Extended Operators
5-3 Extended Functions
5-4 The EDIT Command

5-5 PRINT USING Statement
5-6 Disk File Operations

6. Lists and Directories

1 Commands

2 Statements

=3 Intrinsic Functions
4 Special Characters
S Error Messages
6 Reserved Words

Appendices

A. ASCII Character Codes
B. Microsoft CP/M BASIC
C. ©Speed and Space Hints
D. Mathematical Functions
E. Altair BASIC and Machine Language
F. Using the ACR Interface ’
G. Converting BASIC Programs Not Written for the Altair Computer
H. RSTLESS Versions of BASIC
I. Using Altair BASIC on the
Intellec* 8/Mod 80 and MDS Systems

Index

L L

e

O

S0 t_J i) i)

L)

january, 1977

O I

Page 4

1. SOME INTRCDUCTORY REMARKS

1-1 Introduction to this Manual.

a. Conventions. For the sake of simplicity, some
conventions will be followed. in discussing .the features of

the Altair BASIC language.
1. Words printed in capital letters must be written exactly

as shown. These are mostly names of instructions and

commands.
2. Items enclosed in angle brackets (<>) must be supplied

as explained in the text. Items in square brackets ([]) are
optional. 1Items in both kinds of brackets, (<w>], for
example, are to be supplied if the optional feature is used.
Items followed by dots (...) may be repeated or deleted as
necessary.

3. Shift/ cr Control/ .followed by a letter means the
character 1is typed by holding down the Shift or Control Xkey

and typing the indicated letter.
4. All indicated punctuation must be supplied.

b. Definitions. Some terms which will become
important are as follows:

Alphanumeric character: all letters and numerals taken
together are called alphanumeric characters.

Carriage Return: Refers both to the key on the
terminal which causes the carriage, print head or cursor to
move to the beginninag of the next line and to the command
that the carriage return key issues which terminates a BASIC

line.

Command Level: After Altair BASIC prints OK, it is at .

the command level. This means it 1is ready to accept
commands.

Commands and Statements: Instructions in Altair BASIC
are loosely divided into two classes, Commands and
Statements. - Commands are instructions normally used only in
direct mode (see Modes of Overation, section 1-2). Some
commands, such as CONTymay only be used in direct mode since

thev have no meaning as program statements. Some commands,

such as DELETE, are not normally used as program sStatements
because they cause a return to command level. But most
commands will find occasional wuse as program statements.
Statements are instructions that are normally wused in
indirect mode. Some statements, such as DEF, may only be
used in indirect mode. '

January, 1977 Page 5

Edit: The process of deleting, adding and substltutlng
lines in a program and that of preparing data for output
according to a predetermined format will both be referred to
as *“editing." The particular meaning in use will be ciear
from the context. : -

Integer Expression: An expression whose value 1is
truncated to an integer. The components of the expression
need not be of integer type.

Reserved Words: Some words are reserved by BASIC for
use as statements and commands. These are called reserved
words and they may not be wused in wvariable or function
names.

Special Characters: some characters appear differentlv
on different terminals. Some of the most important of these
are the following:

(caret) appears on some terminals as ; (up-arrow)
~+ (tilde) does not appear on some terminals and prints
as a blank

(underline) appears on some terminals as - (back-arrow).

String Literal: A string of characters enclosed by'

guotation marks. (“) which is to be input or output exactly
as it appears. The guotation marks are not vart of the
string 1literal, nor may a string literal contain gquotation
marks. (""HI, THERE""is not legal.)

Type: While the actual device used to enter
information into the computer differs from system to systam,
this manual will use the word "tyve" to refer to the proces
of entry. The user tyves, the computer prints. Type also
refers to the classifications of numbers and strings.

1-2 Modes of Overation.

Altair BASIC provides for operation of the computer in
two different modes. In the direct mode, the statements or
commands are executed as they are entered into the computer.
Results of arithmetic and logical coverations are displayed
and stored for later use, but the instructions themselves
are lost after execution. This mode is useful for debucging
and for using Altair BASIC in a "calculator®™ mode for gquick
computations which do not justify the de51gn and coding of
complete programs.

In the indirect mode, the computer executes
instructions from a program stored in memory. Program lines
are entered into memory if they are preceded by a line
" number. Execution of the program is initiated by the RUN

ot BJ 6 £ L U G L LJ td L td g Cd g g d

January, 1977] ' ~ Page 6

In the indirect mode, the computer executes
instructicns from a program stored in memory. Program lines
are entered into memory if +they are preceded Dby a line
number. Execution of the program is initiated by the RUN

commands.

1-3 Formats.

a. Lines. The line is the fundamental wunit of an
Altair BASIC program. The format for an Altair BASIC line
is as follows:

nnnnn <BASIC statement> [:<BASIC statement>...]

Each Altair BASIC line begins with a number. The number
corresponds to the address of the 1line 1in memory and
indicates the order in which the statements in the line will
be executed in the orogram. It also provides for branching
linkages and for editing. Line numbers must be in the range
g to 65529. A good programming practice 1is to use an
increment of 5 or 19 between successive 1line numbers to
allow for insertions.

1) Line numbers may be generated automatically in the
Extended and Disk versions of Altair BASIC by use of the
AUTO and RENUM commands. The AUTC command provides for
automatic insertion o©f 1line numbers when entering pregram
lines. The format of the AUTO command is as follows:

AUTO[<initial line>[, [<increment>]]
Example;

AUTQ 180,10

‘168 INPUT X,Y

118 PRINT SQR(X"2+Y"2)

128 °C

OK

AUTO will number every input line until Control/C 1is typed.
If the <initiel line> is omitted, it 1s assumed to be 13 and
an increment of 10 is assumed 1f <increment> is omitted. If
the <initial 1line> is followed by a comma but no increment
is specified, the increment last used in an AUTO statement
is assumed.

If AUTO generates a line number that already exists in
the program currently in memory, 1t prints the number
followed by an asterisk. This is to warn the user that any
input will replace the existing line.

January,

1977 : Page 7

2) The RENUM command allows program lines to be "spread

out® so that a new line or lines may be inserted between
existing lines. The format of the RENUM command 1s as

. fqllows:

RENUM [<KNN> [<MM>[,<II>]]]

where NN is the new number of the first 1line to be
resequenced. If omitted, NN is assumed to be 1f. Lines
less than MM will not be renumbered. If MM is omitted, the
whole program will be reseguenced. II is the increment
between the lines to be resequenced. If II is omitted, it
is assumed to be 18. Examples: :

RENUM Renumbers the whole program to start at line
16 with an increment of 18 between the new line numbers.

RENUM 168,,188 Renumbers the whole program to start
at line 108 with an increment of 1360.

RENUM 6008,5000,1008 Renumbers the lines from 5860
up so they start at 6608 with an increment of 144@8.

NOTE

RENUM cannot be used to change the order of program
lines (for example, RENUM 15,30 when the program has
three lines numbered 18, 20 and 38) mnor to create
line numbers greater than 65529. An ILLEGAL
FUNCTION CALL error will result. ,

All line numbers appearing after a GOTO, GOSUB, THEN,
ON...GOTO, ON...GOSUB and ERL<relational operator> will be
properly changed by RENUM to reference the new line numbers.
If a line number appears after one of the statements above
but does not exist in the program, the message "UNDEFINED
LINE XXXXX IN YYYYY" will be printed. This line reference
(X¥XXXX) will not be changed by RENUM, but line number YYYYY
may be changed. '

3) In the Extended and Disk versions, the current line

number may be designated by a period (.) anywhere a line

number reference is required. This is ' particularly wuseful
in the use of the EDIT command. See section 5-4.

4) Following the 1line number, one or more BASIC
statements are written. The first word of a statement

identifies the operations to be performed. .The 1list of

arquments - which follows the identifying word serves several

purposes. It can contain (or refer symbolically to) the

-

—

"

]

m:}January, 1977 Page 8
Vj} _ ‘data which is to be operated upon by the statement. In some
important 1instructions, the operation to be performed
depends upon conditions or options specified in the 1list.
T .
ﬂ; Each type of statement will be considered in detail in
sections 2, 3 and 4.

More than one statement can be written on one 1line if
T they are separated by colons (:). Any number of statements
can be joined this way provided that the line is no more
than 72 characters 1long in the 4K and 8K versions, or 255
characters in the Extended and Disk versions. In the
Extended and Disk versions, lines may be broken with the
LINE FEED key. Example:

i

188 IF X<Y+37<line feed>
THEN 5 <line feed>
ELSE PRINT(X)<carriage return>

The line is shown broken into three lines, but it 1is input
as one BASIC line.

b. REMarks. In many cases, a program can be more
easily understood if it ccntains remarxs and explanations as
well as the statements of the program proper. In Altair
BASIC, the REM statement allows sucn comments to be included
without affecting execution of the program. The format of
the REM statement is as follows: .

REM <remarks>

A REM statement is not executed by .BASIC, but Dbranching
statements may link into it. REM statements are terminated
by the carriage return or the end of the line but not by a

colon. Example:

189 REM DO THIS LOOP:FOR I=1T01l4d -the FOR statement
will not be executed
191 FOR I=1 TO 1g: REM DO THIS LOOP -this FOR statement will

pe executed.

In Extended and Disk versions, remarks may be added to the
end of a program line separated from the rest of the line by
a single quotation mark ('). Everything after the single
quote will be ignored.

¢c. Errors. When the BASIC interpreter detects an
error that will cause the ©vprogram to be terminated, it
prints an error message. The error message formats 1in

Altair BASIC are as follows:

Direct statement ?2XX ERROR

January,

1977 Page 9

Indirect'statement ?XX ERROR IN nnnnn

XX is the error code or message (see section 6-5 for a list
of error codes and messages) and nnnnn is the line number

where the error occurred. Each statement has its own
particular possible errors in additiocn to the general errors
in syntax. These errors will ©be discussed in the

description of the individual statements.

1-4 Editing - elementary provisions.

Editing features are provided in Altair BASIC so that
mistakes can be corrected and features can be added and

deleted without affeciing the remainder of the program. If

necessary, the whole program may be deleted. Extended and
Disk Altair BASIC have expanded editing facilities which
will be discussed in section 5.

a. Correcting single "characters. If an incorrect
character is detected in a line as it is being typed, it can
be corrected immediately with the backarrow (underline c¢n
some terminals) or ,except in 4K, the RUBOUT key. Each
stroke of th key deletes the immediately preceding
character. If there is no preceding character, a carriage
return is issued and a new line is begun.
characters are removed, they can be replaced simply by
typing the rest of the line as desired. -

When RUBOUT is typed, a backslash (\) is printed and
then the character to be deleted. Each successive RUBOUT

prints the next character to be deleted. Tvyping a new
character ©prints another backslash and the new character.
All characters between the backslashes are deleted.

Example:

188 X=\=X\Y=19 Typing two RUBOUTS deleted the '='
and 'X' which wera subsequently
replaced by Y= .

b. correcting lines. A line being typed may be
deleted by +typing an at-sign (@) 1instezad of typing a
carriage return. A carriage return is printed automatically
after the 1line is deleted. Except in 4K, tyoing Control/U

has the same effect.

In the Extended and Disk versions, typing <Control/A
instead of the carriage return will allow all the fesatures
"of the EDIT command (except the A command) to Dpe used on the

Ornice the unwanted

Y

™ Y Y

™ (¥

Yy oo

T

| N

~—

é i~_ﬁ

J

CIU R -

d Ld

J

L

N '
L.

]

"‘—-»-v

~—yJanuary, 1977 ' : . Bage 10

line currently being typed. See section 5-4.

- ¢. correcting whole programs. The NEW command causes
the entire current program and all variables to be deleted.
NEW is generally used to clear memory sSpace preparatory to

entering a new program.

2. STATEMENTS AND EXPRESSIOHNS.

2-1. Expressions.

The simplest BASIC expressions are single constants,
variables and function calls.

a. Constants. Altair BASIC accepts 1integers or

floating point real numbers as constants. All but the 4K

version of Altair BASIC accept string constants as well.
See section 4-1. Some examples of acceptable numeric

constants follow:

123
3.141
2.0436
1.25E+85

Data input from the terminal or numeric constants in a
program may have any number of digits up to the length of a
line (see section 1-3a). In 4K and 38K Altair BASIC,

however, only the first 7 digits of a number are significant

and the seventh digit is rounded up. Therefore, the command
PRINT 1.234567890123
produces the following output:

1.23457
OK

In Extended and Disk versions of Altair BaSIC, doudle
precision format allows 17 significant digits with the 17tn
digit rounded up. '

The format of a printed number 1is determined by tae
following rules: . :

1. If the number is negative, a minus sign (-) is printed
to the left of the number. If the number is positive, a
space is printed. '

L T)

January,

1977

Page 11

LY

2. If the absolute value of the number is an integer in
the range 0 to 999999, it is printed as an integer.

3. If the absolute value of the number is greater than or
equal to .81 and less than or egqual to ©99999, it is
printed in fixed point notation with nc exponent.

4. In Extended and Disk versions, fixed point values up to
9999999999999999 are possible. '

5. If the number does not fall into categories 2, 3 or 4,

scientific notation is used.

The formats of scientific notation are as follows:
SX.XXXXXESTT single precision
SX. XXXXXXXXXXXXXXXDSTT double precision

where S stands for the signs of the mantissa and the
exponent (they need not be the same, of course), X for the
digits of the mantissa and T for the digits of the exponent.
E and D may be read "...times ten 0O the power...."
Non-significant zeros are suppressed in the mantissa, but
two digits are always printed in the exponent. The sign
convention in rule 1 is followed £for the mantissa. The
exponent must be in the range -38 to +38. The largest
number that may be represented 1in Altair BASIC is
1.78141E38, the smallest positive number is 2.93878-38. The
following are examples of numbers as input and as output by

Altair BASIC:

Number Altair BASIC Output
+1 _ 1

-1 -1

6523 6523

1E28 1E29
-12.34567E-16 -1.23456E-09
1.234567E-7 1.23457€E-087
10006000 1E+06

.1 .1

.21 .81

.00806123 1.23E-04
-25.460 -25.46

The Extended and Disk versions of Altair BASIC allow
numbers to be represented in integer, single precision or
double precision form. The type of a number constant is

determined accocrding to the focllowing rules:

e
{

3

o

i

r"‘”; :

i

b .

beaser =

L&

¥

.

LB

(I

(]

b & L.

]

January, 1977 ’ Page 12

1. A constant with more than 7 digits or a 'D' instead of
“'E' in the exponent is double precision.

2. A constant outside the range -32768 to 32767 with 7 or
fewer dicits and a decimal point or with an 'E' exponent
is single precision.

3. A constant in the range -32768 to 32767 and no decimal
“point is integer.

4. A constant followed by an exclamation point (1) 1is
single precision; a constant followed by a pound sign

{#). is double precision.

Two additional tvpes of constants are allowed in
Extended and Disk versions of Altair BASIC. Hexadecimal
(base sixteen) constants may be explicitly designated by the

symbol &H preceding the number. The constant may not
contain any characters other than the digits 48 - 9 or
letters A - F, or a SYNTAX ERROR will occur. Octal

constants may be designated either by &0 or just the & siga.

In all formats, a space is printed after the number.
In all but the 4K version, Altair BASIC checks to see if the
entire number will fit on the current line. If not, it
issues a carriage return and prints the whole number on the
next line. .

b. Variables

1) A variable represents symbolically any number which
is assigned to it. The value of a variable mav be assigned
explicitly by the programmer or may be assigned as the
result of calculations in a program. Before a variable is
assigned a value, its value is assumed to be zero. In 4X ,
a variable name <consists of one or two charactars. The
first character is any letter. The second character must be
a numeral. In other versions of Altair BASIC, the variable
name may be any length, but any alphanumeric characters
after the first two are ignored. The first character must
bhe a letter. No reserved words may appear as variable names
or within wvariable names. The following are examples of

legal and illegal Altair BASIC variables:

Legal Illegal
In 4K and 8K Altair BASIC:
A $A (first character must
be alphabetic.)
z1 Z1A (variable name is too

long for 4K)

L]

Other versions:

January,

1977 - Page 13

TP TO (variable names cannot
be reserved words)
PSTGS
COUNT RGOTO (variable names can-
‘ not contain reserved
words.)

In all but 4K Altair BASIC, a variable may also
represent a string. Use of this feature is discussed in
section 4.

2) Extended and Disk versions of Altair BASIC allow the
use of Integer and Double Precision variables as well as
Single Precision and Strings. The type of a variable may be
explicitly declared in Extended and Disk versions of Altair
BASIC by using one of the symbols in the table below as the
last character of the variable name. ’

Type Symbol
Strings (0 to 255 characters) $
Integers (-32768 to 32767) %
Single Precision (up to 7 digits, expconent between
-38 and +38) !
Double Precision (up to 16 digits, exponent between
-38 and +38) T

Internally, BASIC handles all numbers in binary. Therefore,
some 8 digit single precision and 17 digit double precision
numbers may be handled correctly If no tyve 1is explicitly
declared, type 1is determined by the first letter of tne
variable name according to the type table. The table of
types mav be modified with the following statements.

DEFINT r Integer
DEFSTR r String
DEFSNG r Single Precisicn
DEFDBL r Double Precision

where r is a letter or range of letters to be bdesignated.
Examples:

15 DEFINT I-N Variable names beginning with the let-
- ters I-N are to be of integer tywme.
20 DEFDBL D Variable names beginning with D are to
be of double precision type.

If no type definition statements are encountered, BASIC
proceeds as if it nad executed a DEFSNG A-2 statement.

N T

Ld

e

¥
..

“

o)

.

e Al id e

ied g dJ

January,

1977 Page 14

3) Integer variables should be used wherever possible
since they take the 1least amount of space in memcry and
integer arithmetic is much faster than single precision
arithmetic.

Care must Le exercised when single precision and double
precision numbers are mixed. Since single precision numbers
can have more significant digits than will be printed, a
double precision variable set to a single precision value
may not print the same as the single precision variakle.

19 A=1.01 single precision value

20 Ri-A*]1J:C#=CDBL(A) *10% convert to double precision
30 PRINTA;B#;C#;CDBL(A) in various ways

RUN

OK

In order to assure that double precision numbers will print
the same as single precision, the VAL and STR$ functions
should be used. For example: '

18 a=1.081
20 B#=VAL(STRS (A)) :C#=B#*10%
39 PRINT A;B#;C#

RUN
1.1 1.61 14.1
OK
c. Array Variables. It is onften advantageous to refer
to several variables by the <came name. In matrix
calculations, for example, the computer handles ach element
Lo

of the matrix separﬂtelv, but it 1is convenient for the
programmer to refer to the whole matrix as a unit. For this
purpose, Altair BASIC provides subscripted vat-ubles, or
arrays. The form of an arrav variable is as follows

VV(<subscript>[,<subscript>...])

where VV is a variable name and the subscripts are 1ntecer
expressions. Subscripts may be enclosed in parentheses or
square brackets. An array variable may have only c¢ne
dimension in 4K, but in all other versions of Altair BASIC
it may have as many dimensions as will fit on a single line.
The smallest subscript is zero. Examples:

A(5) The sixth element of array A. The first
: element is A(9).
ARRAY(I,2*J) The address of this element in a two- .
» dimensional array 1is determined by '
evaluating the axpressions in parenthe-
ses at the time of the reference to the

1.1 10.19600038146973 18.8999999Q463257 1.009999290463257

g
i
3

e S e A

T ——— N

January, 1977 Page 15

array and truncating to integers. If
I=3 and J=2.4, this refers to ARRAY(3,4).

 ——
Y

The DIM statement allocates storage for array variables and
sets all array elements. to zero. The form of the DIM
statement is as follows:

DIM VV(<subscript>[,<subscript>...])

where VV is a legal variable name. Subscript is an 1integer
expression which specifies the largest possible subscript
for that dimension. Each DIM statement may apply to more
than one array variable. Some examples follow:

113 DIM A(3), D$(2,2,2)

114 DIM R2%(4), B(1l0)

115 DIM Q1 (N), Z2#(2+I) Arrays may be dimensioned dy-
namically during program
execution. At the time the
DIM is executed, the expression
within the parentheses is e-
valuated and the results trun-
cated to integer.

If no DIM statement has been executed before an array
variable 1is found in a program, BASIC assumes the variable
to have a maximum subscript of 19 (11 elements) for each
dimension in the reference. A BS or SUBSCRIPT OUT OF RANGE
error message will be issued if an attempt is made to
reference an array element which 1is outside the space
allocated in its associated DIM statement. This <can occur
when the wrong number of dimensions is used in an array
element reference. For example:

3¢9 LET A(1,2,3)=X when A has been dimensioned by
139 DIM A(2,2)

A DD or REDIMENSICNED ARRAY error occurs when a DIM
statement for an array is found after that array has been
{ dimensioned. This often occurs when a DIM statement appears
i after an array has been given its default dimension of 13.

d. Operators and Precedence. Altair BASIC provides a
full range of arithmetic and (except in 4X) logical
operators. The order of execution of operations in an
expression is always according to their precedence as shown
in the table below. The order can be specified exollc1tly
by the use of parentheses in the normal alQEbEalC fashion.

¥
i
§
£
i
&
ES
k4

o oy) MM e e ey o e e ey oy e

Table of Precedence

—

<
i

i

. LJ L

CJ L

L

L O U R R T

January, 1977 ‘ Page 16

Operators-are shown here in decreasing order of ©precedence.
Operators listed in the same entry in the table have toe

- same precedence and are executed in order from left to rignt
in an expression.

1. Expressions enclosed in parentheses ()

2. ~ exponentiation (not in 4K). Any number to the zero
power is 1. Zero to a negative power causes a /@ or
DIVISION BY ZERO error.

3. - negation, the unary minus operator

4. *,/ multiplication and division

5. \ integer division (available in Extended and Disx
* versions, see section 5-2)

6. MOD (available in Extended and Disk versions. See
section 5-2)

7. +,- addition and subtraction
8. relational operators
= equal
<> not equal
< less than
> greatesr than
<=,=< less than or egqual to
=,=> greater than or egqual to

(the logical operators below are not availzble in 4K)

9. NOT logical, bitwise negation
10. AND logical, bitwise disjunction

11. OR logical, bitwise conjunction

(The logical operators below are available only in
Extended and Disk versions.)
12. XOR logical, bitwise exclusive OR
13. EQV logical, bitwise equivalence
14. IMP logical, bitwise implication

In 4K Altair BASIC, relational overators may be used only
once in an IF statement. In all other versicnds, relational

January,

1977 Page 17

operators may be wused in any expressions. Relational

expressions have the value either of True (-1) or False (0) .

e. Logical Overations. Logical operators may be used

for bit manipulation end Boolean algebraic functions. The

AND, OR, NOT, XOR, EQV and IMP operators convert their
arguments into sizteen Dbit, -signed, two's complemwent
integers in the range -32768 o 32767. After the operations
are performed, he result is returned in the same form and
range. If the argument: are not in this range, an FC or
ILLEGAL FUNCTION CALL error message will be printed and
execution will be terminzted. Truth tables for the " logical

‘operators appear beliaw, The operations are vperformed

bitwise, that is, corresponding bits of each argument are
examined and the result computed one bit at a time. In
binary operations, bit 7 is the most significant bit of a
byte and bit 0 is the least significant.

AND
X Y X AND Y
1 1 1
1 0)
2 1 8
,] g ()
OR
X Y XORY
1 1 1
1) 1
@ 1 1
] g g
NOT
X NOT X
1)
0 1
XGCR
X Y X XOR Y
1 1 g
1 @ 1
2 1 1
2) g
EQV
X Y X EQV Y
1 1 1
1 2 /)
g 1 g
)] 1
IMP
X Y X IMP Y
1 1 1
1 g)
] 1 1
2] 1

=1

™)

R

-

™ ™

ey

T

i—J ¥ i 3 L L

L]

L

January, 1977 ‘Page 18

Some examples will serve to show how the logical operations

WOrK:

63 AND 16=16 63=binary 111111 ané lé=binary 192889,
so 63 AND 16=16

15 AND 14=14 15= binary 1111 and l4=binary 1110,
so 15 AND ld=pinary 1118¢=14.

-1 AND 8=38 ~l=binary 1111111111111111 and 8=birary
13008, so -1 AND 8=8.

4 OR 2=6 4=binary 199 and 2=binary 10 so
4 OR 2=binary 113=6.

18 OR 18=173 binary 1419 CR'd with itself is 1818=
13.

-1 OR -2=-1 -l=binary 1111111111111111 and -2=

. 11111211111111113, so -1 CR ~2=-1.

NOT @g=-1 : the bit complement of sixteen zeros

is sixteen ones, which is the two's
complement representation of -1. ,
NOT X=-{X+1) the two's complement of any number 1s

the bit complement plus one.

A typical use of logical operations is ‘masking', testing a
binary number for some predetermined pattern of bits. Such
numbers might come from the computer's input ports and would
then reflect the condition of some external device. Further
applications of logical cperations will be considered in the
discussion of the IF statement. '

f. The LET statement. The LET statement is wused to
assign a value to a variable. The form 1is as follows:

LET <VV>=<expression>

where VV is a variable name and the expression is any valid
Altair BASIC arithmetic or, except in 4X, logical or string
expression. Examples:

1968 LET V=X

119 LET I=I+1 he '=' sign heremeans 'is replaced
y 1

o e » o

O cr

The word LET in a LET statement is optional, so algebraic
equations such as:

120 V=.5*%(X+2)
are legal assignment statements.

A SN or SYNTAX ERROR message is printed when BASIC
detects incorrect form, 1illegal <characters 1in a line,
incorrect punctuation or missing parantheses. An OV or
OVERFLOW error occurs when the resuit of a calculation 1is

s e TR

January, 1977 Page 19

too large to be represented by Altair BASIC's number
formats. All numbers must be within the range 1E-38 to
1.76141E38 ¢r -1E-38 to -1.70141E38. An attempt to divide
by zero results in the /0 or DIVISION BY ZERO error message.

For a discussion of strings, string variables and
string operations, see section 4.

2-2. Branching, Loovos and Subroutines.

a. Branching. 1In addition to the seguential execution
of program lines, BASIC provides for changing the order of
execution. This provision is called branching and 1is the
basis of programmed decision making and loops. The
statements in Altair BASIC which provide for branching are
the GOTO, IF...THEN and ON...GOTO statements.

1) GOTO is an unconditional branch. Its form 1is as
follows:

GOTO<mmmmm>

After the GOTO statement is executed, execution continues at
line number mmmmm.

2) IF...THEN is a conditional branch. 1Its form is as
ﬁollcws:

IF<expression>THEN<mmmmm>

where the expression is a valid arithmetic, relational or,
except in 4X, logical expression and mmmmm is a line number.
If the expression is evaluated as non-zero, BASIC continues
at line mmmmm. Otherwise, execution resumes at the next
line after the IF...THEN statement.

An alternate form of the IF...THEN statement 1is as
follows:

IF<expression>THEN<Kstatement>

where the statement 1is any Altair BASIC statement.
Examples:

19 IF 2a=10 THEN 490 If the expression A=19 is
true, BASIC branches to 1line 4§. - Otherwise,
execution proceeds at the next line.

15 IF A<K3+C OR X THEN 128 The expression after IF is
evaluated and if the value of the expression is

non-zero, the statement Dbranches to 1line 100,

1

7‘Ianuary, 1977

s

s el beed el

d g Lad

iy

L

) b

Otherwise, execution continues on the next line.
2¢ IF X THEN 25 If X is not zero, the statement

~branches to lina 25.

3g IF X=Y THEN PRINT X 1f the expression X=Y is true
(its value is non-zero), the SRTNL statement 1S
- executed. Otherwise, the FPRINT statement 1is not
executed. - 1In cither casé; avzecutlicn ccntinues with
the line after the IT...THEN stateament.
t to

35 IF X=Y+3 GOTO 29 Eguivalen th
1F...THEN a=atament, except tha
followed by & line number and not

statement.

+ GCT0 must Dbe.
by zanother

Extended and Disk yersions of Altair BASIC provide an

expanded IF...THEN statzment of the form
IF(expression>THEN<YY>ELSB<ZZ>

where YY and 2Z are valid@ 1line numbers or Altair BASIC

statements. Examples: :

IF X>Y THEN PRINT "GREATER" ELSE PRIRT "NOT GREATERY

1€ the expression X>Y is true, the statement after THEW 1S
executed; otherwise, the statement after ELSE is executed.

IF X=2*Y TEEN 5 ELSH PRINT "ERROR"

If the exvpression K=2*Y i3 true, BASIC branches to 1 :
otherwise, the PRINT statement 1is executad. Extended and
Disk Altair BASIC allow a comma before THEN.

IF statements may be nested in the Extended and Disk
versions. Nesting is 1limited only by the length cf the
line. Thus, for example: : '

IF X>Y THEN PRINT "GREATER" ZLSE IF Y>X
THEN PRINT "LZSS THAN" ELSE PRINT "EQUAL"

and

IF ¥X=Y THEN IF Y>Z THEN PRINT "X>%" ELSE PRINT Ty<=2"
ELSE PRINT "X<O>Y!

are legal statements. 1f a line does not contain the same
number of ELSE and THEN clauses, each ELSE is matched with

the closest unmatched THEN. Example:

IF A=B THEN IF B=C THEN PRINT "A=C" ELSE PRINT "AL>C

will not print "A<>C" when A<>3B.

Page 20

[

|

1877 Page 21

3) ON...GOTO (not in 4K) provides for another type of

- conditional pbranch. Its form is as follows:
ON<expression>GOTO<K1list of line numbers>

After the wvalue of the expression 1is truncated to -an
integer, say 1, the statement causes BASIC to branch to the
line whose number is Ith in the list. The statement may Dbe
followed by as many line numbers as will fit on cne line.
If I=0 or is greater than the number of lines in the 1list,
execution will continue at the next line after the ON...GOTO
statement. I must not be less than =zero or greater than
255, or an FC or ILLEGAL FUNCTION CALL error will result.

b. Loops. It is often desireble to perform the same
calculations on different data or repetitively on the same
data. For this purpose, Altair BASIC provides the FOR and

NEXT statements. The form of the FOR statement is as
follows: ‘

FOR<Kvariable>=<X>TOKY> [STEP <K2Z>]

where X,Y and Z are expressions. When the FOR statement is

encountered for the first time, the expressions are
evaluated. The variable is set to the value of X which 1is
called the initial value. BASIC then executes the

statements which follow the FOR statement in the usual
manner. Vhen a NEXT statement is encountered, the step Z is
added to the variable which is then tested against the final
value Y. If Z, the step, is positive and the variable is
less than or equal to the final value, or 1if the step is
negative and the wvariable is greater than or equal to the
final value, then BASIC branches back to the statement
immediately following the FOR statement. Otherwise,
execution proceeds with the statement following the NEXT.
If the step 1is not specified, it 1s assumed to be 1.

Examples:

16 FOR I=2 TO 11 The loop 1is executed 17 times wikth
the variable I taking on each in-
tegral value from 2 to 11.

28 FOR V=1 TO 9.3 This loop will execute 9 times un-
til V is greater than 9.3

36 FOR V=10*N TO 3. 4/Z STEP SQR(R) The initial, final
and step expressions need not be
integral, but they will be eval-
gated only once, before loop-
ing begins.

49 FOR V=9 TO 1 STEP -1 This loop will be executed 9
times. v :

FOR...NEXT loops may be nested. That is, BASIC will execute

3 rwﬂ r

[

[

rrm)y ey ry o)

3

ﬁj Jandaryh 1977 | ‘ Page 22

'

a FOR...NEXT 1loop within the context of another loop. Aan
example 0of two nested loops follows:

198 FOR I=1 TO 190
120 FOR J=1 TO I

139 PRINT A(I,J)

148 NEXT J

158 NEXT 1~

Line 139 will print 1 element of A for I=1, 2 for I=2 and so
on. If loops are sted, they must have different lcop
variable names. The N?LT statement for the inside loop
variable (J in the example) must appear before that for the
outside variable (I). Any number of levels 0f nesting 1is
allowed up to the limit of available memory. '

The NEXT statement is of the form:

NEXT [<Kvariable>[,<variable>...]]
where each variable is the loov variable of a FOR loop for
which the NEXT statement is the end point. In the 4K
version, the only form allowad is NEXT with one variable.
In 2all other vwversions, NEXT without a variasle will macch
the most recent FOR statement. In the casc of nssted loons
which have the same end point, a single NEXT statement mey
be used for all of them, excapt in 4X. The first wvariable
in the list must be that of the most recent logn, the second

A5IC anccunters @

of
0f the next most recent, and so oa. If
NEXT statement. before its cerresnondi: 2
been executed, an NF or NEXT W’m“Ob“ FOR er
issued and execution 1is ter:

.J Y]

[YS I E

rOR statement ﬂc
ror message is

=
-
=
Y
(%3
(]
Q.
.

c. Subroutines. If the same operation or series of
operations are to be performed 1in several oplaces in a
grogram, storage space requiremenits and programming time
will be minimized by the use of subroutines. & subroutine
is a series of statements which are executed in the normal
fashion wupon heing =©cranchned to by a COSUB statement.
Execution of the subroutine 1s terminated Dbv th RETURN
statement which branches back to the statement after the
most recent GOSUB. The format ¢f the GOSUB statement is as

follows:
GOSUBKline number>

where the line number is that of the first 1line of the
subroutine. A subroutine may be called from more than one
place in a program, and a subroutine may contain a call to
another subroutine. Such subroutine nesting is limited only
by available memory.

January, 1977 Page 23

Except in the 4K version, subroutines may be branched
to conditionally by use of the ON...GOSUB statement, whose -
form is as follows:

ON <expression> GOSUB <list of line numbers> | -

The execution is the same as ON...GOTO except that the 1line —
numbers are those of the first lirnes c¢f subroutines.

Execution continuzs at the next statement after the -
ON...GOSUB upon return Zrom one of the subroutines. _
, d. OUT OF MEHOQRY errors. While nesting in loops, .
subroutines and Dbrancaing is not limited by BASIC, memory
size limitations reztrict the size and complexity of -
procrams. The O# or CUT OF MEMORY error message 1s issued -
when a program reqguires more memory than is available. See
Appendix C for an explanation of the amount of memory _ —_
required to run programs.
Y

2-3. Input/Qutput _

a. INPUT. The INPUT statement causes data input to be -
requested from the terminal. The format of the INPUT
statement is as follows: , -~

-

INPUT<1list of variables>

The effect of the INPUT statement is to cause the values
typed on the terminal to be assigned to the variables in the -
list. When an INPUT statement 1is executed, a gquestion nmark
(?) 1is printed on the terminal signalling a request for

information. The operator types the reguired numbers or -
strings (or, 1in 4X, expressions) separated by commas and
types a carriage return. If the data entered 1is invalid -

(strings were entered when numbers were reguested, etc.)
BASIC prints 'REDO FROM START?' and waits for the correct
data to be entered. If more data was reguested by the INPUT
statement than was typed, ?? 1s printed on the terminal zanrd
execution awaits the needed data. If more data was typed -
than was requested, the warning 'EXTRA IGNORED' is printed

and execution proceeds. After all the requested data is -
input, execution continues normally at the statement —
following the INPUT. Except in 4K, an optional prompt v
string may be added to an INPUT statement. v - —
INPUT ["<prompt string>";]<variable @ s5t> o —
Execution of the statement causes the prompt string to be -
printed before the gquestion mark. Then all operations ——
proceed as above. The prompt string must be enclosed in -
double quotation marks (") and must be separated from the -

1

j January, 1977

]

¥ L

Page 24

variable list by a semicolon (;). Example:

130 INPUT "WHAT'S THE VALUE";X,Y causes the following
output:

WHAT'S THE VALUE?

The requested vaiues 0of X and Y are typed after the ?
Except in 4K, a carriage return 1in response to an INPUT

(=1
statement will cause execution to continue with the wvalues

of the variables in the variable list unchanged. In 4K, a
SN error results.

b. PRINT. The PRINT statement causes the terminal to

print data. The simplest PRINT statement is:

PRINT

which prints a carriage return. The effect 1is to skip a
line. The more usual PRINT statement has the following

form:

PRINT<list of expressions>

list to be

which causes the values of the expressions in the
they are

printed. String literals may be printed if
enclosed in double quotation marks ("y.

The position of printing is determined by the
punctuation used to separate the entries in the list.
Alzair BASIC divides the printing line into zones of 14

spaces each. A comma causes printing of the value cf the
next expression to begin at the beginning of the next 14
column zone. A semicolon (;) causes the next printing to

begin immediately after the last value printeda. If a comma
or semicolon terminates the list of expressions, the nexct
PRINT statement begins printing on the same line according

to the «conditions above. Otherwise, a carriage return 1is
printed. :

c. DATA, READ, RESTORE

1) the DATA statement. Numer ical or string data needed
in a program may be written into the program statements
themselves, input from peripheral devices or read from DATA
statements. The format of the DATA statement is as follows:

DATA<list>

where the entries 1in the 1list are numerical or string
constants separated by commas. In 4X, expressions may also

January, 1977 Page 25

" appear in the list. The effect of the statement is to store
the list of values in memory in coded form for access by the
KREAD statement. Examples:

lﬁ DATP& 1,2"1E3’l@4

20 DaTA " LCO", MIWE Leading and trziling spaces in
string values ecre suppressed unless the string is
enclos2d by dounle guotation marks. :

t. The dGata stored by DATA

2) The READ statemen
ctatements 1is accessed by READ statements which have the

following form:
READ<list of variebles>

where the entries in the list are variable names separated
by commas. The £fact of the READ statement is to asszign
the values in the DATA lists to the corresponding variaples
in the READ statement list. This is done one by one from

left to right until the READ list is exhausted. If there
are more names in the READ list than values in the DATA
lists, an OD or OUT OF [ATA error message is ilswued. It
there are more values storad in DATA statements than are
read by a REaD stz teneﬂt, the next READ statement tO pe
executed will begin with the n=2xt unrea :d DATA list entry. A
csingle READ statGNgnt may access mwore than one DATS

ccatement, and mora tihzn one RLaAD statement may access the
data in a single DATA statement.

An SV or SYNTAX ERROR message can result from an

improperly formatted DATA list. 1In 4K Altair BaSIC, such an
the READ ctatement which

error message Wwill refer O
attempted to access the incorrect data. In other v rsions,
the line number in the error message will refer to the
cctual line of the DATA <cstatement in which the error

occurred.

3) RESTORE statement. Alter the RESTORE statement 1is
executed, the next piece of data access sed oy & READ
statement will be the first entrvy of the first DATA list 1in
the program. This allows re-READing the data.

d. CSAVEing and CLOADing Arrays (8K cassette, txtended
and Disk versions only). Numeric arrays m - be saved on
cassette or loaded from cassette using CSAVE* auid CLOAD* The

formats of the statements are:

CSAVE*<array name>

and

Led

T

»:{January, 1977 | . Page 26

CLOAD*<array name>

The array is written out in binary with four octal 218
header bytes to indicate the start of data. These bytes are
searched for when CLOADing the array. The number of bytes
written is four plus:

8*<number of elements> for a double precision array
4*<number of elements> for a single precision array
2*<number of elements> for an integer array

When an array is written out or read in, the elements of the
array are written out with the leftmost subscript wvarying
most quickly, the next leftmost second, etc:

_ DIM A(19)
CSAVE*A :

writes out a(3),Aa(l),...A(18)

DIM A(18,10)
CSAVE*A

writes out A(8,8), A(l,8)...A(16,0),A(16,1)...A(190,19)

Using this fact, it is possible to write out an array a

s
two dimensional array and read it back 1n as a sing
dimensional array, etc.

-

. (O W

NOTE

Writing out a double precision array and reading it
back 1in as a single precision or integer array is
not recommended. Useless values will undoubtedly be
returned.

e. Miscellaneous Input/Output

1) WAIT (not in 4X). The status of input ports can be
monitored by the WAIT command whicn has the following
format:

WAITKI,JI>[,<K>]
where I is the number of the port being monitored and J énd

K are integer expressions. The port status is exclusive ORd
with K and the result 1is ANDed with J. Execution 1is

e

AT SO SRR W i U

January, 1977 Page 27 »

[}

suspended until a non-zero value results. J picks the bits -
of port I to be tested and execution 1is suspended until
those bits differ from the corresponding bits of XK.
Execution resumes at the next statement after the WAIT. If

K is omitted, it is assumed to be zero. I, J and K must be B
in the range 8 to 255. Examples: -
WAIT 20,6 Execution stops until either bit 1 or bit -

2 of port 20 are equal to 1. (Bit 4 is
least significant bit, 7 is the most sig- B
nificant.) Execution resumes at the next »

statement.

WAIT 18,255,7 Execution stops until any of the most significant
5 bits of port 10 are one or any of the least =
significant 3 bits are zero. Execution
resumes at the next statement.

-

-

2) POKE, PEEK (not in 4K). Data may be entered into =
memory in binary form with the POKE statement whose formakt
'is as follows:

POKE <I,J>

whera I and J are integer expressions. POKE stores the byte
J into the location specified by the value of I. 1In 8K, I

must be less than 32768. In Extended and Disk versions, I -
may be in the range @ to 65536. J must be in the range § to
255. In 8K, data may be POKEd into memory above location -

32768 by making I a negative number. In that case, I is
computed by subtracting 65536 from the desired address. To

POKE data into location 45000, for example, I is -
45000-65536=-20536. Care must be taken not to POKE data -

into the storage area occupied by Altair BASIC or the system -
may be POKEd to death, and BASIC will have to. be 1loaded -
again.

The complementary function to PCKE is PEEX. The format
for a PEEK call is as follows: : d

PEEK (KI>)

where I is an integer expression specifying the address from

which a byte is read. I is chosen in the same way as in th -
POKE statement. The value returned is an integer between @
and 255. A major use of PEEK and POKE is to pass arguments .
and results to and from machine language subroutines. -

3)00T, INP (not 1in 4K). The format of the OQUT -
statement is as follows: :)

]

[SE

. 4'\ ¥) 5 A

ed e L

i

B

Led ed bed e

'?Januazy, 1977 | . Page 28

ouT <I,J>

- where I and J are integer expressions. OUT sends the byte

signified by J to output port I. I and J must be in the
range @ to 255.

The INP function is called as follows:
INP(KI>)

INP reads a byte from port I where I is an integer
expression in the range @ to 255. Example: :

26 IF INP(J)=16 THEN PRINT "ON"

3. FUNCTIONS

Altair BASIC allows functions to be raferenced in
mathematical function notation. The format of a function
call is as follows:

<name> (<argument>[,<argument>...])

- where the name is that of a previously defined function and

the arguments are one or more expressions, separated by
commas. - Only one argument 1is allowed in 4X and 8K.
Function calls may be components of expressions, so
statements like

14 LET T=(F*SIN(T))/P ' and
20 C=SQR(A"2+B 2+2*A*B*COS(T))

'are legal.

3-1. Intrinsic Functions

Altair BASIC provides several frequently used functicns
which may be called from any program without further
definition. A procedure 1is provided, however, wherebdDy
unnceded functions may be deleted to save memory space. See
Appendix B. For a list of intrinsic functions, see section
6-3.

3-2. User-Defined Functions (not in 4K).

January, 1977 :)) ‘Page 29

a. The DEF statement. The programmer may define
functions which are not included in the list of intrinsic
functions by means of the DEF statement. The form of the
DEF statement is as follows: ' ’

DEF<function name> (<variable list>)=<expression>

where the function name must be FN followed by a legal
variable name and the wentries 1in the variable list are
'dummy' variable names. The dummy variables represent the
argument wvariables or wvalues in the function call. 1In 8K
Altair BASIC, only one argument is allowed for a
user-defined function, but in the Extended and Disk
versions, any number of arguments is allowed. Any
expression may appear on the right side of the equation, but
it must be limited to one line. User-defined functions may
be of any type in Extended and Disk versions, but
user-defined string functions are not allowed in 8K If a
type 1is specified for the function, the wvalue of the
expression is forced to that type before it is returned to
the calling statement. Examples:

10 DEF FNAVE(V,W)=(V+W)/2

11 DEF FNCONS (VS$,WS)=RIGHTS (VS+WS,5) Returns the right
most 5 characters of the concat-
enation of V$ and WS.

12 DEF FNRAD(DEG)=3.14159/180*DEG When called with the
measure of an angle in degrees,

returns the radian equivalent.
A function may be redefined by executing another DEP
statement with the same name. A DEF statement must be
executed before the function it defines may be called.

b. USR. The USR functicn allows <calls to assembly
language subroutines. See appendix E.

3-3. Errors.

An FC or ILLEGAL FUNCTICH CALL error results when an
improper call is made to a function. Some places this might
occur are the following:

1. a negative array subscript. LET A(-1)=8, for example.
2. an array subscript that is too large (532767)

3. negative or zero argument for LOG

o

L

i

i

| S

d L g

January, 1977

Page 349

4. Negative argument for SQR
5. A°B with A negative and B not an integer

6. a call to USR with no address patched for the machine
language subroutine.

7. improper arguments to MID$, LEFTS ,RIGHTS, 1INP, OUT,
WAIT, PEEK, POKE, TAB, SPC, INSTR, STRINGS, SPACES or

ON...GOTO.

b. An attempt to call a user-defined function which
has not previously appeared in a DEF statement will cause a
UF or UNDEFINED USER FUNCTICN error.

c. A TM or TYPE MISMATCH error will occur 1if a

function which expects a string argument is given a numeric

value or vice-versa.

4. STRINGS

Tn all Altair BASIC versions except 4K, expressions may
either have numeric value or may be strings of characters.
Altair BASIC provides a complete complement of statements
and functions for manipulating string data. Many of the
statements have already been discussed so only their
particular application to strings will be treated in this

section.

4-1, String Data.

A string is a list of alphanumeric characters which may

be from & to 255 characters in length. Strings may be
stated explicitly as constants or referred to symbolically
by variables. String constants are delimited by quotation

marks at the beginning and end. A string variable name ends
with a dollar sign ($). Examples:

A$="ABCD" Sets the variable A$ to the four character
string "ABCD"

B9$="14A/56" Sets the variable B9$ to the six character
string "14A/56"

FOOFOOS="ES" Sets the variable FOQOFOOS$S to the two charac-

ter string "ES$"

Strings input to an INPUT statement need not be surrounded

P

b S o 31 RN

fanuary, 1977

Page 31
by quotation marks.

String arrays may be dimensioned exactly as any other
kind of array by use of the DIM statement. Each element of
a string array is a string wnich may be up to 255 characters
long. The * total number of string characters in use at any

“point in the execution of a program must not exceed the
total allocation of string space or an 0S or OUT OF STRING
SPACE error will result. String space is allocated by the
CLEAR command which is explained in section 6-2.

4-2. String overations.

a. Comparison Operators. The comparison operators for
strings are the same as those for numbers:

= equal

<> not equal

< less than

> greater than

={,<= less than or egqual to
=>,>= greater than or equal to

Compariscon is made character by character on the basis of
ASCII codes until a difference 1is found. If, while
comparison is preoceeding, the end of one string is reached,
the shorter string is considered to be smaller. ASCII ccdes
may be found in Appendix B. Examples: :

A<Z ASCII A is 865, 2 is 0699

1<A ASCII 1 is @43 '

" A">"A"™ Leading and trailing blanks are significant
in string literals. ’

b. tring Expressions. tring expressions are
composed of string 1literals, string variables and string
function calls connected by the + or concatenation operator.
The effect of the catenation cperator is to add the siring
on the right side of the cveratcr to the end of the string
on the left. If the result of concatenation is a string
more than 255 characters long, an LS or STRING TCO LONG

error message will be issued and execution will be
terminated.

c. Input/Output. The same statements used for input

‘and output of normal numeric data may be used for string

data, as well.

s

-~

.- - -

it

el e e bed i id e b

fewd bod L

J

i

]

i

L -

January,

1977 Page 32

1) INPUT, PRINT. The INPUT and PRINT statements read
and write trings on the terminal. Strings need not be

enclosed in quotatlon marks, but if they are not, leading
blanks will be 1ignored and the string will be terminatad

when the first comma or colon 1s encountered. Examples:

18 INPUT 200$,FOCS Reads two strings

28 INPUT XS Reads one string and assigns
, it to the variable XS.

3¢ PRINT X$,"HI, THERE" Prints two strings, including

all spaces and punctuation
in the second.

2) DATA, READ. DATA and READ statements for string

data are the same as for numeric data. For format
conventions, see the explanation of INPUT and PRINT above.

4-3. String Functions.

-

The format for intrinsic string function

c
same as that for numeric funct ions. For the list of strin

ﬂ

r

1
S
functions, see section 6-3. Special wuser-defined string
functions are allowed in Extended and Disk versi
be defined by the use of the DEF tatsment se
3-2). String function names must and with a doll

ons and may
section

ar sign.

£
s
(
1

5. EXTENDED VERSIONS.

The Extended and Disk versions of Altair BASIC provide
several statements, operators, functions and commands which
are not available either in the 4K or 8K wversions.
clarity, these features are grouped <together in this
section. Some modifications to existing 4K and 8K fe
such as +the IF...THEN...ELSE statement and numper
facilities, have been discussed in conjunction with the
other versions. Check the 1index for references to thcse

features.

£
(t cr
S
o
M
n

5-1. Extended Statements

a. ERASE. The ERASE statement eliminates arrays from
a program and allows their space in memory to be -used for
other purposes. The format of the ERASE statement 1s as
follows:

ls 1is the

For-

January,

LR gy R i R SN gy S SR
et

1977 | : Page 33

ERASE<array variable list>

where the entries in the list are valid array varlable names
separated by commas. ERASL will only operate on arrays and
not array elements. If a name appears in the list which is
not used in the program, an ILLEGAL FUNCTION CALL error will
occur. The arrays deleted in an ERASE statement may be
dimensioned again, but the old values are lost. Example:

160 DIM A(5,5) etc.

60 ERASE A
70 DIM A(188)

b. LINE INPUT. I:- is often desirable to input a whole
line to a string variable without use of gquotation marxs and
other delimiters. LINE INPUT provides this facility. The
format of the LINE INPUT statement is as follows:

LINE INPUT ["<prompt string>",];<string variable name>

The prompt string is a string literal that is printed on the
terminal before input is accepted. A question mark is nct
crinted unless it is contained in the prompt string. All
input frem the end of the prompt string to the carriace
return is assigned to the string variable. A LINE INPUT may
be escaped by typing Conkrol/c. At - that §oint, BASIC
returns to command level and prints OK. Execution may be
resumed at the LINE INPUT by typing CONT. LINE INPUT
destroys the input buffer, so the command may not be edited
bv Control/A for re-execution.

c. SWAP. The SWAP statement allows the values of two

variables to be exchanged. The format is as follows:
SWAP <variable,variable>

The value of the second variable is assigned to the first
variable and vice-versa. Either or both of the variables
may be elements of arrays. If one or both of the wvariables
are non-array variables whicn have not had values assigned
to them, an ILLEGAL FUNCTION CALL error will result. Botna
variables must be of the same type or a TYPE MISMATCH error
will result. Example:

16 INPUT F$,LS
20 SWAP F$,LS$
3¢ PRINT F$,LS
RUN

-

e

(.

i

R U

1977

Page 34

?FIRST,LAST Data input
LAST FIRST Computer prints

d. TRON, TROFF. As a debugging aid, +two statements
are provided to trace the execution of program instructicns.
When the trace flag is turned on by the TRON statement, the
number of each line in the program is printed as it is
executed. The numbers appear enclosed 1in sgquare brackets
([1). The function 1i1s disabled by execution of the TROFF

statement. Example:

TRON executed in direct mode

OK printed by computer

14 PRINT 1:PRINT "A" typed by programmer

2@ STOP
~RON. v

{161 1 line numbers and output printed by
A ' computer.

(28]

BREAK IN 20 .
The NEW command will also turn off the trace flag.
e. 1IF...THEN...ELSZ. See section 2-2.
f£. DEFINT, DEFSNG, DEFDBL, DEFSTR. See section 2-1

'g. CONSOLE, WIDTH. CONSOLE ~allows the console
terminal to De switched from one I/C port to another. The
format of the statement is:

CONSOLE <I/O port number>,<switch register setting>

The <I/0 port number> is the hardware port number of the low

order (status) port of the new 1/0 board. This wvalue. must
be a numeric expression petween @ and 255 inclusive., I 1t
is not in this range, an ILLEGAL FUNCTION CALL error will
occur. The <switch register setting> 1is also a value
between § and 255 inclusive which specifies the type of I/0
port (SIO, PIO, 4PIO0 etc) being selected. Appropriate
values of the <{switch register setting> 'may Doe found in
Appendix B in the table of sense switch settings or in the

table below.

e

i N A ST e

&
n
Ja=~uary, 1977 Page 35
o
Table of values for <switch register setting>: -
1/0 Board Sense Switch \ : =
. Setting -
2SI0 with 2 stop bits)
2SI0 with 1 stop bit 1
ACR 3 .
4PI0 4
PIO 5 -
HSR 6
non-standard terminal 14 -
no terminal 15 -
WIDTH Statement -
The WIDTH statement sets the width in characters of the ' -
printing terminal line. The format of the WIDTH statement
is as follows: -
WIDTH <integer expression> -
Example: |
-
WIDTH 30) . :
WIDTH 32 : -
The <numeric formula> must have a value between 15 and 255 ’
inclusive, or an ILLEGAL FUNCTION CALL error will occur. -
h. Error Trapping. Extended and Disk “Altair BasSIC -
make it possible for the user to write error detection and
handling routines which can attempt to recover from errors -
or provide more complete explanation of the cause of errors '
than the simple error messages. This facility has been =
added to Altair BASIC through the use of the ON ERROR GOTO, -
RESUME and ERROR statements and with the ERR and ERL :
variables. -

: . 1) Enabling Error Trapping. The ON ERROR GOTO
statement specifies the line of the Altair BASIC program on —
which the error handling subroutine starts. The format is

as follows: -
ON ERROR GOTO <line number> -

L

WO D W S W

January, 1977

Page 36

The ON ERROR GOTO statement should bte executed before the
user expects any errors to occur. Once an ON ERROR GOTO
cause

statement has been exescuted, all errors detected will
BASIC to start execution of the specified error handling
routine. 1If the <line number> specified in the ON ERROR
GOTO statement does not exist, an UNDEFINED LINE error will

occur.
Example:

19 ON ERROR GOTO 1089

2) Disabling the Error Routine. ON ERROR COTO 9
disables trapping of errors so any subsequent error will

cause BASIC to print an error mes3age and stop program

execution. If an ON ERROR GOTO ¢ statement appears 1n an
error trapoing subroutine, it will cause 3ASIC to stop and
print the error message which caused the trap. It is
recommended that all error trapping subroutines executs an
ON ERROR GOTO @ subroutine if an error is encountered for
which they have no recovery action.

NOTE

If an error occurs during the execution of an error
trap rcutine, the system error message will be

printed and execution will be terminated. Error
trapping dces not trap errors within the error trap
routine.

3) The ERR and ERL Variables. When the error handling
subroutine is entered, the variable ERR contains the error
code for the error. The error cocdes and thelr meanings are
listed below. See section 6-5 for a detailed discussion of

each of the errors and error messages.

Error

NEXT WITHOUT FOR
SYNTAX ERROR

RETURN WITHOUT GOSUB
OUT OF DATA

ILLEGAL FUNCTION CALL
OVERFLOW

QUT OF HEMORY
UNDEFINED LINE
SUBSCRIPT CUT OF RANGE

o
Q.
o

(Voo JIEN e \ WU, I S WS S I N

January, 1977 » Page 37

10 REDIMENSIONED ARRAY

11 DIVISION BY ZERO

12 ILLEGAL DIRECT

13 TYPE MISMATCH

14 OUT OF STRING SPACE

15 STRING TOO LCNG

16 STRING FORMULA TCO COMPLEX
17 CAN'T CONTINUE

18 UNDEFINED USER FUNCTION
19 UNPRINTABLE ERROR

20 NO RESUME

21 RESUME WITHOUT ERROR
22 MISSING OPERAND

23 LINE BUFFER OVERFLOW

Disk Errors

50 FIELD OVERFLOW

51 INTERNAL ERROR

52 BAD FILE NUMBER

53 FILE NOT FOUND

54 BAD FILE MODE

55 FILE ALREADY OPEN

56 DISK NOT MOUNTED

57 DISK I/0 ERROR

58 FILE ALREADY EXISTS

59 SET TO NON-DISK STRING
60 DISK ALREADY MOUNTED
61 DISK FULL

62 INPUT PAST END

63 BAD RECORD NUMBER

64 BAD FILE NAME

65 MODE-MISHATCH

66 DIRECT STATEMENT IN FILE
67 TOO MANY FILES

68 OUT OF RANDOM BLOCKS

The ERL variable contains the line number of the 1line
where the error was detected. For instance, if the error
occured in line 1006, ERL will be equal to 1668. If the
statement which caused the error was a direct mode
statement, ERL will be equal to 65535 decimal. To test if
an error occurred in a direct statement, use '

IF 65535=ERL THEN ...
In all other cases, use

IF ERL=<line number> THEN...

,;]v January, 1977

o

bod Lo b L ij ,L*j L

N

Page 38

If the line number is on the left of the equation, it cannot
be renumbered by RENUM (see section 1l-1a).

4) Disk Error Values - The ERR function. The ERR
function returns the parameters of a DISK I/O ERROR. ERR(Y)
returns the number of the disk, ERR(1l) returns the track
number (8-76) and ERR(2) returns the sector number (8-21).
ERR(3) and ERR(4) contain the low and high order bytes,
respectively, of the cumulative error count since BASIC was

loaded.

NOTE

—

Neither ERL nor ERR may appear to the left of the
sign in a LET or assignment statement.

o 5) The RESUME statement. The RESUME statement is used
to continue execution of the BASIC program after the error
recovery procedure has been verformed. The user has thrae
options. The user may RESUME execution at the statement
that caused the error, at the statement after the one that
caused the error or at some other line. To RESUME execution

at the statement which caused the error, the user should

use:

RESUME
or

RESUME 0

To RESUME execution at the statement immediately after the
one which caused the error, the user should use:

RESUME NEXT

To RESUME execution at a line dfferent than the one where
t*he error occurred, use:

RESUME <line number>
Wnere <line number> is not equal to zero.

6) Error Routine Example. The following example shows
how a simple error trapping subroutine operates.

January,

1877 _ ‘ Page 39

1900 ON ERROR GOTO 5849

200 INPUT "WHAT ARE THE NUMBERS TO DIVIDE";X,Y
219 Z=X/Y

229 PRINT "QUOTIENT 1IS";Z

230 GOTO 288

50¢ IF ERR=11 AND ERL=217 THEN 528

513 ON ERROR GOTO ¢

52¢ PRINT "YOU CANT HAVE A DIVISOR OF ZERO!"
530 RESUME 200 L

7) The ERROR statement. In order to force branching to
an error trapping routine, an ERROR statement has been
provided. The primary use of the ERROR statement is to
allow the user to define nis own error codes which can then
conveniently be handled by a centralized error trap routine
as described above. The format of the ERROR statement is:

ERROR <integer expression>

When defining error codes, values should be picked which are
greater than the ones used by Altair BASIC. . Since more
error messages may be added to Altair BASIC, user-defined
error codes should be assigned the highest possible numbers
to assure future compatibility. If the <aum2ric expression>
used in an ERROR statement is less than zero or greater than
255 decimal, an ILLEGAL FUNCTION CALL error will occur. Of
coursa, the ERROR statement may also be used to force SYNTAX
or other standard Altair BASIC errors. ©Use of an ERROR
statement to force printout of an error message for which no
error text 1is defined will cause an UNPRINTABLE ERROR

message to be printed out.

5-2. Extended Operators.

Two operators are provided that are exclusive to the
Extended and Disk versions.

a. Integer Division. Integer division, denoted by \

(backslash), forces 1its arguments to integer form and

truncates the gquotient to an integer. More precisely:
2\B= FIX(INT(A)/INT(B))
Its precedence is just after multiplication and floating

point divison. Integer division 1is aporoximately eight
times as fast as standard floating point division. '

r

S

=

M

i

1

.

.

~

1

1o

‘-

r~

r

'w 4-.....:‘

r

January, 1977 Page 40

Lt L

b. Modulus Arithmetic - the MOD operator. A NMOD B
gives the 'remainder' as A is divided by B. More precisely:

A MOD B=INT(A)~(INT(B)*(A\B))

If B=g, a DIVISION BY ZERO error occurs.. The precedence of
MOD is just below that of integer division.

5-3., Extended Functions

L e Lx

a. Intrinsic Functions. Extended and Disk Altair
BASIC provide several intrinsic <functions which are not
- available in the ~other versions. For a 1list of these
functions and a description of their use, see section 6-3.
- . b. The DEFUSR statement. Up to ten assembly language
subroutines may be defined by means of the DEFUSR statement
= whose form is as follows:
- DEFUSR[<digit @ through 9>]=<integer expression>
3 Example:
' ' DEFUSR1=4100000

.

DEFUSK2=31396
DEFUSR9=ADR

The of the <integer expression> is the starting address of
the USR routine specified. When the USR subroutine is
entered, the A register contains the type ©f the argument
which was given to the USR function. This is also the
length of the descriptor for that argument type:

L L2

Value in A Meaning

2 Two byte signed two's compiement integer.

3 String.

4 Single precision four byte floating point number.
8 Double precision floating point number.

When the USR subroutine is entered, the [H,L] register pair
contains a pointer to the floating point accumulator (FAC) .
The [H,L] registers contain the address of FAC-23.

If the value in the FAC is a single precision floating point
numoer, it is stored as follows:

FAC-3: . Lowest 8 bits of mantissa.
FAC-2: Middle 8 bits of mantissa.
FAC-1: Highest 7 bits of mantissa with hidden (implied)

leading one. Bit 7 is the sign of the number (g
positive, 1 negative).

NS —

e e gt o S S

January,

1977 ’ ' Page 41

FAC: Exponent excess 208 octal. If the contents of FAC is 244,
the exponent is @. If contents of FAC is @,the number is

Zero.

If the argument is double precision floating point, the
FAC-7 to FAC-4 contain four more bytes of mantissa, low
order byte in FAC-7, etc. If the argument 1is an \integer,
FAC-3 contains the 1low order byte and FAC-2 contains the
high order byte of the signed two's complement value. If
the argument 1is a string, [D,E] points to a string
descriptor of the argument, whose form is:

3yte Use

2 Length of string 6-255 decimal.

1-2 Sixteen bit address pointer to first byte of
strings text in memory (Caution - may point into
program text if argument is a string literal).

Normally, +the wvalue returned by a USR function will be the
same type (integer, string, single or double precision
floating point) as the argument which was passed to it.
However, calling the MAKINT routine wnose address 1s stored
in location 6 will return the integer in [H#,L] as the wvalue
of the function, forcing the value returned by the function
to be 1integer. Execute the following sequence to return
from the function: '

PUSH H ; SAVE VALUE TO BE RETURNED
LHLD 6 ; GET ADDRESS OF MAXKINT ROUTINE
XTHL ;SAVE RETURN ON STACK &

;GET BACK [H,L]}
RET ;s RETURN

The argument of the function may be forced to an integer, no -

matter what 1its type by calling the FRCINT routine whose
address is located in location 4 to get the integer value of
the argument in (H,L]:

LXI H,SUB1 ;GET ADDRESS OF SUBROUTINE
; CONTINUATION

PUSH H ; PLACE ON STACK

LHLD 4 :GET ADDRESS OF FRCINT

PCHL ;CALL FRCINT

SUBl:

5-4. The EDIT Command.

Led L b b Lk L b

L. Ll

(I T

Lok

L)

January, 1977

Page 42

’

-~ The EDIT command allows modifications and additions to
be made to existing program lines without having to retype
the entire line each time. Cocmmands typed in the EDIT mode
are, as a rule, not echoed. That is, they usually do not
appear on the terminal screen or printout as they are typed.
Most commands may be preceded Dby an ortional numeric
repetition factor which may be used to repeat the ccmmand a

" number of times. This repetition factor should be in the

range @ to 255 (3 is ecuivalent to 1). If +the repetition
factor is omitted, it 1is assumed to be 1. In the following
examples, a lower case wot pefore the command stands for the
repetition factor. In the following description of the EDIT
commands, the T"cursor" refers to a pointer which is
positioned at a character in the line being edited.

To EDIT a line, type EDIT followed by the number of the
line and. hit the carriage return. The line number of the
line being EDITed will be orinted followed by a space. The
cursor will now Dbe positioned to the left of the first
character in the line.

NOTE

The best way of getting the "feel” of the EDIT
command is to try EDITing a few lines yourself.

1f a command not recognized as an EDIT command 1is entered,
the computer prints a bell (control/G) and the command 1is

ignored.

In the following examples, the lines labelled "computer
prints" show the appearance of the line after each command.

a. Moving the Cursor. Tyoing a space moves the cursor
to the right and causes the character passed over to be
printed. A number preceding the space (n<space>) will cause

the cursor to pass over and print out n characters. Typing
a Rubout causes the immediately previous character 'to oe
printed effectively backspacing the cursor.

b. Inserting Characters

WARNINGS:

e

January,

1977

Page

Character insertion is stopped by typing Escape
(or Altmode on some terminals). Control/C will not
interrupt the EDIT command while it is in Insert
mode, but will be inserted into the edited line.
Therefore, Control/C should not be used in the EDIT
command.

It is possible using EDIT to create a line
which, when ‘listed with its line number, 1is longer
than 72 characters. Punched paper tapes containing
such 1lipes will not read properly. However, such
lines may be CSAVEd and CLOADed without error.

I Inserts new characters into the line being edited.

Each character typed after the I is inserted at
the current cursor position and printed on the
terminal. Typing Escape (or Altmode on some
terminals) stops character insertion. If an
attempt is made to insert a character that will
make the line longer than 255 characters, a
Control/G (bell) is sent to the terminal and
the character is not printed.

A backarrow (or Rubout) typed during an insert
command (or-) will delete the character to the left

of the cursor. Characters up to the beginning

of

the 1line may be deleted in this manner, and a
backarrow will be echoed for each character
deleted. However, 1f there are no characters to
the left of the cursor, a bell is echoed instead of
a backarrow. If a carriage return is typed during
an insert command, it is as if an escape and then
carriage return were typed. That 1is, all
characters to the - right of the cursor will be

printed and the EDITed 1line will replace the

original line.

X is similar to I, except that all characters to

the right cf the cursor are printed, and the cursor

moves to the end of the line. At this point,
will automatically enter the insert mocde (see

it

I

command). X is most useful when new statements are

to be added to the end of an existing line. For
example: :

'User types EDIT 58 (carriage return)

Computer prints 58

User types X

Computer prints 58 X=X+1

User types :Y=Y+1 (CR)

Computer prints 58 X=X+1l:Y=Y+1

. L_b

January,

L

L L

b L}

Ll

Ly L3

1877

Page 44

'In the above example, the original line %50 was:

58 X=X+1

The new line #5080 now reads:

50 X=X+1l:Y=Y+1

Hvis the same as X,
be orinted).
last st

when the

except that a
the right of the cursor are dolet
The insert mod (5

ol

then automatically b= ente roa.
atements

11 characters to

ed (they will not
ae I command) will
iz most useful

on a line are to be

replaced with new ones.

Deleting Characters

nD deletes n characters to the right of the

cursor. If n is ommitted, it defaults to 1. £
there are Lless than n characters < the right of
the cursor, characters will Dbe delated only to the
end of the line. The cursor is positioned to the
right of the last character deleted. Th
characters deleted are enclosed in packslashes (\).
For example:

UJser types
User types
Computer prints
User types
Computer prints

The new line #23 will no longer contain the characters

which are enclosed

Searching.

The nSy command
character y 1in the
search skips over
of the cursor and
to the right of the ¢
over during the
character 1s not fou
end of the line. If 1
stop to

the

sea

29 X=X+1:REM
SDIT 20

searches
line. N

begins

the right of

JUST INCREMENT X
(carriage return)
23
6D (carriage return)
29 \X=X+1:\RE{ JUST INCREMENT X

by the backslashes.

for the nth occurrence of the
defzults to 1. The
first character to the right
with the sscond character
All characters passed
rca are opoprinted. 1f the
nd, tne cursor will be at the
+ is found, the «cursor will
the character and all of the

arsor.

characters to its left will have been printed. For
example
User types : 3¢, REM INCREMENT X
User tyces : EDIT 549

s

e s

e e s 1 TR ST

January,

1977

f‘

Carriage

Page 45
Computer prints 59
User types : : 2SE
Computer prints 53 =X INCR
nkKy 1is equivalent to S except that all ¢« e
characters passed over during the < -.c¢h are
deleted. The deleted <characters are =:nclosed in

backslashes. For example:

User types 18 TEST LINE
User types EDIT 10
Computer prints 13

User types KL
Computer prints v 18 \TEST \

Text Replacement.

A character in a line may be changed by the use of
the command Cy which changes the character to the
right of the <cursor to the character y. Y is
printed on the terminal and the cursor 1s advanced

one position. nCy may be wused to change n
characters in a line as they are typved in from the
terminal. (See example below.; If an attempt is

made to change a character which does not exist,
the change mode will be exited. Example:

User types 13 FOR I=1 TO 189
User types EDIT 19

Computer prints 10

User types 251

Computer prints 18 FOR I=1 TO

User types 3C256
Computer prints 13 FOR I=1 TO 256

Ending and Restarting

Return Terminates editing and crints:the re-
mainder of the line. The edited line replaces the
original line.

E is the same as a carriage return, except the
remainder of the line 1is not printed.

Q restores the criginal line and causes BASIC to
return to command level. Changes do no%t take
effect until an E or carriage return is tyned, so Q
allows the wuser to restore the original 1line
without any changes which may have been made.

L causes the remainder of the line to be printed, and
then prints the line number and restarts aditing at

LwJ L le I.,.._V‘[Lo I | . i i i] Ji i I3

L L L

January, 1977

Page 46

the beginning of. the line. The cursor will be
positioned to the left of the first character in
the line. L allows monitoring the effect of
changes on a line. Example:

User types 58 REM INCREMENT X
User types ERIT 58
Computer prints 59
User types 25M
Computer prints 580 REM INCRE
User types . L
Computer prints 5¢ REM INCREMENT X
59
A A causes the original line to be restored

and editing to be restartad at the beginning of the
line. For example:

User types 14 TEST LINE

User types EDIT 198

Computer prints 13

User types 138D

Computer prints 19 \TEST LINE\

lser types A

Computer prints 16 \TEST LINE\
1a

In the above example, the user made a mistake when
he deleted TEST LINE. Suppose that he wants to
type "1D" instead of 13D. As a rasult of the A
command, the original line 160 is reentered and 15
ready for further editing.

IMPORTANT
Whenever a SYNTAX ERROR is discovered during the execution
of a source program , BASIC will automatically begin EDITing
the line that caused the error as if an EDIT command had
been typed. Example:

19 APPLE

RUN ,
SYNTAX ERROR IN 10
18

Complete editing of a 1line causes the line edited to:be

reinserted. Reinserting a line causes all variable values
to be deleted. To preserve those values for examination,
the EDIT command mode may be exited with the Q command after:
the line number is orinted. If this is done, BASIC will
return to command level and all wvariable wvalues will ' De
preserved.

January,

1977 ‘ Page 47

L]

The features of the EDIT command may be wused on the
line <currently being typed. To do this, type Control/A
instead of Carriage Return. The computer will respond with
a carriage return, an exclamation point (!) and a space.
The cursor will be positioned at the first character of the
line. At this point, any of the EDIT subcommands except
Control/A may be used to correct the line. Example:

User types 13 IF X GOTO #"/A
Computer prints ! v
User types S# 2C1l2
Computer prints t 18 IF X GOTO 12

The current line number may be designated by a period
(.) in any command requiring a line number. Examples:

User types 16 FOR I= 1 TO 190
User types EDIT .
Cemputer prints 10

5~5. PRINT USING statement.

The PRINT USING statement can be emploved in situations
where a specific output format is desired. This situation
might b encountered in such applications as printing
payroll <checks or accounting reports. The general format
for the PRINT USING statement is as follows: ’

PRINT USING <string>;<value list>

The <string> may be a string wvariable , string expression or
a string constant which is a precise copy of the line to be
printed. All of the characters in the string will be
printed Jjust as they appear, with the exception of the
formatting characters. The <value list> is a 1list of the
items to be printed. The string will be reveatedly scanned
until: 1) the string ends and there are no values 1in the
value 1list or, 2) - -a field is scanned in the string, out the
value 1list 1is exhausted. The string is constructed
according to the following rules:

a. String Fields.

! specifies a single character string £field.
(The string itself is specified in the value list.)
\n spaces\ Specifies a string field consisting of 2+n char-
acters. Backslashes with no spaces between them

DU D ISR B B

i

L

L

| WL W T B

-

L)

4

L

i

- January, 1977 : Pége 438

would indicate a field of 2 characters width, one
space between them would indicate " a field 3
characters wide, etc.

In both cases above, if the string has more characters than
the field width, the =sxtra characters will be ignored. bl
the string has fewer characters than the field width, extra
spaces will be printed toc £fill out the entire field. Trying
to print a number in a string £field will <cause a TYPE

MISMATCH error to occur. Example:

186 AS="ABCDE":3$="FGH"
20 PRINT USING "!";AS:BS
380 PRINT USING "\ \";B$:a$

(the akove would print out)

AF

FGH ABCD
Note that where the "!" was used only the first letter of
each string was printed. Where the backslashes enclosed two
spaces, four letters from each string were printed (an extra
space was printed for BS which has only three characters).
The extra characters in the first case and for A$ 1in the
second case were ignored.

b. Numeric Fields. With the PRINT USING statement,
numeric printouts may be altered to suit almost any
application. Strings for formatting numeric fields are
constructed from the following characters:

Numeric fields are specified by the % sign, each of .
which will represent a digit position. These digit
positions are always filled. The numeric field
will be right jus+ified; that is, if the number
printed 'is too ~small to £il1l1 all of the digit
positions specified, leading spaces will be printed
as necessary to fill the entire field.

4k

" The decimal point mav be specified in any position

in the field. Rounding is performed as necessary.
If the field fcrmat specifiec that a digit is to
precede the decimal point, the digit will always te
‘printed (as O if necessary).

The following program will help illustrate these rules:

January,

1977

% %

$$

Page 49

19 INPUT AS,A
28 PRINT USING AS§;A
38 GOTO 19
RUN
? #%,12
12

? #4#,12
12
? FR#E7,12
12
?3F.84,12
12.00
? #%%.,12
12.
? #.8%%,.02
0.029
?3%#.%,2.36
2.4

?%##1“12

s
[

-12

#¢##l-~12
-.12

THi¥+,-12

-12

The + sign may be used at either the beginning or
end of the numeric field. If the number Iis
positive, the + sign will be printed at the
specified end of the number. If the number Iis
negative, a - sign will be printed at the specified
end of the number.

The - sign, when used to the right of the numeric .
field designation, will force the minus sign to be
printed to the right of the number 1if it is
negative., If the number is positive, a space is
printed.

The ** placed at the beginning of a numeric field

designation will cause any unused spaces 1in the
leading portion of the number printed out to be
filled with asterisks. The ** also specifies

positions for 2 more digits. (Termed "asterisk.

£i11")

When the $$ is used at the beginning of a numeric

field designation, a $ sign will be printed in the
space immediately preceding the number »rinted.
Note that $S also speciiies positions for two more
digits, but that the § itself takes up one of these
spaces. Exponential format cannot be used with
leading $ signs, nor can negative numbers be outpnut

3

]Jr *~1ary,' 1977

:}‘,

*%§

-4 L

AAAA

-

i"*“‘“_’)“j

J

'

-

e Ll

) L L)

Page 30

unless ‘the sign is forced to be trailing.

The **$ used at the veginning of a numeric field

designation causes both of the above (¥* and §§) toO
be performed on the number being printed out. All
of the previous conditions apply, except that ** g
allows for 3 additional digit positions, one oL

which is the §$ sign.

A comma appearing to the left of the decimal point

in a numeric field, designation will cause a comma
to be printed to the left of every third digit to
the left of the decimal point in the number being
printed. The comma also specifies another digit
position., A comma to the right of the decimal
point in a numeric field designation is considered
a part of the string itself and is treated as a

printing character.

(“ AAon some terminals) Exponential Format.

If exponential format is desired in the printout,

the numeric field designation should be followed by
~~~~ (allows space for E+XX). any decimal point
arrangement is allowed. The significant digits are
left Jjustified and the exponent 1s adjusted.
Unless a leading + or a trailing + or - is used,
one position to the left of the decimal point will
pbe used to print a space Or minus sign. CExamples:

PRINT USING " [
[ 1E+81] [ 2E+9
OK

PRINT USING " [.##%:
[.1234582+65 ]} [.1
OK

PRINT USING " [+.2%%7777]"; 123,-126
[+.12E+03] [~.13E+d3]

OK

43°°"%)"; 13,17,-8
1] [-8E+00]

13"~ %_1. 12345,-123456
56E+06-1

1f the number to be printed out is larger than the
specified numeric field, a $ character will ©De
printed followed Dy the number itself in standard
Altair BASIC format. (The user will see the entire
number.) If rounding a number causes it to exceed
the specified field, the 3 character will be
printed followed by the rounded number. If, for
example, A=.999, then :

.

PRINT USING ".##",A

will print




January, 1977 | Page 51

$1.00.

If the number of digits specified exceeds 24, an
ILLEGAL FUNCTION CALL error will occur.

The following program will help = illustrate the
preceding rules.

Program: 19 INPUT AS,A
29 PRINT USING AS:A
38 GCTO 10
RUN

The computer will start by typing a ?. The numeric field
designator and value list are entered and the output is
displayed as follows:

? +%,9

+9

? +3,140
§+10

? ##1-2

-2

? +#l-2
2

:1_2

C#d¥7,.82

.820

2 #i3#.%,100

136.9

? ##+,2

2+ ' ]
? THIS IS5 A NUMBER #%#,2
THIS IS A NUMBER 2
? BEFORE ## AFTER,12
BEFORE 12 AFTER

? 3xd47,44444

344444

2 **g33,l

ckkk]

? **33,12

*x]12

2 **33,123

*123 ’

? **33,1234

1234

2 **33,12345

$12345

? *% 1

*1

? **,22

4+ o) | o
[}
=+ N

AY)



Lk

- —r L L ¥ b L L L.k

AR N TR I WA S T [ W

WG B WS B W

January.,

1977

22

? %% 33,12
12.04

? **diaT,
dkkkdk]

(note: not floating $)

(note: floating §$)

? %1609
? $.%#,6.99

? ##-12

? #3448, 8437777,2.45678

2456.780E-03
? $.4347777,123
0.123E+43

? TE444%,454.4",1234567.89
1,234,570.90

S&#44.4%,12.34
12.34
$S44454.4%,12.56
$12.56
? $$.4%,1.23
$1.23
? $S.4%,12.34
$$12.34
? $$4%%,0.23
$o
? $S#%ER.ER.0
$6.00
? **SEHF.35,1.23
****$1.23
? **§ . ¢¢#,1.23
*$1.23
? O**SEiT,

****sl

LAV IR 7) 2RV )

Typing Control/C will stop the program.

- 5-6.

Disk file oceraticnc.

Page 52



e A S A NN 4 kg L

January, 1977 o Page 53

As many as sixteen floopy disks may be connected to a -
single ALTAIR disk controller. These disks have been
assigned the physical disk numbers @8 through 15. Users with
one drive should address the drive at zerc, and users with e
two drives should address them at zero and one, etc.

In the following descriptions, <disk number> is an
integer expression whose value is the physical numpber of one

of the disks in the system. If the <disk number> is omitted -
from a statement other than MOUNT or UNLOAD, the <disk g
number> defaults to 8. If the <disk number> is omitted from -

a MOUNT or UNLOAD s+tatement, disks # through the hignest
disk number specified a: initialization are affected.

a. Opening, Closing and Naming Files. To initialize -
disks for reading and writing, the the MOUNT command is
issued as follows:

MOUNT [<disk number>[,<disk number>...}]’

Example:

MOUNT @ -
Mounts the disk on drive zero, and —

MOUNT 0,1 d
Mounts the disks on drives zero and one. If there |is Tw
already a disk MOUNTed on the specified drive(s) a -
DISK ALREADY MOUNTED message will bDe printed. Before
removing a disk which has been used for reading and writing T
by- Disk Altair BASIC, the wuser should give an UNLOAD -
command: ' ’

UNLOAD [<disk number>[,<disk number>...]] E

-

UNLOAD closes all the files open on a disk, and marks tne
disk as not mounted. Before any further I/0 is done on an 1
UNLOADed disk, a MOUNT command must be given. -

NOTE

MOUNT, UNLOAD or any other disk command may be used
as a program statement.

4

— o

All data and program files on the disk have an associated
file name. This name is the result of evaluating a string



]

‘:] January, 1977 , , ’ ~ Page 54

N

Lo

)

L

(.

expression and must be one to eight characters 1in length.

The first character of tne file name cannot be a null (3)
byte or a byte of 255 decimal. An attempt to use a null
file name (zero characters in length) , a file name over 8
characters in length or containing a @ or 255 in the first
character position will <cause a BAD FILE NAME error. Any
other sequence of one to eight characters 15 acceptable.

Examples of valid file names:

ABC

abc (Not the same as ABC)
filename

file.ext

12345678

INVNTORY

FILE##22

NOTE

Commands that require a file name will use <file

name> in the appropriate vosition. Remember that a

<file name> can be any string expression as long as
the resulting string follows the rules given above.

b. The FILES Command. The FILES command is wused to
orint out the names of the files residing on a particular
disk. The format of the FILES command is:

FILES <disk number>

Example:

FILES (prints directory of files on disk 9)
STRTRK PIP CURFIT <CISASM

Execution of the FILES command may be interrupted by typing
Control/C. A more complete 1listing of the 1information
stored in a particular file may be obtained by running the
PIP utility program (see Appendix I).

c. SAVEing and LOADing programs. Once a program has
neen written, it is often desirable to save it on a disk for
use at a later time. This is acccmplished by issuing a SAVE
command: '

Y



Jenuary, 1977 . Page 55

=y

SAVE <file name>[,<disk number>[,A]]

" Example:

SAVE "TEST", 8

S R

or

SAVE "TEST"

S

1

would save the program TEST on disk =zero. Whenrever a
program is SAVEd, any existing copy of the orogram
previously SAVEd will be deleted, and the disk space used by
the previous program is made available. See section 5-6d4
for a discussion of saving with the ‘'A' option.

—

-
The LOAD statement reads a file from disk and loads it
into memory. The syntax of the LOAD statement is: -
LOAD <file name>[,<disk number>[,R]] L
Correspcndingly: ?n
LOAD "TEST",0 or LOAD "TEST"
loads the program TEST from disk zero. If the file does not o
exist, a FILE NOT FOUND error will occur.
LOAD "TEST",8,R b
Ok
-
LOADs the program TEST from disk zero and runs it. The LOAD -
command with the "R" option may be used tc chain or segment
programs into small pieces if the whole program is too large . -
to fit in the computer's memory. All variables and program. ;
lines are deleted by LOAD, but all data files are kep: -
OPEN (see below) if the "R" option 1is used. Therefore, -
information may be passed between programs through the use ¢
of disk data files. If the "R" option 1is not uased, all ' -
files are automatically CLOSEd (see below) by a LOAD. ,
Example: L~
NEW ' —
16 PRINT "FOOl":LOAD "F002",8,R - i
SAVE "FOO1l",8 -

O K . . ' Ao
14 PRINT "FOO2":LOAD "FOO1",8,R '
SAVE "FOO2",8




Lot

L_d

W TR O I

L.

.l

-3

i

January,

Wy O T Y A

T T |

1977 - ' Page 56

OK

RUN
FOO02
FQOO1
FOO2
FOO1l
...2tC.

(Control/C may be used to stop execution at this point)

In this example, program FOO2 is RUN. FOO2 prints the
message "FO02" and then «calls the program FOOl on disk.
FOOl prints "“FOOl" and calls the program FOO2 which prints
"PO02" and so on indefinitely.

RUN may also be used with a file name to load and run a
program. The format of the command is as follows:

RUN<file name>[,<disk number>([,R]]

All files are closed unless ,R is specified after the disk
number. :

d. SAVEing and LOADing Program Files in ASCII. Often
it is decsirable to save a program in a form that allows the
program text to be read as data by another program, such as
a text =editor or resequencing program. Unless otherwise
specified, Altair BASIC saves 1ts programs in a compressed
binary format which takes a minimum of disk space and loads
very gquickly. To save a progran in ASCII, specify tae "A"

“option on the SAVE command:

SAVE "TEST",0,A
OK
LOAD "TEST",9

OK

Information in the file tells the LOAD command the
format in which the file 1is to be loaded. The first
character of an ASCII file 1is never 255, and a binary
program file always starts with 255 (377 octal). Remenber,
loading an ASCII file is much slower than loading a binary
file.



January,

1977 » . Page 57

.

, e. The MERGE Command. Sometimes it is very useful to
put parts of two programs together to form a new program
combining elements of both programs. The HMERGE command is
provided for this purpose. ‘As soon as the MERGE command has
been executed, BASIC returns to command level. Therefore it
is more likely that MERGE would be used as a direct command
than as a statement in & program. The format of the MERGE
statement is as follows:

MERGE <file name>|[,<disk number>]

Example:

MERGE "PRINTSUB",1
OK

The <file name> specified is merged into the program already
in memory. The <file name> must specify an ASCII feormat
saved program or a BAD FILE MODE error will occur. If there
are lines in the program on disk which have the same line
numbers as lines in the program in memory, the 1lines from
the file on disk will replace the corresponding progran
lines in memory. It is as if the program lines of the file
on disk were typed on the user terminal.

f. Deleting Disk Files. The KILL statement deletes a
file from disk and returns disk space used by the file to
free disk space. The format of the KILL statement 1is as

follows:
KILL <file name>[,<disk number>]

If the file does not exist, a FILE NOT FOUND error will
occur. If a KILL statement is given for a £ile that 1is
currently OPEN (see Dbelow), a FILE ALREADY OPEN error

occurs.

g. Renaming Files - the NAME Statement. The NAME
statement is used to change the name of a file:

NAME <old fi;e name> AS <new file name>[,<disk number>]

Example:
NAME "OLDFILE" AS “"NEWFILE"

The <o0ld file name> must exist, or a FILE NOT FOUND error
will occur. A file with the same name as <new file nane>
must not - exist or a FILE ALREADY EXISTS error will occur.
After the NAME statement is executed, the file exists on the

Y

=

™y %

e I s

L

LI B

i

T

1 i

v

I



e i M E g

b b L e ek e

L3 L L Ld L

TR ] W

U T

1

-

Januaty, 1977 R | Page 58

same disk in the same area of disk space. Only the name is
changed. : . ‘

h. OPENing Data Files. Before a program can read or
write data to a disk file, it must first OPEN- the file on
the appropriate disk in one of several modes. The general
form of the OPEN statement 1is:

OPEN <mode>, [4]<file number>,<file name> [ ,<disk number>]

<mode> is a string expression whose first character is cne
of the following:

0 Specifies seguential output mode
I Specifies sequential input mode
R : Specifies random Input/Cutput mode

A sequential file is a stream of characters that is read or
written in order much like INPUT and PRINT statements read

from and write to the terminal. Random files are divided
into groups of 128 <characters called records. The nth

record of a file may be read or written at any time. Random
files have other attributes that will be discussed later in
more detail.

<file number> is an integer expression between one and
fifteen. The number 1is associated with the file being
OPENed and is used to refer to the file in later 1/0
operations.

Examples:

OPEN "O",2,"OUTPUT", 8
OPEN "I",1,"INPUT"

The above two statements would open the file OUTPUT for
sequential output and the file INPUT for sequential input on
disk zero. ' )

OPEN M$,N,FS$,D

The above statement would open the file whose name was 1in
the string F$ in mode M$ as file number ¥ on disk D.

i. Sequentiai ASCII file 1I/0 Sequential input - and
output files are the simplest form of disk input and output
since they involve the use oI the INPUT and PRINT statements



January,

1977 ’ s Page 59

with a file that has been previously OPENec.

INPUT is used to read data from a disk file as follows:
INPUT #<file number>,<variable list>

where <file number> represents the number of the file that
was OPENed for input and <variable list> is a 1list of the
variables to be read, as in a normal INPUT statement. When
data is read from a seguential input file wusing an INPUT
statement, no question mark (?) is printed on the terminal.
The format of data in the file should appear exactly as it
would be typed to a standard INPUT statement to the
ferminal. When reading numeric values, leading spaces,
carriage returns and line feeds are igncred. When a
non-space, non-carriage return, non-line- feed character ' is
found, it is assumed to be part of a number in Altair BASIC
format. The number terminates on a space, a carriage return

, line-feed or a comma.

When scanning for string items, leading blanks,
carriage returns and line-feeds are also ignored. When a
character which is not a leadlng blank, carriace return OrC
line-feed 1is found, it 1is assumed to be the start of a
string item.If this first character is a quotation mark (")
the item 1is taken as being a quot=d °tr1na, and all
characters between the first double quote (") and a matchirg
double gquote are returned as characters in **o string value.
This means that a guoted string in a fil mzv -contaln any
characters except double quote. If the f1r=t character of a
string item is not a guotation mark, then it is assumed to
be an unguoted string constant. The string returned will
terminate on a comma, carriage return or line fesed. The
string is immediately terminated after 255 characters have

been read.

For both numeric and string items, if end of file (EOF)
is reached when the item 1is being INPUT, the item is
terminated regardless of whether or not a closing guote was

seen.

Sequential I/O commands destroy the input Dbuffer so
they may not be edited by Control/A for re—executlon.

Example of seguential I/0 (numeric items):

560 OPEN "O",1,"FILE",?
518 PRINT %1,X,Y,32
520 CLOSE #1



