

OSI-temﬁ Vollz N004 . P.

EDITORIAL

‘This month's issue of 0SI-tems has been put together in some-
what of a rush because last month's meeting was delayed on account of
the Transit Stfike. The issue has suffered in the volume of articles
that you have coue to expect of OSI-tems; but, however, f\bgpe the
quality of those articles has not suffered,

How many times have you picked up an established magazine in
this or any other hobby and lamented the fact that only a few writers
and editors seem to get thelr articles published? Have you ever
thought to yourself, "Why don't those @#$%¢&* SOB's print something
I'm interested in?" Well, maybe its because only a few authors with
necessarily limited interests and talents submit articles.

Maybe our publication is headed down the same path, So far
0SI=tems has been sﬁpported, very ably so, I might add, on the backs
of essentially four people. Although these people are very know-
ledgeable, they cannot encompass the whole realm of interests of
all of our members. Unless we get some input form said members,
they will probably be the people who in a little while will be say-

ing; "Why don't those...

0S-Items Vol. 2 No. 4 pP.2

BEAT THE STRING BUG
D. SCHWARTZ

Last month's 0SI-tems contained an article by Mike Bassman in which
he gave one possible approach for getting around the "garbage collection"
problem in 0SI BASIC. His solution was not to use BASIC strings at all,
but to store the ASCII values of the strings numerically and then print them
out using the CHRS$ function. While this may work, it is quite‘qETEﬁrsome
and defeats one of the advantages of using BASIC, which is its string-
handling capability. What I will do in this issueis to give a method that
will let you use string arrays in almost the straightforward way they were
ment to be used, adding only a couple of lines which in effect will collect
the string "garbage'" for you before it has time to accumulate, and there-
fore will save the interpeter from trying (and failing) to do this itself.

To do this, you must know where, as well as how, BASIC strings are
normally stored. Every string variable in BASIC consists of two parts-—

a pointer to the string and the string itself. The pointer contains one
byte giving the length of the string and two bytes specitying the address
in memory at which the actual string begins. When a string is defined
within a program by setting it equal to a string which is given explicit-
ly within quotation marks, the pointer will simply point to the program
itself, to the first byte after the quote mark, The same thing happens
when a string is read from a DATA statement-- the pointer will point to
the data statement to the first byte of the string, and no further stor-
age need take place. These kinds of strings cause no trouble.

But when a string is formed in some other way--by a string function,
by being INPUT, or by concatenating two other strings together (adding them),
the resulting string must be stored somewhere in RAM away from the program
itself, BASIC maintains another pointer to tell it where to store these
strings. This pointer is stored in decimal locations 129 (low byte) and
130 ¢high byte) in our version of ROM BASIC. At the start of a program
RUN, this pointer is set equal to one more than the address of the highest
byte'in RAM memory available to BASIC. The first string formed requiring
storage outside the program, if it is of length N, will be stored in the
N highest bytes of available memory, and the pointer will be decremented
by N. The next string formed will be stored in the next M bytes of mem-—
ory directly below the first string, if M is the length of the new string.

This works fine until you realize what will happen when the value of
a string is changed often. Consider the loop:.

AS="":FOR X=1 TO 20:A$=AS$+CHRS(X) :NEXT X
The first pass through the loop forms a string of length 1, the second pass
a new string of length 2, and so on. After executing this loop, the total
number of bytes used.for string storage will not be 20, as one might guess
at first, but rather 1+2+3+....+19+20%10=210 bytes. The first 190 o§-
those bytes now contain ''garbage'" which we don't need, but they sit there
anyway, and the mext string formed will start (or rather end) at the 21lth
byte down from the top of memory. If we continue in this way, we will pretty
~soon eat up all of the memory available to the computer, and thats where

OSI-tems Vol. 2 NO. 4 P. 3

trouble occurs. When there is no memory left except that which holds the
program, the numeric variables, and the pointers to the strings, BASIC

is supposed to "collect the garbage'--sort through the strings it has
pointers for and re-arrange them so they are neatly packed at the top of
memory, and then continue. ' It is also supposed to do this when you ask
it for "FRE(O)'", in order to give a accurate accounting of how much mem-
ory is really unused. But unfortunately, the routine doesn't work, and
so the system crashes if this routine is called. We must therefore in-
sure that this routine is never called.

How? Well, we noted above that 210 bytes of string space has been
used in forming our 20 character string. We weuld like the resulting
string to be stored in-.the first 20 of those bytes, instead of the last
20, because then the locations from the.21l st on could be used for other
purposes. So let us set the pointer thatBASIC uses to tell it where to
store strings to the point where we want them stored, instead of where
BASIC "wants' to store them. Consider the following three lines:

10 PL=PEEK(129) :PH=PEEK(130)
20 AS="":FOR X=1 TO 20:AS$=AS$+CHRS$(X): NEXT X
30 POKE 129,PL:POKE 130,PH:A$=AS$+""

In line 10, we save the current value of the string space pointer in the

variables PH and PL before forming our string. Line 20 is the same string
forming routine as before, and will still use up 210 bytes of stringspace.
But then line 30 restores the string space pointer to the value it had in

line 10. The next-new string will be written over the same bytes as were "..
used by the first ''garbage' strings created in line 20, So we "concatenate’

a null string to the end of AS$! - Since this is a concatenated string, it
will be written into the area determined by the 129/130 pointer, which is
exactly where we want it. We now have our twenty character string neatly
packed at the top of memory. If:we follow the same procedure whenever we
form a string by combining substrings, we can pack all our strings at the
high end of memory and never have to worry about collecting "garbage',
because there will be ne garbage to collect. The following program should
convince you of this:

5 DIM AS(26)

10 FOR Y=1 TO 26

15 PRINT Y:AS="" _

18 PL=PEEK(129) :PH=PEEK (130)
20 FOR X=1 TO 24 .

30 AS=AS+CHRS (Y+X)

40 NEXT Y

50 POKE 129,PL:POKE 130,PH
60 AS(Y)=AS+""
.70 NEXT Y

80 FOR Y=1 TO 26:PRINT AS$(Y):NEXT Y

As written here, the program will work fine, printing out 26 strings of 24
characters each~ but if you leave out lines 18 and 50, or the null string
from line 60, it won't. :

0SI-tems Vol.2 No.4 p.4

The above is hardly a typical program, it's more of a worst case
example of what can sometimes be needed. A typical progran may have a
small number of strings which are needed throughout the program. If
there are many they will probably be in DATA statements, and thus of the
kind that cause no garbage. There will then be string data.which is
input from the user and processed in some way, but which need not be
kept from one major loop of the program to the next. : =

A good example is the ''Adventure 65" game from Technical Products'

.Co. There are many strings in the DATA statements of this game, and then

there are the commands which are input from the player. These commands
must be matched against the program keywords from the DATA, which means

a lot of heavy use of MIDS$.~ Therefore, if the game runs for more than

a few minutes, the screed§;£arts to flash and you must hit the BREAK key
to stop it. But all the substrings isolated from one turn's command
string are not needed on the next turn, so why not reset the string point-
er for each new turn? Adding the line:

109 POKE129,0:POKE 130,32
to this program will totally eliminate the problem of having ‘the program
crash because of the "string bug'". Of course, it won't cure the other
faults of the program, but that's another story!

TURNING USR(X) ROUTINES INTO DATA STATEMENTS

' Thomas Cheng

If you are writing machine language subroutines for BASIC, omne
of the major problems which you will encounter is in saving the rou-
tine. An alternative to a save frow:tlie ASSEMBLER or the EXTENDED
MONITOR is to turn the routine into a series of DATA statements in
BASIC, then to load in-by POKEing the values into the proper locations.

The following program does this, first prompting for the address-
es of the locations to be saved (these can be entered in either Hex or
Decimal. Hex numbers must be preceeded with a $ sign to differentiate
from decimal), then the starting line number and increment., Before
hitting RETURN after the second inquiry, the user's recorder should be
turned on for the following DATA statements and the two lines which
will (1) poke the wvalues into the same memory locations, and (2) set
the values for the USR(X) call in locations 11 and 12. .

This routine will print out 16 bytes per line of DATA statement,
but if this is wished- to be changed, the increment of C=B+15 in line
80 can be changed to the desired number- of. bytes. '

0SI-tems) Vol.,2 No.4& P. 5

LIST

5 R
7R
18
5|

~
\

N

N\

EM MACHINE LANGUAGE SAVE

ErM #+*THOMAS CHENG*%%

INPUT"START, END";B®,C%: INPUT"LINENG, INCT:;3T7,IN
IFLEFTS$(B%, 1)="%"THENGOSUB148: P=A: GOT0O434

30 B=VAL(EBE$:REM IT ALWAYS ENDS UP IN B

40
5@
55

B#=C%: IFLEFT$(B%, 1 2="%"THENGOSUB146d: GOTOES
A=UAL(CEI:REM-A IS SECOND VUALUE
SAVE:PRINT:PRINT: PRINTST; "READN, N2: FORK=NTOMNZ: READQ: POKEK, Q: MEXTK”

68 ST=ST+IN:PRINTST: "Q=INT{N-/2561:POKE12,Q:POKELl,N-C+256™

78 ST=ST+IN:PRINTST; "DATA";MIDS(STRS(BI,22; ", ":MIDE(STRS(AI, 2D
215] ST=ST+IH:C=B+15:PRINTST;"DHTH“;:IFC>HTHEHC=Hl
90 FORK=BTQOC:LO=PEEK(K:GOSUB178: PRINTA%; : IFK{CTHENPRINT", °;
118 MNEXTK :
128 IFC< >ATHENB=C+1:PRINT: GOTO3R
138 PRINT:PRINT:PRINT:POKES17,8:END
148 A=B:A%="0123456789ABCOEF " :FORK=1TOLEN(B$): FORL=1TO16
158vIFMID%(Bﬁ,K,l)=MID$(ﬁ$,L,l)THENﬁ=H+(15?(LEN(BS)—K)¥(L-1))
| 16@ NEXTL:NEXTK:RETURN
| 170 AS=MIDE(STRE(LO),23:RETURN
| oK
|
LIFE
Salomon Lederman
This program is a Cl implementation of Conway's simulation of LIFE.
LIFE is a biological simulation of the life of cell cultures. The pio-
gram creates each generation and outputs to the video. ‘

The program is mainly in machine language. Lines 1000-1250 POKE

in the machine language code, through DATA statements. The rest of the

pr

GO right; 3) Go up; 4) Go down; 5) Puts a * under the cursor; 6) Executes the
program; 7) Deletes the star.

ogram just does the input routine. The commands are: 1) GO left; 2)

0SI-tems Vol.2 No.4 P.

T POKELLl,B:POKELZ,24: FORX=6B16TOEH36 : READG : POKEX, Q: NEXTX

7 FORX=B144T06353:READQ: POKEX, Q: NEXTX

18 FORX=64BETO7424: POKEX, 8:POKEX+46383, 32 : NEXTX

2@ C=53775:POKEC, 187: POKES3@, 1:K=57883: POKEK, 127: T=32

28 IFPEEK(KI}=127THENPOKEC, T:C=C-1:G0T018d

4@ IFPEEK(S7BS8 =191 THENPOKEC, T: C=C+1:G0T01iBE

58 IFPEEK(S7BES8)=223THENPOKEC, T: C=C-32:G0T01PB

68 IFPEEK(57P88)=233THENPOKEC, T: C=C+32: GOT0150A

78 IFPEEK(G57R88)=247THENPOKEC, 42:G0TOQ 166

75 IFPEEK(K)=Z53THENPOKEC,32:G0TO188

8@ IFPEEK(57888)=251THENPOKEC, T X=USR(X)

9m GOTO3.8

1686 T=PEEK(C):POKEC, 187:FORX=1TO75: NEXTX: GOTQO38

1988 DATALY3,H,8,96,141,0,8,96,173,8,8,96, 141,4,8,36,233,8,92,233,8,0
1819 DATAZ38,0,8,738,08,08,233,3,H,238,9,98,233,08,8,233,9,8,36,32,32
1815 BATAB, 42,32,32,372,32,32,238,223,24,232,224,24,238, 225, 24,233,255
1826 DATAZ4,238,1,25,238,31,25,233,32,25,238,33,25,36,163,0, 141,129
1838 DATAZ23, 141,133

1848 DATAZ3, 169,288, 141,138,23, 141, 134,23, 162,92, 183, 173,23, 157, 144, 23
1@58 pATAZ32, 224,25, 288, 245,32, 128,723,201, 42,298,3,32, 144,23,173

1838 DATA 138, - 23, 281, 212, 248, 52, 173, 123, 23, 24
1188 DATA 185, 1, 141, 129, 23, 141, 133, 23, 173, 138 .
1115 DATA 23, 185, ©, 141, 138, 23, 141, 134, 23, 152 e
1176 DATA 8, 183, 145, 23, 24, 1B5, 1, 157, 145, 23 T
1138 DATA 183, 146, 23, 185, @, 157, 146, 23, 232, 232

114m DATAR 232, 224, 24, 7B3, 232, v6, 23, 24, 1lE9, B8

1158 DATA 141, 129, 23, 141, 133, 23, 159, 2808, 141, 130

1162 DATR 23, 141, 134, 23, 169, B, 141, 127, 23, 141

1178 DATA141,23,1698,25, 141, 138,23, 141, 142,23

118@ DATA 32, 136, 23, 281, 2, 248, 7, 178, 133, 169

11919 DATA 23, 32, 132, 23, 169, @, 32, 14a, 23, 173

1288 DATA 1259, 23, 24, 185, 1, 141, 129, 23, 141, 133

121® DATA 23, 173, 138, 23, 1685, B, 141, 138, 23, 141 :
122@ DATA 134, 23, 173, 137, 23, 24, 185, 1, 141, 137 ¢
1238 DATA 23, 141, 141, 23, 173, 138, 23, 125,. 3, 141

1248 DATA 138, 23, 141, 142, 23, 173, 138, 23, 281, 212

1258 DATR 248, 3, 76, 13@, 24, 76,.@, 24, 36, 36
oK

0SI-tems Vol.2 No.4 P,

POTATO CHIP INVASION

Mike Bassman

Here is a new game for your Cl by Mike. Save the Earth from
the invading alien Potato Chips. The game is a cross between 'Atien

Invaders' and 'Hectic'(except this one works)., Commands are: 1) Left;
2) Right; 7) Fire.

1 REM=*%POTATO CHIP INUESTION*®#%%

? REMz*%MIKE BASSMAM:%%

5 POKEGES, B

B FORK=B11T0B25:POKEK, 32: NEXTK: POKEK, 255

18 DATAS46, 504

2% DATALl74,59,211,24,173,35,2,185,32,141,55,2,173,35,2,195,9
3B DATAl41,55,2,142,195,288,24,173,35,2,281,195,283,3,173,36,2
4@ DATAZRL,?P8,2PS8, 1,96,56,173,35,2,233,1,141,35,2,173,35,2
5@ DATAZ33,@,141,36,2,76,34,2 '

B8 FORX=546T0571: I=PEEK(®+544908): POKEX, I : NEXT: POKEST2, 396

7@ POKE1ll,34:POKE12,2: X=USR(X)

8B PRINT™ Potato Chips"®

9@ PRINT® ——-—-mm————- »

188 FORK=1TO1@:PRINT:NEXT _

118 PRINT"Hit return to start game®; :POKES4117,32

1728 POKE1l,B:POKE1Z, 253: X=USR(X)>:POKE1ll, 34: POKELZ, Z: X=USR(X)
121 K=B1l1 '

123 IFPEEK(K)}=255THEN13@

124 X=PEEK(K) B S

125 POKES3413+K-511, X:K=K+1:G0OT0123

138 READA, B:FORK=ATOB: READX: POKEK , ¥ : NEXT

135 READA, B:FORK=ATOR:READX: POKEK, X:NEXT

140 POKES3H, 1:POKESYBEE, 127:6L=54127:F=2 - .
158 Gl{12=146:G1l(27=149:G1(3)=147

168 POKEGL ,G1(F)

ity P=57B8B:T=9

198 FORZ=1T018

0S1~tems Vol.2 No.4 P, g

269 IFPEEK(P 3< >127 THENZ250

210 IFGL=54117ANDF=1THEN1G0H8

2728 POKEGL ,32:F=F-1: IFF=8THENF=3:GL=GL -1
. 238 FPOKEGL,Gl(F):G0T0102818

2568 IFPEEK(PI<>191THEN3DD

260 IFGCL=54133ANDF=3THEN1608

278 POKEGL,32:F=F+1:1IFF=4THENF=1:GL=GL+1

78R POKEGL,G1(F):GOTO1B8H

388 IFPEEK(P)< >Z253THEN1 BB

205 BL=GL-B4:Z2=2+3

318 IFPEEK(BL)=3ZTHEN4B&&

315 POKEBL+3Z2,3Z2

328 IFPEEK(BL =Z25THENDBL=BL -1 :
338 FORK=89TO3ZSTEP-1:POKEBL, K:POKEBL+1 ,K:NEXTK: S=5+1:NG=NG-1:GGTO1 4B
4808 POKEBL,GI(F): POKEBL+32 32 BL=Bl_ ~-32 IFBL>53443THEH318
41vd POKEBL+32,32

18688 NEXTZ: T=T+1:A=USR{XI: TG=INT(T-13): IFNG}TGTHENlESZ
1218 X=INT(RND(11+21+13+53477

1738 POKEX, 234: POKER+1, 235: NG=NG+1"~

18598 POKEL1l,B:POKELZ,Z2B8:¥=USR(X)

1856 IFPEEK(B18)=ATHEN134

1878 FORK=z55T0O3Z25TEF-1:POKEGL , K: NEXTK

188 FORK= 1T03S PRINT : NEXT

1998 PRINT™ YDUP final scoare was";5 .

18895 PRINT:PRINT:PRINT"The high =zcore is";PEEK{585)

18895 PRINT:PRINT

1897 IFS>PEEK(EBSITHENLLISE

1188 PRINT:PRINT:INPUT"try again”;Y$

1116 IFLEFTﬁ(Yﬁ,l)ﬁ“Y“THENRESTORE:CLEHR:GOTOlB

1129 END _

11568 PRINT®"You have beaten it. " :PRINT:PRINT

1155 POKEGBRS, S :)

116868 INPUT"Your name™;S$

1178 FORK=E11TOB11+LEN(SHI-1: POKEK, ﬁ:C(NID$(3$ K B16, L)) NMEXTK
1171 POKEK,32: POKEK+1,32

1172 S$=STR%(S):FORG=2TOLEN(SS$): POKEK+G ASC(MIDH(SE,G,10 1
1173 NEXTG: POKEKYG, 255)

1188 PRINT:PRINT:GOTOliG8. . .

1588 DATAT168, 7223 -

1519¥ DRATARL1EBB,35,162,211,148,12;23,142,13,23,24,173,35,211,291,¥834,240
1528 DATAS, 24,152,59,248,9, 288, 76, 4,232, 163, 255,75,34, 23, 153,32

1538 DATA141,98,2,169,2,133, 12, 169, 34, 133 11,169,593, 141, 35 2
1548 DATRL1ES,211,141,36,2,96
OK

i

0SI-tems Vol.2 No.4 ‘ P. 9

THE INS AND OUTS OF SOFTWARE COPYRIGHT

Terry Terrance

Software copyright is something one does not see much written on
+ in the hobbyist literature. This is probably due to two effects; first,
software copyright is a difficult subject which has even legal experts
perplexed and second, the -major hobby-computer magazines are also soft-
ware publishers-and so they have an interest in keeping this informa-
tion surpressed.

On the way to becomming a software publisher, I have found out
something about copyright as it applies to computer programs; and, while

- I do not have a complete understanding on the subject, . (and nobody--
courts, lawyers or legislators really does) I will try to pass along what
I have been gble to learn. :

Why should you copyright? Well for several reasons. First, it
will force anyone seeking to reprint what you have written (in, say,
0SI~-tems) to get your permission first and give you full credit, Second,
you never know when what you have written may have tremendous commercial
potential; potential that you might not see at first, Copyrighting will
protect your interests as well as those of your buyer, Lastly, securing
protection under the copyright law costs you nothing and is easy to do.

Under the new (1978) copyright law, copyright is just that, a right,
inherent in the act of creation; and is not something granted by the
government, As such, you do not have to register or file anything to get
copyright protection (although in some cases if.is a good idea). All you
have to do is abide by certain rules to protect the copyright that you
already have as the original author.

The first event in the life of a 'work' is its completion date.
This is the date the program is put into readable form (either machine-
readable or human readable) in a more or less completed version., This <=z
date will be the day on which your copyright protection starts., It will
be asked for if you decide to file for.a registration number. When

- you decide a program is complete is totally up to you. Declaring a work
complete on a certain date does not preclude protection for revisione
or additions that follow later; these come under the title of ‘derivative
works' for which you are protected by the original copyright,

Exactly how you-prove that a program was completed on a certain
date, without formally registering the copyright, is unclear to me.
Possibly REM statements imbedded in. the program giving completion dates
and revision dates.would. be sufficient. A better way might be having a <
copy of the program noterized,

Now comes the day you want to ‘publish' the program. '"Publish®
has been interpeted to mean any distribution of the program. Even
giving a single copy to a friend, or a review copy to a magazine or
publisher constitutes publishing. If you do.not abide by some simple

0SI-tems Vol.2 No.4 p, 10

rules here, you will lose your copyright and your program will enter the
‘public domain', If you have so lost your copyright, it is recoverable,
but not without expendature of effort and money to file 2 formal regis~
tration. . ,

All you have to do when you are ready to 'publish' is to include
a copyright notice on each and every copy of the program that you give
out, The copyright notice has three parts; go quote the copyright office:
"(1) the symbol ® , or the word "Copyright,” or the abbreviation "Copr."
(2) the year of publication; and (3) the name of the owner of copyright.
For example " () 1978 Constance Porter." There is a further requirement,
again to quote, "The notice is to be affixed to the coples in such a
manner and location as to give reasonable notice of the claim of copy=
right." This last requirement may give some problems in a program, To
be absolutely sure of copyright notice.I would imbed the notice in REM
statements so it would be visable in the program listing; include it in
PRINT statements so it will show when the program is run; and write it
on the casette or disk and any documentation that you send out with it,

If you do all of this, your copyright is fully protected and it
has really cost you nothing., If vou have not done this you may still be
okay, because filing a formal registration of copyright, within five
years, can recover your copyright. —Also, there are some cases where a
distribution can be made, without the notice, and still maintain copy~
right. One such instance, which will interest us, is sending out review
copies. - If you have sent out copies for review, and in your cover letter
stated that they were such, and made provisions for their return, such
as including a SSAE, you may well still have copyright,

Lets say you want to file an application for copyright registrationm,
Remember, filing an application for registration gets you; in theory, no
more protection; but it does make your copyright less assailable by fix-
ing the date of creation and form of your work, Write to the "Register
of Copyrights, Library of Congress, Washington, D.£. 20559." Ask for
form "TX~Application for Copyright Registration for a Non-Dramatic Lit-
erary Work.,”" Why this form? I don't know its the one my-lawyer says
to use. Follow the instructions, fill it out and include $10. (check or
money order), That's all there is to it, and its cheap insurance for
any program that you have serious intentions for,

: - A word about derivative works. Your original copyright, filed

or not, protects any derivative works based on the original. This means

revisions and upgrades are protected without having to file again, It

also prohibits someone form changing your BASIC syntax to get your pro=- - .

gram to run on another system and then relesing it themselves. .. '
- In light of all of the above, why do magazine and software pub=-

lishers insist that all submitted materials be without copyright? -Well,

for one thing, their claim that dealing with copyrighted works is too -

difficult absolutely does not hold water. Since, in the event of a copy-

right infringement suit, author, publisher, and seller are all liable

to the same prosecution and penaltiesj-it protects all parties to have

a valid copyright assured, The best way to do this is to have the

author secure-a strong copyright form the beginning. And there are no

additional legal hassles in transfering an author's copyright.

So why does 'Popular Creative kilo/Computing' want unprotected
software? Well I'm sure you can draw your own connlusions.

P e e

By

3SI-tems Vol.2 No.&) P, 11

| As prograupers become more sophisticated and as reputeble software

5 houses spring up, I think this situvation will change. Publishers will

| probebly demsnd a valid copyright in effect before they will handle seft-

| ware, for the protection of all concerrned. Such publishers will probably

also ask authors to assign thelr copyright to them, There are commercial

reasons for this but also the publishers will be In a2 better position to

persue copyright violatorz either by legal means or by mﬁher means {1like

! cutting off dealers who pirate software).

E i have painted a rosey picture of copyright, but there are thorns

| amsung the veses., The copyright laws are less than perfeci, and even

f moreso when they are applied to computer programs, - Judges, with ne com-

puter experienge, have made some bad decisions recently, 350 even 'full

| protection under the law' can be less than total protection. Spurious

| claimg can be made against your copyright and tracking down and presec~

uting infringers of your copyright can be long, difficult and expensive,
In all thoughy, I think copyrighting, since it can be easy and in=

expenagive, is something every programmer should considev-any time he

relinquishes a copy of a program for sny reason,

