
I
r

I

·-

VOL. 2 NO. 4 MAY 1980

lN T~l5 l55UE . ..

EDITORIAL•••••••••••• • ••••••••••••p• 1

BEAT THE STRING BUG•• • ••••••••••••l'• 2

TURN MACHINE LANGUAGE INTO DATA ••• P, A

LIFE••• ·•••••••••••••• • ••••••••••••p• 5

POTATO CHIP INVASION••••••••••••••p• 7

SOFTWARE COPYRIGHT••••••••••••••••p• 9

••

. ..

. .

f•

051-tema Vo1.2 No.4 p. 1

EDITORIAL

rhis month's issue of OSI-tems has been put together in some-

what of a rush because last month's meeting was delayed on account of

the Transit Strike. The issue has suffered in the volume of articles

that you-have come to expect of OSI-tems; but, however, ~e the

quality of those articl.es has not suffered.

How many times have you picked up an establish~d magazine in

this or any other hobby and lamented the fact that only a few writers

and editors seem to get their articles published? Have you ever

thought to yourself, "Why don't those @If$%¢&* SOB's print something

I'm interested in?" Well, maybe its because only a few authors with

necessarily limited interests and talents submit articles.

Maybe our publication is headed down the same path. So far

OSI-tems has been supported. very ably so~ I might add, on the backs

of essentially four people. Although these people are very know-

ledgeable, they cannot encompass the whole realm of interests of

all of our members. Unless we get some input form said members,

they will probab~y be the people who in a little while will be say-

ing; "Why don't those •••

. .

. .

·-

r·

OS- Items Vol. 2 No . 4

BEAT THE STRING BUG
D. SCHWARTZ

P.2

Last month's OSI-tems contained an artic l e by Mike Bassman in which
he gave one possible approach for getting around the "garbage collection"
problem in OSI BASIC.. His solution was not to use BASIC strings at all,
but to store the ASCII values of the strings numerically and then print them
out using the CHR$ function . While this may work, it is quite ~rsome
and defeats one of the advantages of using BASIC, which is its strlng­
handling capability , What I will do in this issueis to give a method that
will let you use string arrays i n almost the s traightforward way they were
ment to be used, adding only a couple of lines which in effect will collect
the string "garbage" for you before it has time to accumulate, and there­
fore wil l save the interpeter from trying (and fai ling) to do this itself.

To do this , you must know where, as well as how, BASIC strings are
normally stored . Every string variable in BASIC consists o f two parts-
a pointer to the string and the string itself . The pointer contains one
byte giving the length of the string and two bytes specitying the address ·
in memory at which the actual string begins. Wh en a string is defined
within a program by setting it equal to a string which is given explicit­
ly within quotation marks, the pointer will simp ly point to the program
itself, to the first byte after the quote mark . The same thing happens
when a string is read from a DATA statement~~ the pointer will point to
the data statement to the first byte of the string, and no further stor­
age need take place . These kinds of strings c ause no troub l e.

But when a string is formed in some other way- -by -a string function ,
by being I NPUT, or by concatenating two other strings together (adding them),
the resulting string must be stored somewhere in RAM away from the program
itself. BASIC maintains another pointer to tell it where to store these
strings. This pointer is stored in decimal locations 129 - (low byte) and
130 (high byte) in our version of ROM BASIC . At the start of a program
RUN, this pointer is set equal to one more than the address of the highest
byte in RAM memory available - to BASIC , The first string formed requiring
storage outside the program, if it is of length N, will be stored in the
N highest bytes of available memory, and the pointer will be decremented
by N, The next string formed will be stored i n the next M bytes --of mem-,
ory directly below the first string, if M is t he length_ of the new string .

This works fine until you realize what wil l happen when the value of
a string is changed often • . Consider the loop : _

A$="":FOR X= 1 TO 20 : A$='A$+CHR$ (X): NEXT X
The first pass through the loop forms a string of length 1, the second pass
a new string of length 2, and so on. After executing this loop, the total
number -of bytes used-for string storage will n ot be 20, as one might guess
at first, but rather 1+2+3+ •••. +19+20*10== 210 bytes ; · The f irst 190 c.-
those bytes now contain "garbage" which we don 't need , but they sit there
anyway, and the next string formed will_ start (or rather end) at the 211th
byte down from the ·top of memory .• If we continue ·in this way , we will pretty
soon eat up ~al-1 -of the memory available to the computer, and . thats where

_)

. • ·

·, .

• .

-.

..

:/

OS I - tems Vol. 2 NO . 4 p. 3

trouble occurs. When there is no memory left e xcept that which holds the
program, the numeric variables, and the point~rs to the stri ngs, BASIC
is supposed to "collect the garbage"--sort throu gh the strings it has
pointers for and re-arrange them sri they are neat ly packed at the top of
memory , and then continue . It is also supposed t o do this when you ask
it for "FRE(O)", in order to give a accurate accounting of how much mem­
ory i s really unused. But unfortunately, the r outine doesn ' t work, and
so the system crashes if this routine is called . He must t here fore in­
sure that this routine is never called.

How? Well, we noted above that 210 Qytes of string space has been
used in forming our 20 character string . He w0uld like the resulting
string to be stored in - the first 20 of those by tes , instead of the last
20, because then the locations f r om the.21 st on could be used for other
purposes. So let us set the pointer thatBASIC uses to. tell it where to
store strings to the point where we want them s tored, instea d of where
BASIC "wants" to store them. Consider the foll owing three l ines:

10 PL=PEEK(l29):PH=PEEK(130)
20 A$="":FOR X=1 TO 20:A$=A$+CHR$(X): NEXT X
30 POKE 129,PL:POKE 130,PH:A$=A$+""

In line 10, we save the current value of the string space pointer in the
variables PH and PL before forming our string. Line 20 is t he same string
fo rming routine as before, and will still use up 210 bytes of stringspace.
But theri line 30 restores the string space poin te r to the value it had in
line 10. The next· new string will be written ov er the same bytes as were . ,
u sed by the first "garbage" strings created i~ l ine 20·; So we ''concatenate"
a null string to the end of A$! Since this is a concatenated string, it
will be written into the area determined by the 129/130 pointer, which is
exactly where we wartt it. He nciw have our t\.;renty character string neatly
packed at the top of memory . J;f::we follow the same procedur e whenever we
form a string by combining substrings, we can pack all our strings at the
high enO. of memory and never have to worry about collecting ''·garbage'',
because there will be ng garbage to collect. - The following program should
convince you of ~his:

5 DIM A$(26)
10 FOR Y=1 TO 26
15 PRI}iT Y: A$ ='"'
18 PL=PEEK(129):PH=PEEK(130)
20 FOR X=1 TO 24
30 A$=A$+CHR$(Y+X)
40 NEXT Y
50 POKE l29,PL:POKE 130,PH
60 A$(Y)=A$+""

·· 70 NEXT Y
80 FOR Y=l TO 26 : PRINT A$(Y):NEXT Y

As written here, the program will work fine , pr i nting out 26 strings of 24
characters each- but if you leave out lines 18 a nd 50 , or the null string
from lin_e 60, i t won't.

•

l

' .

....---------- ' v

OS I -tems Vo1.2 No.4 P.4

The above is hardly a typical program, it's more of a worst case
example of what can sometimes be needed. A typ ical progr acl may have a
small number of strings which are needed throughout the program. If
thc~e are many they will probably be in DATA statements, and thus of the
kind that cause no garbage. There will then b e string data which is
input from the user and processed in some way, but which need not be
kept from one major loop of the program to t he next. _

A good example is the "Adventure 65" game fr:om·· Technical Products ·
. Co. There are many str-ings in the DATA statements of th i s game~ and then
there are the commands which are input from the player. These commands
must be matched against the program keywords fr om the DATA, which means
a lot ot heavy use of MI\:,· Therefore, if t he game runs for more than
a few minutes , the scree. starts to I lash and you m_ust h it the BREAK key
to stop it. But all the · ub s tr ings isolated fr.om one tur n's command
string are not needed on the next turn, so why not reset the string point­
er for each new turn? Adding the line:

109 POKE1 29 , 0 :POKE 130,32

to this program will totally eliminate the problem of hav ing-the program
crash becal}Se of the "string bug", Of course, it won't c ure the other
fa u lts of the program, but that's another story!

TURNING USR(X) ROUTINES INTO DATA STATEMENTS

Thomas Cheng

If you are .writing machine language s ubroutines for BASIC , one
of the major problems which_you will encounter is in savi ng the rou­
tine. An alternative to a save fro:tn:i the ASS EMBLER or the EXTENDED
MONITOR is to turn the routine into a series o f DATA sta t ements in
BASIC, then to load in by POKEing the values i nto the proper locations.

The following program does this, firs t prompt~ng for the address ­
es ,o f the locations · to be saved (these can b e entered in either Hex or
Decimal. lfe·x numbers must be preceeded with a $ sign to differentiate
from ·decimal),· then the starting line number and increment. Before
hitting-RETURN after the second ·inquiry, the user's r ecorder should be
turned on for the following DATA statements and the two lines which
will (l) poke the values into the same memo ry locat·ions, and (2) set
the values for the USR(X) call in locations · 11 and 12.

This routine will print out 16 bytes per line of DATA
but if this is wished· to be changed , the inQrement of C=B+15
80 can be changed to the desired number of - b ytes.

..

' statement •
in line

•

·.

' ,;

OS I-tems

LIST

5 REM 1'1ACHINE LANGUAGE SAVE
7 REM * **THOMAS CHENG***

Vol.2 No.4

(

10 INPUT.START, END";B$,C$:1NPUT"LINENO, INC";ST,IN
20 IFLEFT$(B$,1J=·s·THENGOSUB140:B=A:GOT040
30 B=VAL(B$):REM IT ALWAYS ENDS UP IN B
40 B$=C$:1FLEFT$(B$,1)=·$·THENGOSUB140:GOTOSS
50 A=VAL(C$):REM-A IS SECOND VALUE

P. 5

55 SAVE:PRINT:PRINT:PRINTST;"READN,N2:FORK=NTON2:READQ:POKEK,Q:NEXTK"
60 ST=ST+IN:PRINTST;"Q=INTCN/Z56):POKE12,Q:POKE11,N-Q•Z56~
70 ST=ST+IN:PRINTST;·DATA";MID$CSTR$CB):Zl;",";MID$CSTR$CA),2)
80 ST=ST+!N:C=B+15:PRINTST;"DATA";:IFC>ATHENC=A~
90 FORK=BTOC:LO=PEEKCK):G05UB170:PRINTA$;:IFK<CTHENPRINT",•;
110 NEXTK
120 IFC<>ATHENB=C+l:PRINT:GOT080
130 PRINT:PRINT:PRINT:POKE517,0:END . .
140 A=0:A$="0123456789ABCDEF":FORK=1TOLENCB$l:FORL~1T016
150 IFMID$(B$, K, 1)=_MID$(A$., L, 1 HHENA=A+(161'(LEN(B$) -K H< L -1))
160 NEXTL:NEXTK:RETURN
170 A$=MID$CSTR$(L0),2):RETURN

OK

LIFE

Salomon Lederman

This program is a C1 implementation of Conway's simulation of LIFE.
LIFE is a biological simulation of the life of cell cultures. · The p~­
gram creates each generation and outputs to the video.

The program is mainly in machine language. Lines 1~00-1250 POKE
in the machine language code, through DATA statements. The rest of the
program just does the input routine. The commands are: 1) GO left; 2)
GO right; 3) Go up; 4) Go down; 5) Puts a * under the cursor; 6) ·Executes the

program; 7) Deletes the star.

j_ __ --·- --· -·--- ~

· . . .

OS I-tems Vo1.2 No.4

5 POKE11,0:POKE12,24:FORX=60 16T06090:READQ:POKEX,Q:NEXTX
7 FORX=6144T06353:READQ:POKEX,Q:NEXTX
10 FORX=6400T07424:POKEX,0:POKEX+46800,3Z:NEXTX
20 C=53775:POKEC,187:POKE530,1:K=57088 :POKEK , 127:T=32
30 IFPEEK(K)=127THENPOKEC,T:C=C-l:GOT0100
40 IFPEEK(57088)=191THENPOKEC,T:C=C+1:GOTOi00 --
50 IFPEEK(570881 =223THENPOKEC,T:C=C-32:GOT01 0 0
60 IFPEEK<57088)=239THENPOKEC,T:C=C+3Z:GOT0100
70 ~FPEEK<57088)=247THENPOKEC,42:GOT0100
75 IFPEEK<KJ=253THENPOKEC,32:GOT0100
80 IFPEEK(57088l =251THENPOKEC, T:X=USRCXl
90 GOT030
100 T=PEEK(C):POKEC,187:FORX=1T075:NEXTX:GOT0 30
1000 DATA173,0~0,96,141,0,0,96,173,0,0,96,14 1 ,0,0,96,238,0,0,238,0,0

1010 DATA238,0,0,238,0,0,238,0,0,238,0,0 , 238 , 0,0,238,0,0,96,32,32
1015 DATA0,42,32,32,32,32,32,23B,223 ;24,Z38~224,24,.238,225,24,238,255
1020 DATA24,238,1,i5,238,31,25,238,32,25,238 , 33,25,96,169,0,l41,129
1030 DATA23,141,13~
1040 DATA23,169;208,1.41,130,23 ,14L,134,23,162,0,189,178,23,157,144,23
1050 DATA232,224,25,208,245,32,128,23,201,42 , 208,3,32,144,23,173
1090 DATA 130, - 23, - 201, 212, 240, ·52, 173, 129, 23, 24
1100 DATA 105, 1; 141, ~29, 23, 141, 133, 23 , 173, 130 .
1110 DATA 23, 105, 0, 141, -130, 23, 141, 134 , 23, 162

• 1120 DATA 0, 189, 145, 23, .24, 105, 1, 157, 145, 23
1130 DATA 189, 146, 23, 105, 0, · 157, 146, 2::! , 232, 232
1140 DATA 232, 224, 24, 208, - 232 , 76, 29, 24 , 169, 0 .
1150 DATA 141~ ~29, 23, 141, 133, 23 ; 1S9, 208, 14l j 130
1160 DATA 23, 141, 13.4, 23, 169, 0 -, 141, 137 , 23 -~ 141
1170 DATA141,23, 169,25, 141-,138,23, 141, 142,23
1180 DATA 32, 136, 23, 201, 2, 24_0, 7, 170, 189, 169
1 180 DATA 23, 32, 132, 23, 169, .0, · 32, 140, 23, 173
1200 DATA ~129, 23, 24, 105, 1, 141, 128, - 23, 141, 133
1210 DATA -23, 173~ 130~ 23, 105, 0, 141, 130 , 23, 141
1220 DATA 134, 23, 173, 137~ 23, 24, 105", - 1, 141, 137
1230 DATA 23, 141, 141, 23, 173, 138, 23, 105, . 0, 141
1240 DATA _138, 23, 141, "142., . 23, 173, -130, 23, . 201, 2~2
1250 DATA 240, 3, 7Ji, 130, .24, 76 • . "0, 24,_ 36 , 36

OK

--~

I

OS I-tems Vol.2 No.4 · p. 7

POTATO CHIP INVASION

Mike Bassman

Here is a new game for your Cl by Mike.
the invading alien Potato Chips. The game is a
Invaders' and 'Hectic'(except this one works).
2) Right; 7) Fire.

Save the ?arth from
cross bet~een 'A~ien
Commands are: 1) Left;

1 REM***POTATO CHIP INVESION*** ' .
2 REM•• •MIKE BASSMAN***
5 POKE605,0
6 FORK=611T0625:POKEK,32:NEXTK:POKEK,255
10 DATA546,604
20 DATA174,59,211~24,173,35~2,105,32,141,55,2,173,36,2,105,0
30 DATA141,56,~,142,195,208,24,173,35,2,201 , 195,208,8 , 173,36,2
40 DATA201, 208, 208; 1, 96, 56, 173,35, 2,233~, i , ·141, 35, 2, 173,36 ,2.

50 DATA233,0~141,36,2,76,34,2
60 FORX=546T0571: I=PEEK(X+64490): PGKEX, I: NEXT: POKE572~ 96_
70 POKE11,34:POKE1Z,Z :X=USR(X)
80 PRINT.
90 PRINTU

Potato Chips·

100 FORK= 1T010:PRINT:NEXT
110 PRINT-Hit rgturn to ~tart gamg•;:POKE54 117,32
120 POKE11,0:POKE12,253:X=USR(X):POKE11,34 : POKE1Z,Z:X=USR(X)
121 K=611
123 IFPEEK(K) =255THEN130
124 X=PEEK(K)
125 POKE53413+K -611,XtK=K+l:GOT0123
130 READA, B: FORK=ATOB : READX :. POKEK, X :NEXT

· 135 READA, B: FORK=ATOB: READX: POKEK-, X: NEXT .
140 POKE530, 1.: POKE5708B, 127: .GL=54127.: F='2
150 Gl(11 = 146:Gl(2)= 149:G1(3)= 147
160 POKEGL,G1(F)
170 P=57088:T=9
1~~F_:OR~~lT010

'

' .

OS I-tems Vol.2 No.4

200 IFPEEK(P)<>l27THEN250
210 IFGL=54117ANDF=1THEN1000
220 POKEGL,32:F=F-1:IFF=0THENF=3:GL=GL-1

. ~30 POKEGL,Gl(F):GOT01000
250 IFPEEK(P)<)191THEN300
2G0 IFGL=54139ANDF=3THEN1000
270 POKEGL,3Z:F=F+1:IFF=4THENF=1:GL=GL+1
280 POKEGL,G1<Fl:GOT01000
300 IFPEEK<P)<>253THEN1000
305 BL=GL764:Z=Z+3
310 IFPEEK(BL)=32THEN400
315 POKEBL+32,3Z
320 IFPEEK<BL)=235THENBL=BL-1

P. 8

330 FORK=99T032STEP -1:POKEBL,K :POKEBL+1,K:NEXTK:S=S+1:NG=N_G- 1:GOT01000
400 POKEBL,G1CF):POKEBL+32,32:BL=BL-3Z:IFBL>53443THEN310
410 POKEBL+32,32
1000 NEXTZ: T=T+1 :X=USR(X): TG=INH T /10): IFNG>TGTHEN1050
1010 X=INTCRND(1)*21+1l+53477
1030 POKEX,234:POKEX+~,235:NG=NG+L '

1050 POKE11,0:POKE1Z ,Z8:X=USR (X)
1060 IFPEEK(610) =0THEN190
1070 FORK=255T03ZSTEP - 1:POKEGL,K:NEXTK .
1080
1090
1095
1096

FORK=1T035:PRINT:NEXT • •
PRINT-Your final score was·;s
PRINT:PRINT:PRINTnThe high score
PRINT:PRINT

1097 IFS>PEEK(605 HHEN1150_ ·-
1100 PRINT!PRINT:INPUT~try again";Y$

is•;PEEK(S05J

1110 IFLEFT5(Y$,1)=-Y ~THENRESTORE:CLEAR:GOT010
1120 END
1150 PRINT.You have beaten it.":PRINT:PRINT
1155 POKE605,S
1160 INPUT·~our name-;S$
1170 FORK=611T0611+LEN(S$)~1:POKEK;~5C(MlD$(5$,K-610,1)):NEXTK-
1171 POKEK,32:POKEK+1,32-. ·
1172 S$=STR$(S): FORG=ZTOLEN(S$): POKEK+G., A'3C(MID$(5$, G, 1))
1173 NEXTG-: P.OKEK+G, 255
1180 PRINT:PRINT:GOT01100 ... :
1500 DATA7168,7223
1510 DATA160,35,162,211;140,12;28,14Z,- 13,28 , 24,173,35,211,201,~34,240

1520 DATA9, 24,192,59,240,9,200,76,4 r28,163, 255,7S,34~28,1S9,0

1530 DATA141,98,2,169,2,133,12,169,34,133,1 1 ,169,59,141,35,2
1540 DATA169,211,141,36,2,96 ~

OK
' --~

"' '

.... . .!' .~ ------~~--- - -~-----'- --
•

I

OS I-tems Vol.2 No.4 P. 9

THE INS AND OUTS OF SOFTWARE COPYRIGHT

Terry Terrance

Software _copyright is something one does not see much written on
~ in the hobbyist literature. This is probably due to two effects; first,

software copyright is a difficult subject which has even legal experts
perplexed and second, the ·major hobby-computer magazines are also soft­
ware publishers· and so they have an interest in keeping this informa­
tion surpressed.

On the way to ·becomming a software publisher, I have found out
something about copyright as it applies to computer pn;>grams; and, while
I do not have a complete understanding on the subject, , (and nobody-­
courts, lawyers or legislators really .does) I wil l try to pass along what
I have been able to learn.

Why should you copyright? Well for severa l reasons. First, it
will force anyone seeking to reprint what you have written (in, say,
OSI-tems) to get your permission first and give you full credit. Second,
you never know when what you have written may have tremendous commercial
potential; potential that you might not see at f i rst. _ Copyrighting will
protect your interests as well as those of your buyer. Lastly, securing
protection under the copyright - law costs you noth ing and is easy to do.

Under the new (1978) copyright law, copyri ght is just tha~, a right,
inherent in the act of creation; and is not somet hing granted by the
government. As such,- you do not have to register or file anything to get
copyright protection (although in some cases i;t;_..:f.s a good idea). All you
have to do is abide by certain rules to protect t he copyright that you
already have as the original author.

The first event in the life of a ·'work' is its completion date.
This is the date the -p.r...ogram is put. into readable -form (either machine·­
readable or human -· reaaable) in a more ·or · less · completed version. This , ::o:: (:
d~te will be the day on which your copyright pro t ection starts. It will
be asked for if you decide to file for~ a registra tion number. lfuen
you decide a program is complete is totally up to you. Declaring a work
complete on a certain date does not preclude pro t ection for revisions
or additions that follow later; these come under the title of 'derivative _
works' for which- you are protected- by- the original copyright.

Exactly how you .prove that a program was completed on a certain
date, without formally registering the C?Pyright , is unclear to me.
Possibly REM statements imbedded in . the program giving -completion dates
and revision dates . would . be sufficient. A better way might be having a c ·J
copy of the program noterized.

Now comes the day you want to -~; publish' t he program. 'Publish It
has been interpeted to mean any distribution of t he program. Even
giving a single copy to a friend, or a review copy to _a magazine or
publisher constitutes_ publishing. If you do ,,not abide -by some simple

. • ·

J

..------ ------- ---- -- --

OS I-tems Vo1.2 No.4 P. 10

rules here, you will lose your copyright and your program will enter the
'public domain'. If you have so lost your copyright, it is recoverable,
but not without expendature of effort and money to file a formal regis­
tration~

All you have to do when you are ready to 'publish' is to include
a . copyright notice on each and every copy of the program that you give
out. The copyright notice has three parts; ~n quote the copyright offi~e:
"(1) the symbol @ , or the word "Copyright," or the abbreviation "Copr.";
(2) the year_ of publication; and (3) the name of the owner of copyright.
For example "@ 1978 Constance.. Porter." There is a further requirement,
again to quote~ "The notice ifl to be affixed to the copies in such a
manner ·and location as to give reasonable notice of the claim of copy­
right." .This last requirement may give some problems in a program. To
be absolutely sure of 'copyright notice.! would i mbed the notice in REM
statements so it wo-uld be visable in the program listing; include it in
PRINT statements so it will show when the program is run; and write it
on the casette or disk and any documentation that you se~d out with it.

If you do all of this, your _ copyright is fully pro·tected ~nd it
has· really cost you nothing. If you have not done this you may still be
okay, because filing a formal registration of copyright, within five
years, can recover your capyri"gltt-•· Also., there are some , cases where a
distribution _can. be made. without the notice, and still. maintain copy­
right. One such instance, which will .interest us, is sending out review
copies-. · If you have sent out copies · for -review, and in your cover letter
stated that they were such, and made provisions for their return, such
as including a SS~E, you may well still have copyright.

Lets say you ~ant to file an appli-cation for copyright registration.
Remember, filing an application for registration gets you; in theory, no
more protection; but it does make your copyright less,assailable by fix­
ing the date of creation and form of · your work. Write to the~ "Register
of Copyrights, Library of Congress,~ Washington •. D.c-. 20559." Ask for
form "TX-Application for Copyright Registration for. a Non-Dramatic Lit­
erary Work.'! t<.lfly· this form? ~ I don't know its the one ·my--lawyer says
to use. ~ Follow the instructions, Aill it out .and include $10. (check or
money order). That's all there is to it, and its- cheap insurance for
any program that you have . serious intentions fo.r.

A word about derivative works. _, Your original copyright, filed
or not, protects _ any derivative works based on the origi-nal . This means
revision~ and upgrades are prptected,without .:·having ·to · file again. , It
also prohibits- someone form changing ·_your BASIC syntax to get your ·.:pro..: . . ·
gram to ~un on another system and:. then ·relesing ·it -_themselves. -<.·- . _ ·~~

In light of all _of . the above, why do magazi~e and software pub- .
lishers insist that all. submitted materials be without copyr:lght? -~ Well,
for one thing, their--claim that dealing with -copyrighted works is . too ­
difficult absolutely does not hold water. Since, in the event of a ~py­
rightinfringement suit, author, publisher, and seller· are all liable
to the same prosecution and penalties-; -- it protects· all parties to have
a valid copyright assured.. The beS-t way to do this is to have the

::- author secure· a strong copyright form the beginning., - And there ar~ no _­
additional legal hassles_. in transfering an author's copyright .• _-

So why does -'Popular Creative kilo/Computing' want unprotected
software? Well; I'm sure you can draw your own con~lusions.

,,·. "; . ~.

' .-.

" I

. • ·

•

[:

..

OSI-tetns Vol. 2 No.4 p ~ 11

As programmers become more sophisticated and as reputeble softt-Jare
houses spring up, I think this si.tuati.on uill change" Publishers will
proba.llly dell'.and a valid copyright in effect before they will handle soft­
ware. f(Jr the protection of all concerned. Sueh publishers will probably
also ask authors to assign their copyright to them., There are commercial
reasons for this but also the publishers will be in a better position to
persue copyright violators either by legal means or by other means (like
cutting off dealers who pirate. software).

I have painted a rosey picture of copyright , but there are thorns
amoung the roses. The copyright laws are less than perfect, and even
moreso when they are applied to computer programs~ · Judges ~ with no com­
puter experience, have made some bad decisions recently. So even 'full
protection under the law' can be less than total protection. Spur:i.ous
claims can be made aga:i.nst your copyright and track:f.n-g down and prosec­
uting :l.nfringers of your copyright can be long, difficult and expensive~

In all though,. I think copyrighting, since it can be easy a.nd in­
expensive. is something every programmer should consider-any time he
relinquiafies a copy of a program for any reason.

'

..

- -.--

. .

