
, <

I :

c J
-- = : I

DECEMSER l,iO .. ·.r t ~.·- .. . - l

• !
I

·'

VOLUME :rL

o:=::I ··· t ems Volume 2,number 12
~~~~~~~~~~~~~~~~~~*~*******~****~*~~**~**~~*~~**~******~~ 

f:.:;>.s.;,> Conver·si.ons •••••••.••••••• Peb?t" So:ht·eibet· 
M~,s- t•?t"Y Pt"()gt·am ................ M. 1•1ont alv•::. 
OS65U Utility Corrections ..... D. Schwartz 

= Extending OSI Basic-in-Rom. Version 2 
.. • " .. . . .. • . • . .. . .. .. . . • . • . • . . • • . .. . • . • • . . . . . F' e t e r· ~:::c~ t·1 t· e i be r· 

-·- --

:::;o:.w·ce Update ••••••••••••••••• Mike Ba s~man 
F\enumben::r· •••••••••••••••••••• :::;alornon L eder·man 
Cassett e Motor Control .~ .••... Klaus Ernst 
:;:;,:,ftwar·e Review .•.••.•••..•••• Salomon Ledet·man 
Class 2 - 6502 Machine Language 

• • • • • • • • • • • _ • • • • ,. • • • ·" • :I • • • • • • • • • • • .. • • • :::; .3. 1 •:' ro1:1 n Ledennan 



Base Conversions 

Peter Schreiber 
1609 Washington Avenue 
Seaford, N.Y. 11783 

Here is a short base conversion routine which will solve almost all 
of your paper and pencil problems of conversion. Execution of the program 
is as follows: 

LIST 

(1) Input the base of the number that you wish to convert. This must 
bs between 2 and 36. 

(2) Input the number in that base including any decimal part. When 
using a base larger then 1~, you must use letters for digits. 
Warning: (a) If you use a number that ha_s a decimal form too large 

to store, the computer will do a lot of rounding off, 
or even give an OM error. 

(b) If you try to use a digit that is not in that base, 
you will get the appropriate error. 

{3) Input the output base that you wish the number to be converted to, 
again it must be between 2 and 36. 

(4) If you had a number which had a decimal part , you must input to 
how many places you want the conversion print ed. This is necessary 
in the case of repeating decimal s . 

1~¢ FORX=1T018:PRINT:NEXTX:PRINTSPC(14)"- BASE -":PRI NT:PRINT 
11~ PRINT~USE LETTERS FOR DIGITS LARGER THEN 9." 
12~ FORX=1T04:PRINT:NEXTX:CLEAR 
1 3~ INPUT"INPUT BASE (2-36) ";B:IFB< >- INT ( B)ORB<20RB>36THEN13J 
14- INPUT"INPUT BASE NUMBER ";XS:L=LEN(XS):M=L 
15,.. INPUT"OUTPUT BASE (2-36) ";S:IFS<>INT ( S)ORS<20RS>36THEN15~ 
16;1 FORI=1TOL:V=ASC(MIDS(XS,I,1))-4B:IFV)16THENV=V-7 
17- IfV=-2ANDH=~THEND=%:H=1:M=I-1:GOT016-
18~ IFV=-2ANDH=1THENV=-:H=2:M=M+1 
19¢ IFV<¢0RV>=BTHENPRINT" ? "'X$'" IS NOT IN BASE"B:GOT012,11f 
2~;1 D=D+V*BA{M-I):NEXTI:E=D:M=LEN(STRS(INT(E))) 
21;1 C=INT(D/S):X=D-C*S:IFX)9THENX=X+7 
22~ AS=CHR$(X+48)+AS:D=C:IfCTHEN21. 
23)f IfHTHENINPUT"ANSWER TO HOW MENY DECIMAL PLACES";J 
24,.. PRINT:PRINT"ANSWER: "XS"("B") = "AS;:IFH=)fTHEN28¢' 
25¢' YS=RIGHTS(STR$(E),LEN(STRS(E))-M):Y=VAL(Y~):PRINT"."; 
26)f C=V*S:X=INT{C):Y={C*1E4)-(X*1E4):Y=Y/1E4:IFX>9THENX=X+7 
27~ PRINTCHRS(X+48);:K=K+1:IFVTHENIFK<=JTHEN26~ 
2BJI PRINT"("S")":PRINT:INPUT11 ANOTHER";AS: I FAS="YES"THEN12,11f 
29~ END 

OK 

~-



t·1'"f':=;TE~:'/ PROI3F.:At·1 

1 (1 FO~: t·1= 1 TO 23 
110 ~:EAE:• Ct-1 

b·::r t·1. Non +.a 1•-..'o 

120 D$ = D$ + CHR$(CM): D = 53765 
13t1 t-iE::O::T t·1 
140 FOR X= 1 TO 32 : PRINT: NEXT 
150 R=INT (1000 * RND (1000)) 
160 IF R=100 THEN 190 
170 IF R < = 255 THEN PRINT CHR$ <R>~ 
1 H0 GOTO 15(1 
190 FOR X=1 TO 32: PRINT: NEXT 
200 Go::;;UB 1 00(1 
210 FOR T=O TO 1000 
220 t-~E~<T T 
230 GOTO 14(1 
250 DATA 72~69~76180~32~73 
260 DATA 44,86,69,32,71.79 
270 DATA 78.69,32,66,69,82 
::~::£1 [:.ATA :=:3, t.r;t, t:2~ 75:w 33 
300 EHO 

. 1D00 FOR Y = 1 TO LEN (0$): POKE D+Y, ASC(MID$(D$,Y,1)): NEXT:RETURN 

The atu:•'---'e fall::: into the •:ate·:;~on,r of short "cute 11 F-t-o·:;~t·ams r •• Jith an 
intet·estirr:;~ h.1ist ot· tr...1o tht"O'-·-'ff in. It mi'3ht be t·.lOrtht._rhile 11 decodirr3 11 

the message before runnin3 the Program and for those of ~ou who have 
not_ come a c t·oss i t_ P t·e•-..' i o us l·::r the s i m u 1 a ted "P t" i n t at" t"o uti ne is a. 
worthwhile addition to Your subroutine librarY. M~ aPologies to all the 
11.ace" bi t-hacket·s in the audience but this one t•Jas weant for the 
beginners in the crowd. Those beginners should iease it aPart and make 
use of the various cowPonents 

.. 



I 
I . 

! 

I 

I 
I 
I . 
I 

I 
I 

I 
I 
I 
I 
I 
I 
I 
i 

I 
I 
I 
I 
I 
I 
I. 
I 
I 

. ·- ...... -- ··· . ...... ·-·· · - - . -- :;·- - - -:-,-- -=-

OS-65U UTILITY CORRECTIONS 

Here is ~ 1 ist of er· rors and con·e-ctic•ns I have d isco•-ier·ed over 
the course of the last two months of working with the OS-65U sYstem. 
This should , I hope, make uP fr the sPut·ious 1 ist of 11 fflemon:• 
loca. tions f·~r OS- 65U" Published ho.1o issues back (the·~ r.,•er·e for ROM 
Basic only - and it was an honest mistak~.) 

1) In the Program PACKER. line 390 is referenced but does not 
actuallY exist in the Program, causing a US error when the Program is 
run. Adding the line 390 REM will eliminate this Problem. Note: as 
this Pt"o·:n-~m t·uns •._.ter'::l clc•se to the mer•,c·t·y l"imi t of a 32k S':!stem, do 
not Put any exPlanatory tomments on this line--Just leave it as a 
s i mF·l e 390 F.:Et'1. 

2) In the Program FPRINT, there are two errors in the random file 
Print s~ction of the Program. The firs t is that when the Program asks 
for the last file index to Print. it tells you that 0 OUTPUTS TO END 
OF FILE, but in fact entering zero causes a rePeat of the inPut 
PromPt. This can be corrected by chang i ng line 550 from 

550 IF FR<0 OR FR<SR GOTO 540 

55(1 IF FP<SR At·K:. FR<>O GOTO 540 

and add i rr:il 

""?·:t:" t ._._. IF F~::;;:O THEr·~ FF.:=1E9 

The second. and more serious Problem ca uses the file index to be set 
wrong when inPutting the various fields of the random-file records, 
so that the wrons data altogether maY be inPut and Printed if Your 
fi1e contains data in between the vali d fields in the record. To 
correct this, line 800 should be changed from 

TO 

800 Y=RL*CX-1)+RO 

3) In the Pro9ram CHANGE, all outPut o f disk data b~ the Program is 
alwaYS given in hex, even if decimal mode was selected at the start 
of the t-un. This can be cot·rected b·~ a_dd i rr3 the 1 i ne · 

695 if 0=10 THEN PRINT DA;:GOTO 710 

Another Problem with this Program invo l ves what haPPens if YOU 
attemPt to change track zero on your d i sk. Track zero on the A drive 
can be changed, but if '::IOU tr~ to change track zero on the 8 (or C or 
[J) dt·ive, the modified track t...Jill be • ... witten to the A dri',.1e instead. 

.. 

. . 



- - ·····---- --- ------

This can be corrected bY adding the line 

505 DE=DS 

4) In the pro3ram MULTI~ ~uotation marks were somehow omitted from 
one of the string assign~ent statements. Line 370 should be changed 
from 

370 IF s::t:< >II OK II THEt~ PR I HT "EXPECTED OK" : S$=OK 

to 

370 IF S$( >II OK II THEt~ PF.: I NT II E:~=:PECTED OK II : S$= II OK II 

5) In the Program EDITOR~· if an attemPt is made to run the program on 
a video system~ the Program (rightlY) informs the user that it is 
onlY for use on serial sYstems, and erases itself. Before doing so, 
thou -~ h, it '··.1 i 11 ha• . ..'e 11 1 o c ked" the s·:~ s tem1 and t_ he s·::1 sf. em •.·.1 i 11 rerlta in 
locked when the Program is gone. Since the method used to lock the 
sYStem is different than the one used b~ BEXEC*~ running BEXEC* and 
tYPins UNLOCK will not unlock it~ eithe r. To avoid this Problem, 
lines 2140 and 2150 should be changed from 

214JZ1 F'F: I NT "THIs PF.:OGF.:At·1 F.:EG!U I F.:Es A sEfH AL st.,.•::nEt·1": t-~Et..! 
215(1 F:Et·1 

to 

2140 F'F.: I HT II THIs F'ROGRAt·1 REOU I RES A SEF.: I AL S'-s'STEt·1 II 
2150 POKE 2073,CC:POKE 2888,IM:NEW 

6>In the Program'NECDRU, the program wi l l not give the correct 
current values for lines Per page and l ines s~iPPed between pages if 
an attemPt is made to change these values on a video-based sYstem (it 
will 9ive both values as zero). To correct this~ line 10070 should be 
c h:a. n·:red f ror,·, 

10070 ON IO GOTO 10090110170 : REM SERIAL/VIDEO 

to 

10070 ON IO GOTO 10090,10130 : REM SERIAL/UIDEO 

To make this list comPrehensive, I shou l d Point out that there is one 
more Program with a serious error~ namelY FDUMP. When a track 
boundar~ is crossed while Printing a file, this Program gets all 
screwed UP and Prints garbag~ Unfortunately, I haven~t been able to 
disco• ... •er- the cause cd this Pn:.blem ':tel. If anYc•ne knot.JS the anst.Jer, 
Please tell OSI-tems (and me!) about it. Another thing to watch out 
for when using this Program is that some of the charcters the Program 
tries to Print will not actuall~ be Printed bY the 540 video driver, 
and this can cause the following characters on the same outPut line 
to aPPear in the wrong column on the screen, so that what YOU think 
is at INDEX 1506 maY actuallv be at INDEX 1507. 

6 
.. 



i j 

Extending OSI BASIC-IN-ROM: Version II 

Peter Schreiber 
1609 Washington Avenue 
Seaford, N.Y. 11783 

In the October issue of OSI-tems (V.II, No.B, p.7), I presented a 
machine language routine to extend your OSI Basic-In-Rom. Well, you learn 
new things everyday and so there came to be, version II. In this version, 
I have improved on the previous in~tructions and added one new routine. 
In improving the program, I have changed the syntax of the instructions 
because of some format problems, but I don't think that this should be too 
confusing. Also in making these changes, the machine code has been shifted 
which unfortunately means, if you want to use this version, you will have 
to retype the entire program. 

Also in this version, I tried to account for any syntax errors you 
might make in typing in the extended instructions. I think I have covered 
most of them, but every once in a while an incorect inetruct·ion will do 
some nasty things, like wiping out your current basic program. Try to get 
the extended instructione typed in corectly, as I will show. 

This versian has three extended instructions. The first is, again, 
the machine language screen clear. The revised syntax of this instruction 
is as follows: 

fNCLEAR (in immediate mode); or 

10 fNCLEAR (in a program) 

I like to read these instructions as "function clear", since it is 
somewhat of a function. This ~ingle instruction will produce a super fast 
screen clear, which can save you time and Basic code over other routines. 
The second extension is, again, the "PAINTON" instruction. There are now 
two type~, and they are as follows: 

( 1) FNPRINT"message"ON~~~! or 

10 FNPRINT "message" ON addr 

(2) FNPRINT ANY$ ON addr or 

10 fNPRINT ANY$ ON addr 

In the string version of this instruction, there is no limit as to 
the name of the string variable you use. It can be any string form AAS to 
ZZS. But if you try to use a string that has not been defined, you will 
get no output to the screen and the machine routine will just pass the 
extended in~truction up. You will also get the same result if you put the 
two quotes one after the other in the first example of this instruction. 
One other thing you might want to know is that you can use the "711 in 
replace ofYPRINT" because ·Basic will still change it to its token. And 
last, remember, the address that you use must be a four(4) digit hex number 
or the routine will abort. 

7 

... 



-~ . 

... ..... -----------·------------:------- ----- -.--

The third and newest extended instruction is the .LET instruction, 
which 18 used ae followe:· 

fNLET K = num (in immediate mode); or 

10 fNLET K = num (in a p~ogram) 

The purpose of this extended LET inetruction ie to change any four 
digit ~ number ta its equivalent decimal number. for example, if you 
type: 

1~ FNLET I = 0~~~ 
2% PRINT I 
3¢ END 

RUN 
. 53248 

OK 

The machine language routine will convert the hex number 0~~~ to 
53248 in decimal and place the result in t he variable I, or which ever 
variable name you want to use. 

Remember, before you try to use thi s code you ~ust add that jump 
in the parser routine at hex ~~Be. The j ump you must make in this version 
will be as follows: 

Location Manchine Langua~e Mnemonics 

~~ac 4C EJ{ 1E JMP S1EEJ{ 
~~Bf EA EA EA NOP 

Again, I must thank the authors of the articals in OSI-tems, without 
which I could not do it. I hope we can have more authors in the future. 

Location Machine Language Mnemonics 

1££¢ E6 C3 I NC $C3 
1EE2 o¢ ¢2 BNE $1££6 
1EE4 £6 C4 I NC SC4 
1EE6 A~ ~~ LOY #S~.lf 
1EE8 B1 C3 LOA SC3;Y 
1EEA C9 9£ CMP #$9E 
1EEC f~ ~3 BEQ S1Ef1 
1EEE 4C C5 ¢~ JMP S¢¢c5 
1Ef1 £6 C3 I NC SC3 
1Ef3 o¢ ¢2 BNE S1Ef7 · 
1Ef5 E6 C4 I NC SC4 
1Ef7 81 C3 LOA SC3,Y 
1EF9 C9 9A CMP #$9A 
1EFB f~ 11 SEQ $1fpl'E 
1Ef0 C9 87 CMP #$87 
1Eff rJ{ 26 BEQ S1f27 
1fjtf1 C9 97 CMP #$97 
1F¢3 r• 40 BEQ $1f52 

. ... 
. < 



-, . -· . 



[> 

. 

Location Machine .Languaga Mnemonics 

1f73 2;f C2 ;f¢ JSR S¢/6C2 
1f76 4C 90 1f JMP $1f9D 
1f79 A9 ¢Jf LOA #SJfJf 
1f7B 85 EA STA SEA 
1f7D 85 cc srA sec 
1f7f 2$4 BC ¢¢ JSR S;f;fBC 
1f82 A6 C3 LOX $C3 
1f84 86 E8 STX SE8 
1F86 A6 C4 LOX SC4 
1F88 86 E9 STX $E9 
1FBA 4C 92 1F JMP $1F92 
1f80 E6 EA INC SEA 
1F8f 2- BC -- JSR SJfJ{BC 
1f92 C9 22 CMP #$22 
1F94 op; f7 BNE S1FBD 
1f96. A9 Ef LOA #SEF 
1f98 85 cc srA sec 
1f9A 2¢ BC ¢¢ JSR S;fJ{BC 
1F9D C9 · g¢ CMP #$9Jf 
1f9f r¢ ¢3 BEQ S1FA4 
1fA1 4C ¢c AC JMP $ACJfC 
1FA4 2¢ C4 1f JSR $1FC4 
1FA7 A2 ¢¢ LOX #SJfJf 
1FA9 E4 EA CPX SEA 
1fAB of{ ¢3 BNE $1FB¢ 
1fAD 4C BC ¢¢ JMP S;ff{BC 
1fBJ{ 81 EB LOA SEB,Y 
1FB2 91 EB STA $EB,Y 
1FB4 EB INX 
1f85 E6 EB INC SEB 
1f87 o¢ ¢2 BNE S1FBB 
1F89 E6 E9 INC SE9 
1FBB E6 EB INC SEB 
1fBD o¢ ¢2 BNE $1FC1 
1FBF E6 EC INC SEC 
1FC1 4C A9 1f JMP S1FA9 
1FC4 A2 ¢¢ LOX S;f;f 
1FC6 2¢ BC ¢¢ JSR S¢¢8c 
1FC9 C9 3A CMP #S3A 
1FCB 1;1 ¢5 BPL S1FD2 
1fCD 29 ;ff AND #S¢F 
1fCf 4C 05 1F JMP $1FOS 
1F02 38 SEC 
1f03 E9 37 sec #$37 
1FD5 95 EB STA $-EB,X 
1F07 85 E7 STA SE7 
1F09 A9 ¢r LOA #SJ{F 
1fDB 38 SEC 
1FDC E~ E7 SBC SE7 
1FDE 1f{ ¢3 BPL $1FE3 
1FEJ{ 4C ¢c AC JMP $AC;fC 

to 

.. 



location Machine language Mnemonics 
1FE3 EB INX 
1FEA E;~ Jf4 CPX #$--4 
1fE6 o¢ DE BNE $1FC6 
1FEB AS EB LOA SEB 
1fEA ¢A ASL A 
1FEB ¢A ASL A 
1fEC ¢A ASL A 
1FED ¢A ASL A 
1fEE 18 CLC 
1FEF 65 EC ADC SEC 

I 1FF1 85 EC STA SEC I 

1ff3 A$ ED LOA $ED I 

~-'~'· L "' 
1FF5 ¢A ASL A 
1Ff6 ¢A ASL A 
1FF? ¢A ASL A 
1fF8 ¢A ASL A 
1Ff~ 18 CLC 
1FFA 65 EE ADC SEE. 
1FFC 85 EB STA $EB 
1fFE 6¢ 'RTS 

Note: Since I did not use page two, you mus t save the top of memory 
for the program. For my 8K system I must answer 79¢¢ to 
"MEMORY SIZE? 11 when starting. 

I I 



:--------------......---------~-------------------------~. ~,-,,,,--,~ 

' 

50000 K=0:FORJ=0T0240:IFPEEK(41092+Jl>l27THENPOKE547+K,J+l:K=K+l 
50005 NEXT:POKE546,0:POKE517,l:A=769:B= 10:I=~0:L=B 
50010 PRINTRIGHT$CSTR$(L),LENCSTRS(L)) - 1); 
50020 P=A+4 
50025 IFPEEKCPl>l 27THEN5 1000 
50027 IFPEEK< P ) =0THEN5 0050 , 
50030 PRINTCHRS< PEEK< P )); . 
50040 P=P+l:GOT050025 
50050 L=L+I: A=PEEKC A H256*PEEK< A+l): IFPEEK< A+3 ))194THENPOKE5 17, 0:END 
50060 PRINT;GQT050010 
51000 C=PEEKCP):S=41092+PEEKC418+C) 
51010 IFPEEKC5))1 27THENPRINTCHR$CPEEK<Sl-128);:GOT052030 
51020 PRINTCHR$CPEEKCSll;: S=5+1:GOT05 101ff 
52030 IFC<>136ANDC<>140ANDC<>160ANDC< >l44THEN50040 
52035 IFC=l44THEN50040 
52040 P=P+l:IFPEEKCP))57THENP=P - l:GOT050040 
52050 t'l=0 
52060 IFPEEK<Pl<48ANDPEEKCPl<>32THENP=P-1:GOT050040 
52065 IFPEEK(P)=32THENP='P+1:GOT052060 
52070 M=M*10+PEEKCPl -48 :IFPEEK<P+ll>570RPEEK(P+1)(48THEN53000 
52080 P=P+1:GOT052065 
53000 IFPEEK<P+1l =32THEN52080 
53002 . 2=0:N=769 
53005 Q=PEEK<N+2 l+256*PEEKCN+3 l:Z=Z+l 
53007 IFPEEKCNl=00RQ~MTHENPRINT.???•;:GOT053035 
53010 IFQ<THHENN=PEEK< Nl+256*PEEKC N+l l: GOT053005" 
53030 T$=STR$(B+C Z- ll*Il:PRINTMID$CT$~2,LENCT$)); 
53035 IFCC= 1360RC= 140JANDPEEKCP+ll=44THENPRINT",·;:P=P+l 
53050 GOT052040 

OK 

;­
\ 

' 

' \ 

. ' . 

10 ' 



Source Urxlate 

i'li ke Bassman 
39-65 52 st. 
Woodside, NY 11377 

This is a continually published list of new nroducts for 
OSI computers. For a complete list, use back issues of~OSI-tems to. 
compile a complete list. 

Mil e High Softvvare 
318 LindBn Avenue 
Boulder, CO 80302 

--~-- These people are advertising an Adventure, ·a program 

editor, a checking account program, and a Basic tutor series. 

Bob Retelle 
2005 Whittaker 
Ypsilanti, LU 48197 

The advertisement nentions an interesting sm.mding line 

of gaE1es, v7i th a descri ')ti ve sheet avai lable on reouest. 

Chuck Lenis 
804 w. 
North 1\Ioravia, Ior.'a 52571 

SeJ_ling a J_igl1t pe11 l::i -'c a 11d 21. sotlnc1 bo~\rd 1ci t for tl1e 

ClP. Complete hardrrare and soi'tw:?..r e:: l ist sent for a SASE. 

CRL 
P .0. Boz 615 
Nerl Bratmfels, Texas 7 8130 

Disassembler for the ClP. Write for details. 

Small Business . sxrstems 
Star Rt (40-A-10; 
Gering, NE 69341 

· Line of 'business software for C2-C3 disk systems. 

Send SASE for overview, $5 for ma.Y'J.ua1s ~ 

Optimum Inte,c:rated Syste1:1s 
P.O. Box 11142 
Indianauolis, Indiru1a 46201 

- .~.dvertisenent lists a Super Disassembler for OS65U, 

and a. 2K Smart Terminal Program for C4P-iilF. 

L~sting continued next page 

I l 

.. ' 



I • 

I· 

Source Upda.te 1 continued from last page. 

EIS ,inc. 
P.O . Box 5893 
Athens, GA 30604 _ 

EIS is selling a OS65U utility called BASXR. It will 

search for a variable or a Basic command. Locates specific lines on 

entry of decimal value of Basic comma.11ds. 

Gaslight Software 
3820 P..yron 
Houston, TX 77 005 

TheiT major uroduct is an OS65D utility diskette. 

includes a memory duml), im::~roved Create, single disk copy, Verify·, etc. 

Catalog send for SASE. 

Prism SoftvJare 
Box 928 
College Park, MD 20740 

Prism is producing a single di sl: COi)i ~ r for 24K OSI machines. 

Has color and sound(!) 

· Universal Svste''lS 
1647 E2.st Old Sha~;:o<)ee Rd. 
Uirm.ea)olis, L!I·i 55420 

• l s t 1 T- • n -'- oc"'' ,...D . , • -Un1versa_ ys ems l .as ,,aglc _,ooG, 2.11 .::>O:J.L '•l?.cn.lne languet:::;e 

extension to ·~ ?.SiC'. Adds renurf1her, full ci1rosr editing, !'18'YJory pack, 

screen and color clear to Bc.sic. '.Vri te f or price ., • -1... 

J..lS". 

Eonders, Inc. 
57 North ::;t. 
Eiddletovm, NY 10940 

na chine la:rJ.cuage sor.t for OS-TI'·J1 S users. Will sort 20,000 

byte file in under ten seconds. Needs OS -6 5U. 

Cor:rpu ter S~rstems 
376~ Airport Blvd. 
Mobile, AL 36608 

They have a number of progams to use G''T and RTTY vri th 

any ClP: Also disasseml)ler and backspace pro:srams. 

f3 

• -. 



I. 
I 

I 

I 

DUAL CASSETTE RECORDER MOTOROONTROL for OSI chall~nger 1 P 
b) Klaua Ernat · · 
For um~ of you thi.• is an old hat_,.but aince I recently had a. request 
for· the plans for thi8 unit, I thought I just as well p~blish them in 
OSI-tema . and wike them available to everybody. I wwote this about a year · 
ago(for kiloba.ud).nut nner aent it in.'foo buay with other projects& 

Although I had a. lot of fun building and pregramming tho Vollca-Volka ... 
Computer OOSM!C Elf .,1 found 1 t very :trulftrating that it wa.a ignored by most 
hobby computer magazines. and felt it wa.a time to leek around for a BASIC spea­
king machine oAlong cs.mo Volks-Oemput~r OSI Challenger 1 p.certa.inly a Super­
board.butwH~bout some cheap I/O capability.Tho keyboard can take ca.ro of the 
input portion,but tho outputf 

.A.:t'ter intensive staring a.t tho ckt achematics,I st\.Ullbled over 4 unused 
addrus outputs(y1 thru y4 of U2') which I ANDed with th~ R/W linooBy uaing 
'phoney' POKE• 1 could set and roaet 2 flip-flopa ~ich in turn would turn 
on {or off) LED• (the Elf Q t) or relays.Aa a special applica.tiOQ I built a tole 
phone dialer,. 

At one of eur OSI uaera group meetings so~ebody ·ask~d if anybody had 
worked on a cassette baaed sequential file . aystem which requires a TRS 80-like 
motor eontrolo'l'his seemed a. good applicatian for my clct. . )/( 

In my :autchine l PROTO area ~or th.e additional Io:•s,but for people who do~•t 
want to alter their 600 board 1 came up ~th a plug-in versioaoAlsc to make 
the ckt universally usable for machines with 610 boe.rds,I did not use outputa 
yO~y1,y2(which address RAM up to 32K on the 610 board}but y4 which addroaaos 
8000HEX to9FFmX (unused addressaecati ona tothe best of myknowledge) plus 
some· additional decoding of addreJslines A10 - A12 to get the necessary 4 outputs 
plus 4 spares(see table 1).! also decided to use a aeparate 5 to6 VDO powerpack 
(approx. 250m.A) for the relays.To play i t safe,th., relay ckts are electrically 
separated form the 1 P by Opto Isolators . 

Fig.1 s?ow• the ckt.The 40 pin DIP header(24 pin will do) picks up the 
addresslines (10 thru 15) and p2,R/1i and GNOoV·oa is picked up with 16 pin DIP 
header from unused 10' socket U6(pin 16)(unused,.if no 610 board is hooked up). 
IO 1 and 10 2decode tho addresslines.IC: ' 1 catchos 1 the decoder pulses and turns 
on (or off) the LEOs of the Opto Isolators(IC 4,IO 5).All lC'• plus R1 and R2 are 
mounted on a piggy back PO' board mounte d next to the fuseholder on the 600 board. 
imitters and. Collectors of the Opte Isolators arc extended via 4-wi.re cable(a.nd 
optional DIN plug and jack) to project box that contains tho remainder of the ckt. 
LEOs OR3,CR4 are on-off indicators switched by a relay centact.The other relay 
contact remote controls the tape recorder motor.Toggloswitches S1~S2 are used to 
override the relay controlo 

OPerations Oassett• Baaed Sequential Filing _is described on P•5ff of the 
CSl 8K BASIC-in-ROM ~nual.On p.4 you will ~ind POKEs to turn on and off LOAD 
and SAVE eommands.Cassette 1 would load information into the computer~cassette 2 
would save the upgrade data. 

The motor control ckt doos not have a reset button.If you want. to turn the 
relays off (or on) you can POKE tho appropiato POKEs in tho direct mode.If you 
try to do this after a warm start,,you 111 get an OM error meuago.Try again and 
it will work(WHY f).For a aamph(test) program see listing 1. 

Otehr uscaJ Tho Telephone Dialer by Allan s. Joffe (kilobaud nov.79) runs 
like a charm with the modi~icationa por listing 2o 

rr 



I' , 
! . 

I. 

1) TEST PROGRAM FOR DUAL. CASSETTE MOTOR CONTROL 
FOR OSI CHALLENGER 1P BY KLAU~. ERNST 

1 0 IN'RJT 1 R or W or NC;1 ;;NI 
20 11' lii-"R1 'IHEli 11 Q._ 

,e: Ir lt$-!'W1 '.VHEN ,.1 0 
" IP. NI•1R:t1 THEN, O:I•Bt a.GO':Q }20 
4o GOTO 10 . . . 
110. POKE }4ooo,,o 
!20 POR 1•1 '0 200tNExt 1 
1-'0 LOAD 
14o ]NP\JT AI 
150 lmrt Rl 
160 POKE 515,0 
110 POKE ;;ooo,o 
180 POR J.tt TO }2aPRlNTsNEXT tJ 
190 PRINT Bf 
195 PRIN'l'sPRINTtPRINT 
200 GOTO 10 
}10 INPUT Ot 
}20 POKE }6000~0 
}}0 SAV'E 
}40 PRINT1 GARBAGE IlWALJ:D DISREGARD NOT USED1 

}50 PRINT 0$ 
;6o POKE 517 t ;O 

}70 POKE }5000,0 
380 GOTO 10 

Notes 11 ft" Read(play) off Recorder 1 
•·411" l\t{I'ite (record) on Recor der 2 
•NOn No Change (record) on Recorder 2 

2) THE TRs-80 DIAL-A-PHONE BY ALLAN S. JOFFE, kilobaud Nov. 79 
MODIFIED FOR OSI O.HALLENGER 1 P BY KLAUS ERNST 

CHANGE OR ADD THESE LINES s 
}5 POKE }4000, 0 . 
110 IF NUM(A)>9 THEN PRINT 0;sG0'1'0120 
115 PRINT NUM(A.);; 
220 POKE ;;ooo.o 
240 POKE }4000, 0 
295 POKE ;;ooo,o 

16 
. • · 



. , 

Addre.. A..ddw••• Addre .. l1ae• LOW pul.. U•e 
I)elciaal Hex (deoeded) (10; 1) at -

A - .-- output: 
1 1 1 1110 
1 0 0 0 0 0. to Relay K1 · _ OFF 

1 oo. 0 o. 1 t1 Relay Kl ON 

1 0 0 0 1 Q, Y2 Rele.y IC2 01"1" 

1 0 0. 0 1 1 y' Rel.a.y K2 ON 

1 0 0 1· 0 Q: y Spare 

1 0 'Q.· 1 (i) , 1 Y5 Spare 

1 0 0 1 1 0 y I Spare 

1 0 Q 1 1 1 Y7 Sp,are 

- ·~ . --- - - - -- ----- ·----

,, 
'l'&.ble 1 

I 7 



---·· -·-.- ---, n·~-- ~ 
' I 

' ! I 

i ; , I . I I i ' . _i 

I ! ; l I /C. I 

:11 PI ! l 
-< 2.2.~ -< .Z.3o ~ -< 2-lf~ 
-(3Z~ 

lt/023 A II '2 

AIZ · . 
R/W · if. 

-< 31 ( ~2. I I "' I 

Q 
<t' 
~ 
0 

t:Q 

0 
0 

\0 

-< .Z.6 ( AI~ 2 -< zr < A 13 I ., 
-< ·2..7 ( AIS 3 

-· - <iNO 
·· vee 

-< 9 I "J/ PI &ND--Jt• ' 

-----1 
u-: /6 P2. Vcc--f ·! -

Q 
~ 
't 
0 

~ - " -~-

IC Z 

~ x NoTs: 

'() 
() 

~ 

... 

Y~~ Y.!i Y6 1 Y7 {lc I) 
C,A!V_ BE VSED Fo~ 

Tlo/1> ft'loi?E !?cLAY CkrS 

2 

vee 

2 

IICC 

CJ. p ?oWe~ ,AU...(, POitiEif\. 

r- YP3 
t l t - · · 
k"l ~'-'~2. 'J .SI , . 

~-- ~ 
c::i 

ZZo ~ 0 

" ~ 

-r-stl 

1 
. P'f-

[ t ---e-o 
CRZ T ~Z,IH~~_j ~ 

~ 
2.20 ~ 0 

\J 
Lij ~ 
Q( 

,LSVf ( 

JIA 
o v •II < 

Fl6.1. 

DUAL CASSETTE. REC.ORl)£1? 

MOTOR COA./T~OL 

!=OR OSI CHALLENGE~ ..:!. P 

1/- l.,f~ 79 13Y k. E~AISI 

J_ i 



Software Reviews****************************************** 
by Salomon Lederman 

There's a great new assembler 
It is from Bill's Micro Se,rvices 
Park, Illinois 60302. It costs 
deal of this sort that I've seen . 

available for the Cl. 
210 S. Kenilworth Oak 

about $15 . and is the best 
The program performs and 

the documentation is very complete. 
The package is an assembler/dissassembler/monitor, though 

the monitor features are not overwhelming. The package fits 
into 3K of RAM, it comes in two forms, for the lower 4k and for 
the upper 4k, of an 8k system. Both versions come on the tape 
so you can use each one whenever you need it. The assembler 
is screen oriented, very well done. The assembler assembles 
each mnemonic as you finish typing in the line, thus there is 
no need for a symbol table. Unfortunately you can't use lab­
els because of this. There is a write modefor emiering in 
your own code . You can view code one instruction at a time 
or you can advance a whole page with one keystroke. Supposedly 
there is an insert and delete tha t supposedly updates all your 
jumps; I wouldn't document that until I figure own how to get 
it to work. 

There are quite a few fril l s that makes this package a 
real nice one to have around. You can view code as dissassembled 
mnemonics, as HEX code, or as ASCII. In HEX code you are look­
at data, or machine code. You can 'view data as decimal or HEX. 
There is a built in screen clear . You ean even dissassemble 
backwards iS you like. 

So you can see that this is indeed a nice package; go get 
one from Bill's Micro Services. You'll be glad you did!; 

------------------------------------------------ ----------------~ 



rr···· . ............... . 

Programming the 6502- Machine Language for the Challenger Computer 
Class 2, by Salomon Lederman December 4, 1980 

This lesson is a followup of last month's class. Refer 
to last month's OSI-tems if you missed_ the class. Before I move 
on to new material I shall review the important information that 
we will need to use for this lesson. 

AD 

A9 
8D 
00 

We have learned several opcodes up to now. They are: 
LDA Load accumulator from a 2 byte address 
LDA Load accumulator with a constant (from next byte) 
STA Store accumulator in 2 byte address 
BRK Break (stop the program) 

EE INC Increment a 2 byte address 
4C JMP Jump to the 2 byte address of the next 2 bytes 
20 JSR Jump to s ubroutine, indicated by nett 2 bytes 

These opcodes are enough for writing very simple programs 
but we must learn more codes to develop more complicated programs. 

In this lesson I will discuss two new concepts branching, and index­
ing. A simple branch is the JMP instruction, there are conditional 
branches that we should learn about to write programs that do things 
in loops. Indexing is a powerful tool that helps to count things, 
and to do things consecutively. 

BRAN.CHING 
The concept of conditional branching should not be new to anyone. 

Every language must have provisions for branching. An IF-THEN 
statement in BASIC is one example. The FORTRAN DO loop does essen­
tially the same thing. In assembly language we have quite a few 
commands that help us transfer control of the program to a differ­
ent section, depending on the result of some calculation. Consider 
the following opcode for CMP; its value is C9. The function of this 
code for CMP is to compare the contents of the accumulator to some 
numeric constant that is the next byte of your program. We shall 
soon see more precisely what CMP does. Study the following Example: 

'2.0 

. . 



J 

0500 20 00 FD JSR $FDOO 

050:3 C9 20 CMP #$20 

0505 DO F9 BNE $0500 

0507 A9 00 LDA #$00 

0509 en C9 Dl STA $DlC9 
0508 00 BRK 

You will notice several new things in this program. 
that the symbol '#' refers to a constant value and that 
stands for HEX. If you look at the assembly listing on 

Remember 
the '$' 
the right 

then you should be able to figure out how this program works and 
what it does. The CMP instruction, to be a bit more precise tham 
we were previously, subtracts the value - of the constant from the 
value of the accumulator and sets some flags. I will not go into 
an explanation of flags in this lesson, for now it is sufficient 
onlyio understand that the BNE instruction depends on the f lags 
that the CMP sets. 

Remember from the previous lesson that JSR $FDOO calls a sub­
routine in ROM which waits for a keypress, then returns to your 

program. Thus at 0500 we call this routine and wait for a key. 
Once we reach 0503 we have the value of the keypress {in ASCII) 
stored in the accumulator- the ROM routine does all this.). At 
0503 we compare this value to the constant $20 . $20 is ASCII for 
the space bar. · If this comparison does not result in equality, 

t'ten we go on to the next instruction {we _ignore the BNE). How­
ever, if the two values are equal then we transfer control to 
to whatever part of the program BNE points to. This is fairly 
complicated to explain, in class I will go into detail as to. how 
to transfer control of a program. 

INDEXING 
For the sake of brevity I will provide only one example of 

indexing. The theory of indexing is quite complicated. The purp­
ose of the class is to thoroughly explain the topics. ,This sum­
mary will proiide you with a minimal knowledge of what indexing 
does. In further lessons I plan to go into much detail. Now 
consider the following example of indexing. 

2.1 

.. 



r 

"" ..,.>-, 
-

0500 
0502 
0504 

0.507 
050A 
050D 
0510 
0511 

0513 
0515 

This 

out how 

AA 00 LDK #$00 

A9 20 LDA #$20 

9D 00 DO STA $DOOO,X 

9D 00 Dl STA $DlOO,X 

9D 00 D2 STA $D200,X 

9D 00 D.3 STA $DJOO,X 
E8 INX 
EO 00 CPX #$00 
oo:mF BNE $0504 
00 BRK 

little program clears the screen for a Cl. Can you figure 
to modify it for a C2? Note th~t the program is really not 

_ very long. CPX does basioally the same thing as CMP. except that it 

compares the X register to the constant value instead of the Accumul­
ator. The really new instruction is 9D, which does a strange knid 
of store. What is done, in simple te r ms, is that the value of X is 
added to the address to obtain a new addres~. Remember that a byte 
is only 256 bytes big. Thus we need f or special STAs to cover four 
pages of memory, one K. Thus X begins wit~he value 00 abd is increm­
ented each time through the loop. Aft er X gets to FF, or 255D, it 
goes back to 0. Af this point the BNE is not activated and the 
program falls out of the loop to stop the execution. 

In the next lesson I shall dis cuss various methods commonly 
used to interface BASIC programs to Assembly Language subroutines. 
It is very impressive to have these s hort routines in your program 
to clear screen and color, 1o scan the keyboa-rd, poke messages on the 
screen, etc. One or two of these rout ines can really speed your 
program up. Poking in BASIC is not i ncredibly fast. I know of 
several programs that were slowed down considerably because they 
had on screen scoring routines that had to updated oSten; in machine 
language you will never notice the delay. So if ymu don't think 
that you will be doing full machine language games in the future, at 
least you will be able to speed them up with various routines. 


