
••

•

•

EE II I
MARa-t 1985
VQ.6, NO.3

The Unofficial OSI Users Journal

P.O. Box 347
Owings Mills, Md. 21117
(301) 363-3268

Column One
The food and prices in Europe
were great, but it is greater
to be back. Aside from those
delicacies that add girth, one
highlight was a visit with
David Livesay, of 68000 fame,
at his home near Liege, Bel
gium. The package that he has
put together (see his ad in
the December '84 issue) is
quite amazing. At this point,
the 68000 is primarily handl
ing the math functions for the
6502, but even here the speed
up is dramatic. Anyone who
does a lot of math should have
a second look. David's other
~ontribution, Search for Line
Number (January issue), is an
other gem. The speed improve
ment was dramatic. This
should become a standard where
speed is needed.

Now that we have given you the
above solutions, a challenge.
Who will write an article on
the best way to manage the
disk head lift on the 4P-MF
better yet, with motor shut
down? That shouldn't be
difficult as I hear that sev
eral of you have done it.

Another challepge; to the
WP-6502 hackers (see page 16) •
You have documented it, modi
fied it and fixed it, but can
you make it clean up after
itself? Regrettably, it modi
fies the operating system
which almost guarantees a
"crash" when running the next
program in a mUlti-user en
vironment. Here's a chance
for a Hacker to make a lot of
business users stand up and
notice the Hacker.

INSIDE
THE INSIDE STORY-OS I MAa-tINES 2
6582 ASSEM. LANG. PROO. QASS 3
MAPP I NG MAa-t I NE LANG. COOE 6
BEG I NNER 'S CORNER 11
GENERIC CQrn PLUS REVISITED 13
WAlZAT CORNER! 14
~VEN I ENT REGRESS I (JJ PROO. 14
~ 6592 V1.2 16
nMAG I C SQUARS a PROO. 2e

One last question. On page
23, you will find a piece on
cottage industry activities.
To broaden the field a bit, we
are interested in what you are
doing with your machines.
Recently, I have talked with a
number of you and have had my
eyes opened by some of the
things you are up to. Won't
you please take the time to
drop us a line and give us a
profile and/or how your ma
chine makes mqney.

In return fo~ 'all the ques
tions, ~ere are some answers.
Well, how about Brian Hart
son's new series on OSI
hardware - what it' is, how it
works and interrelates with
the system, th~'~hortfalls and
opportunities for fmprovement.
It is a complex ~ubject, but
the object is to. bring the
hardware neophyte up to speed.
In these days, we certainly
can use all the help and
understanding we can get.

Rick Trethewey's final in
stallment on Machine Language
programming is probably the
best of his nine articles.
Best of all, even though this
is the last, Rick says he has
another trick or two up his
sleeve.

For the "Elf" types and number
crunchers, Puckett's regres
sion package is the ultimate
of its type. Its size and
scope dwarf anything we know
of for the OSlo

Graphics buffs will find some
proof of the pudding in Earl

Morris's follow up on the
Color Plus Board. It is a
shame we don't have color and
motion on the printed page.

In the manufacturers corner,
and I now count three of them,
there is a hype of activity
working feverishly toward to
tally new or variation ma- p
chines (I count at least 5).
New CPUs (yup! 68000), op
systems, languages and util
ities, but all running most,
if not all, OS-U programs.
All this bodes well for the
OSI world, but for the moment
we will just have to wait un
til next month for some of the
specifics. There is fever in
the air!

Lastly, recent innovations are
making it almost possible to
add high density MF drives,
hard disks, OS-U and the like
to the UP" machines. No, it
is not cheap, but certainly a
lot cheaper than it used to
be. The hold up is that manu
facturers are not convinced
that "P" users will want to
up-grade. Write usl We will
pass the word where it will do
the most good.

P.S. It's
first, as
deductible.

tax time.
PEEK may

Check
be tax

THE INSIDE STORY

A new series designed to bring
the hardware beginner up to
speed. The series will examine
the overall system and all
commonly used 6502 based OSI
boards, for C4-P machines
through time-sharing.

By: Brian Hartson
Tech. Editor.

Over the years, PEEK has had
lots of articles and letters
that are concerned with spe
cific portions of OSI hard
ware. Those who have read
these articles either already
know the hardware down' to the
minute details or have fol~
lowed the instructions care
fully to get the desired
results. At the completion of
the project, knowledge was
gained, but only in the spe
cific area.

My aim in this series will be
to try to give you the overall
picture of what goes on in
your box. We will look at the
overall system, the individual
boards and how they inter
relate. Along the way, we may
even suggest changes or areas
for improvement to make your
machine perform better and/or
faster.

Because this series is to help
you get more from your machine
through better understanding,
I will be watching for your
comments, suggestions and
questions about those areas
that need special attention or
things that are still not
clear to you. Just write to
me at PEEK(65).

During the course of this
series, I will try to cover
the OSI world, but we have to
start somewhere. So, arbi
trarily I have chosen the C-2
and C-3 systems. Even if this
is not your area, read along.
There is more similarity than
dissimilarity with whatever
you have.

Cupyright· 1985 PEEK {65) tnc All Rights Reserved.

published monthly

Editor· Eddie Gieske
Technical Editor - Brian Harston
Circulation & Advertising Mgr. - Karin Q, Gieske

~~ObdsUc~~~t~o~e~~ie~ A. Fusselbaugh, Ginny Ma~)r Surlace

US $19
Canada & Mexico (ls\ class) $26
So. & Cen. America $38 $30
Europe $38 $30 .
Other Foreign $43 $30

All subscriptions are for 1 year and are payable in advance in
US Dollars.
For back issues. subscriptions, change of address or other
information, write to:

PEEK {65)
P.O. Box 347
Owings Mills. MD 21117 {301) 363·3268

Mention of products by trade name in editorial male rial or
advertisements contained herein in no way constitutes en
dorsements of the product or products by this magazine or
the publisher

2 PEEK [65] March, 1985

To begin, I will assume that
you have had the cover off and
with the help of the highly
recommended Sams Manual, you
have figured out which board
is the CPU, memory, etc. Ser
iously, if you don't have a
copy of Sams, get one from
PEEK or elsewhere.

So, now you know where things
are, physically. All well and
good, but what we will be
concerned with first is where
things are.the way the machine
sees things. In order for the
system to work, it has to know
where, in the machine's mem
ory, it can find the various
services it will need. It
also needs to reserve chunks
of memory to perform household
chores. To keep things sim
ple, let's lump them all to
gether and call them nhardware
devices n• So that we can have
an easy reference, we have the
following nsystem Mapn that
tells us where, in memory,
every hardware device is lo
cated; according to its hexa
decimal address.

SYSTEM MAP

C-3 SYSTEM
Hex Address device
COOtH:OFF 470/505 FlOPPY DISK a:NrR!LLER
gap
C200-c2FF IIl\RIl DISK a:NrR!LLER
gap
C4DO-<:4FF DIABLO PARALLEL I'RINl'ER a:NrR!LLER
gap
C700-c7FF 96 LINE PARALLEL Im'ERFlICE

&bo-an LEVW NE."OORK CXlNl'RW..ER
CJOo-<DFF VOICE I/O a:NrR!LLER
CEXlO-CEl'F Lf.VEl. 3 LOCAL CXlNl'RW..ER
CFOO-cFFF Lf.VEl. 1 a:NrR!LLER
DOOo-DFFF Lf.VEl. 3 EXEXllTIVE RAM
EXlOo-El'FF IIl\RIl DISK WAL FORT RAM BUFFER
9;lP
·nDO-F2FF 510 SCRArotPlID RAM
gap
F40o-F4FF CIlNrRCtiICS PARALLEL PRIN1'ER 0lNI'RCLR
gap
F70o-F7FF 510 PIA: PROCESSOR S~

LEVELl BANK SoII'lUI
gap
FBOO-FBFF 430 I/O a:NrR!LLER
FCOO-FCFF <XlNSCLE FORT
FOOD FDFF IIl\RIl DISK BOC7llOI SPlICE
FEOo-FEFF 65A IOUroR RO! SPlICE
FFOo-FFFF FlOPPY DISK BOC7llOI SPlICE

C-2 SYSTEM
WHERE DIFFERENT FROM C-3 ABOVE

D000-DFFF 540 VIDE0 RAM
E000-E7FF COLOR VIDEO RAM
gap
FC00-FCFF CDNSCLE IQRT
FD00-FDFF POLLED KEYBOARD RG1 SPACE
FE00-FEFF 65V MONITOR RG1 SPACE
FF00-FFFF BASIC RG1 SUPIQRT

It is easy to see that OSI was
wasteful of memory space.
Just look at all the wasted
gaps. Wasted to most people,
but this is where some pro
grammers put their special
bits of code. OSI could have
put all the controllers in the
F000-FCFF space and given us
4K more of user space. The
block from C000 through CFFF

is pretty much common to all
OSI machines and addresses
things like the disk control
lers and boards such as the
550 and 555. 0999 through
FFFF, in C-2s and personal ma
chines contains support for
polled video systems and ROM
BASIC. In the C-3 and larger
machines, as they are serial
systems and no need for video,
this space is used to provide
support for time-sharing, ad
ditional I/O and disk boot.

We now have a general picture
of the OSI computer. Now for a
little detail. Each board in
the system has one or more
functions so that, to make an
OSI computer, many boards are
needed. These boards are then
connected together by a back
plane or motherboard. The OSI
backplane is a parallel struc
ture that provides a roadway
for all address, data and
control signals to reach each
board. There is no decoding or
control done on the backplane.
The following is the Pin defi
nition of the OSI backplane.

OSI BACKPLANE PINOUT

PIN DEFINITION

91
92
93
fii4
95
96
97
98
99
19
11
12
13
14
15
16
17
18
19
29
21
22
23
24
25
26
27
28
29
39
31
32
33
34
35
36
37
38
39
49
41
42
43
44

WAIT
NMI
IRQ
DATA DIRECT.
DATA 99
DATA 1
DATA 2
DATA 3
DATA 4
DATA 5
DATA 6
DATA 7
UNDEFINED
UNDEFINED
UNDEFINED
UNDEFINED
RESET
UNDEFINED
ADD 19
ADD 18
ADD 16
ADD 17
+12 VOLTS
-9 VOLTS
+5 VOLTS
+5 VOLTS
GROUND
GROUND
ADD 96
ADD 97
ADD 95
ADD 98
ADD 99
ADD 91
ADD 92
ADD 93
ADD 94
ADD 99
PHASE 2
R/W
VMA

LOW TRUE
LOW TRUE
LOW TRUE
HIGH TRUE

LOW TRUE

VMA AND PHASE 2
ADD 19
ADD 11 Continued

•

•

•

•

•

45 ADD 12
46 ADD 13
47 ADD 14
48 ADD 15

Let's define the above signals
and explain what they do:

The WAIT signal is used by
controllers, or memory, to
switch the processor speed
when they are addressed. When
WAIT goes low it slows the
processor clock to 599 KHtz.

NMI is the nonmaskable inter
rupt. Unlike IRQ, this inter
rupt cannot be ignored or
delayed~ When this signal goes
low the processor finishes the
current instruction, then loa
ds its program counter with
the address that is contained
in memory locations FFFA and
FFFB. It then transfers con
trol to the program that
starts at the 16 bit address
that is contained in these
memory addresses (FFFA and
FFFB). These addresses are
referred to as the NMI VECTOR.

IRQ is interrupt request, that
is, a controller is requesting
processor time. Unlike NMI the
processor can ignore or mask
this interrupt. This signal
like NMI also has a VECTOR and
it is the 16 bit address that
is contained in locations FFFE
and FFFF.

DATA DIRECT: This signal con
trols the direction of data
flow into or out of the board.
The signal is high for a Write
operation and low for a Read
operation.

RESET is an optional
line not connected to
processor reset signal.
signal under normal OSI
is not used.

reset
the

This
usage

PHASE 2 is the system clock,
all data transfers take place
during the phase 2 period.
This signal controls the
bi-directional data receiver/
drivers inside the micro
processor during read/write
times. This signal along with
the read/write signal make the
signal called Data Direction.

R/W is the Read/Write signal.
When high, a Read operation
will occur, when low, a Write
operation will occur.

VMA or Valid Memory Address is
a signal that only applies
when using the 6899 micro
processor that is on the 519
board, otherwise this signal
is pulled high.

VMA and PHASE 2: This signal
is the same signal as Phase 2.

The only difference is that it
is used as an enable signal by
the controller boards. When
high a data transfer can take
place.

DATA 99 to DATA
data lines. These
on the backplane
tional.

97 are the
signal lines

are bi-direc-

ADD 99 to ADD 15 are the 16
address lines that are normal
ly used by the system.

ADD 16 to ADD 19 are the ex
tended address lines used by
the timeshare software to
switch RAM banks. These sig
nals are generated by a PIA on
the 519 board under control of
the LEVEL3 software.

There are currently five un
defined lines on the back
plane. In times gone by lines
at pins 13 thru 16 were the
Data Lines 8 thru 11, required
for the 12 bit operation of
the 6199 CPU that was to be
used on the 569Z CPU expander
board. This board used either
or both a Z89 and a 6199 pro
cessor. The 6199 is a 12 bit
microprocessor compatible with
Digital Equipment's PDP-8. I
do not know if this board ever
made it out the OSI door.
Line 18 has always been un
defined to my knowledge.

Well, that gives you a quick
trip down the backplane. If
it didn't all sink in (I
wouldn't be surprised - there
is a lot in there) go back and
read it again. If it is still
not clear, hang in there. As
we progress through the
boards, things should clear up
for you.

Next month we will attack the
CPU boards.

*
6582 ASSEMBLY LANGUAGE

PROGRAMMING CLASS

PART IX

By: Richard L. Trethewey
Systems Operator of the
OSI SIG on CompuServe

I'm sure you've seen BASIC
programs that perform seeming
ly magic and when you go to
dope them out ZAPI You
suddenly run into a slug of
meaningless DATA statements
and the ubiquitous (Gadl I've
been waiting months to be able
to use that wordl);

X=USR(X)

If you look up the USR func-

tion in a manual, you'll find
only that it "executes a user-
defined machine language
program". Swell. Actually,
OSI's "The C8P User's Manual"
and "The C4P User's Manual"
contain a good example of how
to use the USR function to
your advantage, even though
they tried like the devil to
under document it and write
the code to be as confusing as
possible. The idea in the
example was to execute a ma
chine code program and then
tell BASIC something about
what happened.

This is usually referred to as
"passing parameters".

Before·we go any further, I'd
like to clear up a couple of
things that haven't been made
clear about the USR function
under OS-65D in anything I
have ever read. First of all,
under no circumstances should
you blithely enter "X=USR(X)"
under OS-65D. OSI wrote a
disk read/write utility into
OS-65D and USR defaults to it
with a read operation. But if
location $2204 was changed ac
cidentally, you could be in
for a rude awakening. Second
ly, the documentation tells
you to change locations 8955
and· 8956 to point to your
machine code program. What it
doesn't tell you is that if
you use those locations, OS-
650 is in the DOS context.
That's fine if all you want to
do is a disk access, but if
you aren't aware of it and you
need BASIC to work, you'll go
nuts trying to figure out what
happened. BASIC stores the
real vector to USR at loca
tions 574 and 575 and you are
much better off always using
those locations to point to
your machine code. If you
need the disk, use the routine
SWAP at $2CF7 like God and the
programmers intended. Okay.
Enough pontificating.

Before the advent of OS-65D
V3.3, the most common use of
the USR function was to do a
screen clear. We did a screen
clear in one of the earlier
lessons. Again, the usual
technique was to include the
machine code in DATA state
ments and put the code in
memory through a series of
READs and POKEs. That done,
the program would POKE in the
address of where the code
resided in memory into 8955/
8956 or 574/575 and USR(X)
BANG your screen was
clear. Cassette system owners
are especially lucky because
they have just enough unused
space on page 2 ($9299) to
hold such a machine code
program without having to wor
ry about subsequent programs

PEEK [65) March, 1985 3

overwriting it by accident.
You just have to admire the
folks at Microsoft though, for
having the foresight to make
"USR" a function rather than a
command. My point is that the
way they wrote it, USR can be
used as either a command to
simply execute machine code,
or it can additionally be used
to allow machine code programs
to directly interact with the
language. I bet you were al
ways intrigued by the syntax
of "X=USR(X)" as I was. After
all, shouldn't X equal
something after the screen
was cleared? This leads us
back to the idea of, passing
parameters.

Let's look at what really hap
pens when BASIC encounters
"X=USR(X)". As soon as BASIC
sees the variable name "X", it
automatically knows it's going
to evaluate an equation and so
it executes the code for the
keyword "LET". LET identifies
the type of variable that will
be assigned the value of the
equation as one of three
types; (1) floating-point, (2)
integer, or (3) string. Then,
after dutifully checking to
make sure you put in an equals
sign, it jumps to the code
that untangles the right-hand
side of the equation. This
code is a subroutine located
at $0CCD and is called the
formula evaluator or "FRMEVL".
In our example, FRMEVL sees
the USR, and does a JSR to
itself to evaluate the expres
sion contained within the
parenthesis, before jumping to
where locations 574 and 575
tell it the code for USR
resides. Actually, FRMEVL in
turn calls a routine called
EVAL to decipher each individ
ual component in the equation
between operators (ie. +, ,
*, /, ~, AND,' OR, and NOT).
When the code pointed to by
USR does an RTS hack to
FRMEVL, FRMEVL in turn does an
RTS back to LET which stores
the result in the variable we
told it to. Keeping track of
all of this is no mean feat.
If you ever want to feel hum
ble, take a look at a disas
sembly of BASIC.

Typically, the type of infor
mation we'll want to give to
BASIC from a machine code pro
gram is going to be a number
and is further typically a
single byte value from 0 to
255. There is a routine that
will let you give a signed 16-
bit value from -32768 to 32767
to BASIC a~ $1218 called
GIVAYF (which I interpret as
GIVe A&Y to the Floating point
accumulator). If you put the
Most Significant Byte of your
value in the 6502's Accumula-

4 PEEK [65] March, 1985

tor and the Least Significant
Byte in the Y register and JMP
to $1218, BASIC will get the
value. I do not advise using
the indirect jump vector at
$0008. Some versions of OS-
65D do not install the address
for GIVAYF there properly. If
you're into floating point
math or need to pass a full
16-bit positive value to
BASIC, I can't help you ••••
yet'.

Okay, what could we want to
give BASIC? In the program
STRTRK.BAS that I uploaded to
OSI SIG recently, I used the
USR function to poll the key
board so that if no keys were
pressed, the program could
continue on to do something
else as opposed to using an
INPUT statement which would
wait until the user pressed
the <RETURN> key before it
could continue. The code I
used there is for OS-65D V3.3
and one of the main reasons
for that is that the V3.3 key
board poll can be used inde
pendently of BASIC and 65D and
it doesn't disturb page zero.
The Assembly language program
that interfaces to BASIC goes
like this:

10 JSR $3590 ; 00 KEYBOARD lOLL
20 'l1\Y ; ruT KEYPRESS IN Y REXiIS'lER
30 LllI\ #$00 ; INIZ ACWIULA'lOR
40 JMP $1218 ; JUMP '10 GIVAYF

Since this code is independent
of its location in memory, it
can be used on any size. sys
tem. After POKEing 574 with
the LSB and 575 with the MSB
of the address of where the
code is stored in memory,
"X=USR(X)" will cause "X" to
end up holding the result of
the keyboard poll. If no keys
were pressed, X will equal 0
and if a key was pressed, "X"
will hold the ASCII value of
that keypress. From there,
you could use the CHR$ func
tion to write your own word
processor in BASIC.

As I alluded to in my refer
ence to cassette based systems
above, an important concern
when adding machine code to
BASIC program is where to put
the code in memory. Another
is how to protect that code
from getting overwritten by
BASIC. In earlier lessons, I
provided a memory map of
OS-65D V3.3. In that map, all
of memory up to $3A79 is re
served for use by OS-65D and
the resident language (in our
case, BASIC). From $3A79 to
the top of your system's con
tiguous memory is defined as
the workspace. Data file buff
ers notwithstanding, the work
space begins by holding your
program. The memory beginning

with the end of your program
to the top of the workspace is
used to hold variables. BASIC
stores non-subscripted vari
ables first and then subscrip
ted variables (arrays) in ta
bles and maintains pointers to
the starting and ending ad
dresses of these tables. The
wild card in this arrangement
is string storage. The en
tries in these tables for
string variables do not store
the actual strings, but in
stead hold pointers to where
the real strings are stored in
memory and the length of the
string. BASIC stores the
strings beginning at the top
of memory, building downward
toward the array storage ta
ble. Thus it is essential
that we restrict BASIC's use
of memor~ in order to protect
our machlne code.

BASIC maintains the highest
available memory address of
your system in memory loca
tions 132 and 133 in LSB/MSB
format. Altering these loca
tions to a value less than the
address of where your machine
code will reside will protect
the code from being over
written by BASIC with string
storage if you choose to put
the machine code at the top of
your system's memory. When
you choose to alter 132/133,
you should do so at the very
start of your program and
immediately follow it with the
CLEAR command. This will in
sure that BASIC knows its lim
its and won't lose anything in
midstream. The advantage of
putting machine code at the
top of memory is that the code
will remain untouched and
available as long as you don't
reset your system or re-invoke
BASIC with the "BA" command to
OS-65D.

The alternative to putting the
code at the top of memory is
to store the code at the be
ginning of the workspace, in
front of your BASIC program.
OS-65U users are well indoc
trinated in this technique.
Under OS-65D, the BASIC utili
ty program "CHANGE" will alter
the start of BASIC to a higher
location. Running CHANGE is a
bit scary until you decipher
the meanings of the obscure
prompts, but there are bene
fits to be reaped from the
technique. Putting your ma
chine code in front of your
program allows you to store
the machine code on disk in
the same file as your program,
thus making retrieval simple
and also eliminating the need
to add bulky DATA statements
to your program (once the ma
chine code is properly in
stalled, of course). Be fore-

1

•

•

•

•

•

•

p.o. box 21146 • denver, CD 80221
phone [303] 428-0222

SPECIAL PURCHASE on hard disk drives

SPECIAL PRICES on DBI BUSINESS SVSTEMS
RUNS DB-DOS & OS-65U PROORAMS·

DBI420SE
(4) DB-1 MULTI-PROCESSING BOARDS * TRUE PARALLEL/MULTI-TASKING * ALL USERS RUN AT 2 MEGAHERTZ
(1) DS-1 SCSI HOST ADAPTER * w fBATIERY BACKED-UP REAL TIME CLOCK·
(1) DP-1 UNIVERSAL PRINTER BOARD

* 4 RS-232 SERIAL INTERFACES * 2 CENTRONICS COMPATIBLE INTERFACES
(1) FAST 20 MEGABYTE HARD DISK
(1) 318K BYTE FLOPPY DISK
(1) INTELLIGENT SCSI CONTROLLER

* w fERROR CHECKING AND CORRECTION

DBI220SE Same as 420SE except Two Users

DBI 440SE Same as 420SE With 40 Megabyte Hard Disk

·DBI240SE Same as 440SE except Two Users

LIST $10,490
ONL VI $6,695
SAVEl $3,795

LIST 17,900
ONLVI 6,395
SAVEl 1,505

LIST $13,100
ONL VI $8,895
SAVE! $4,205

LIST $10,510
ONLV! $8,595
SAVE! $1,915

• 0S-6OO IS A TRADEMARK OF OHIO SCIENTIFIC. INC.

OUANTITIES ARE LIMITED PLEASE DON'T DELAYI

PEEK [65] March, 1985 5

warned however, that you can
not type in a program and then
later run CHANGE to add space
in front of the program. You
must first run CHANGE and then
enter and store· your BASIC
program. with care, you could
actually get around this with
indirect files, but that can
get cumbersome with larger
programs. Do it by the book
and save yourself trouble.

Back to strings, you'll remem
ber that when I discussed
FRMEVL, I said it does a JSR
to our USR code. However,
when our code RTS's back to
FRMEVL, FRMEVL does a check to
see that the variable being
dealt with is a number and not
a string. This is because
Microsoft wrote the code to
only allow the MID$, RIGHT$,
and LEFT$ functions to deal
with strings, which is per
fectly reasonable considering
the other tools in the lan
guage. But if you're dead set
on using your own code to
manipulate strings, there is a
way around this problem. The
solution is to pull the return
address back to EVAL off the
stack and return instead to
FRMEVL before the string check
is made.

The sample program I am in
cluding here will take a
string from BASIC and reverse
it. You'll note that in the
assembly source code, I pull
the string from BASIC and
store it in my own buffer,
INBUF. I did this to insure
that the original string is
not disturbed by anything your
applications might need to do.
The assembly source code is
broken down into three sec
tions. The first section is
the set-up code which pulls
the string from memory and
saves the information about
the string. The second sec
tion is the string manipula
tion code and can be replaced
by your own application. The
last section does the necessa
ry housekeeping to tell BASIC
where the resultant string is
in memory and does the return
to FRMEVL. The BASIC program
is also a simple affair, but
you'll notice that I moved th~
pointer at location 133 two
pages in front of the machine
code. This proved to be
necessary in my tests, but I
honestly cannot explain it.

Using DEBUG or the OSI Assem
bler, enter the assembly
source code and store it in a
file for later use. Next,
assemble the code to memory.
You might also want to save
the code on disk. Next, you
can simply exit the assembler,
invoke BASIC and type in the

6 PEEK [65] March, 1985

10 POKE 133,158: CLEAR: POKE 574,0: POKE575,160
20 INPUT A$
30 B$=USR(A$)
40 PRINT B$

10 BASIC STRING MANIPULATOR
20
30 BASIC EXTERNALS
40
50 ENDATB =$7E END OF ARRAY TABLE
60 INDEX =$6F
70 FACEXP =$AE
80 FACHI =$AF

TEMP. POINTER TO STRINGS
F.P. ACCUM. EXPONENT
F.P. ACCUM. MSB

90 FACMHI =$B0
100 CHKSTR =$0CBE
110 FCERR =$10D0
120 FREFAC =$1520

F.P. ACCUM. NMSB

130;

CHECK FOR STRING VARIABLE
FUNCTION CALL ERROR
GET POINTER TO STRING

140 INBUF =$A100
150;
160
170;
180 PNTI
190
200
210
220
230
240
250
260 PNT2
270
280
290 PNT3
300
310;

*=$A000

JSR CHKSTR
JSR FREFAC
STX PNT2+1
STY PNT2+2
STA PNT3+1
TAY
BEQ
LDY
LDA
STA
INY

ERRJMP
#$00
$FFFF,Y
INBUF,Y

CPY #$FF
BNE PNT2

MAKE SURE IT'S A STRIN
FIND STRING IN MEMORY
SAVE STRING ADDRESS LS
AND MSB
AND LENGTH
CHECK LENGTH OF STRING
ZERO? ==> ERROR!
INIZ POINTER
FETCH CHARACTER OF STR
SAVE IT IN INBUF
BUMP POINTER
AT END OF STRING?
NO ==> PNT2

320; INSERT MANIPULATION CODE HERE
330;
340
350
360
370
380
390
400
410 PNT4
420
430
440
450
460
470;
480
490
500
510
520
530
540
550
560
570;

TYA
TAX
LDA ENDATB
STA INDEX
LDA ENDATB+l
STA INDEX+l
LDY #$00
DEX
LDA INBUF,X
STA (INDEX),Y
INY.
CPX #$00
BNE PNT4

PLA
PLA
LDA
STA
LDA
STA
LDY
STY
JMP

INDEX
FACHI
INDEX+l
FACMHI
PNT3+1
FACEXP
$159F

580 ERRJMP JMP FCERR
590;
600 .END

BASIC program above and run
it. That program will present
you with a mirror image of
whatever you enter in response
to the INPUT statement.

XFER Y REG. TO ACCUM.
NOW MOVE IT TO X REG.
FETCH TOP OF FREE RAM
GIVE IT TO BASIC
FETCH TOP OF FREE RAM
GIVE IT TO BASIC TOO
INIZ PUT POINTER
DECREMENT FETCH POINTE
FETCH A CHARACTER
SAVE IT IN FREE RAM (B
BUMP PUT POINTER
FETCH PTR = 0?
NO! LOOP! ==> PNT4

CANCEL RTS
FETCH PTR.
GIVE IT TO
FETCH MSB
SEND IT TOO

TO FRMEVL
TO NEW STRI
BASIC

LOAD Y REG. wi STRING
AGAIN, GIVE IT TO BASI
STORE STRING IN VARIABLE
AND QUIT
FUNCTION CALL ERROR!!

no longer available and
is a shame.

*
that

I would like to gratefully ac
knowledge the author of the
Assembly Source Code for
Microsoft OSI-BASIC written by
M.K. Miller. without that
book, I would be totally lost.
It used to be published by
Aardvark, but I'm afraid it is

MAPPING MACHINE LANGUAGE CODE

To thoroughly document your
computer's BASIC or operating
system (or any significant
machine language program), you
need to create a commented map
of the routines. 'Resource'
is a collection of BASIC pro-

•

•

•

•

•

•

grams which. working together.
help you to produce annotated
disassemblies.

Last month's PEEK published
explanatory text and the first
program. 'Resource' now con
cludes with the rest of the
programs and some example
results. The author used
'Resource' to aid in generat
ing annotated cross reference
lists for the OSI version of
Microsoft's BASIC.

RESOURCE PART 2

courtesy of COMPUTE!
By: T. R. Berger
Coon Rapids, MN

The tables which accompany
these final programs compris
ing "Resource" are selections
from annotated cross reference
lists for OS I-Microsoft 8K
disk BASIC from OS650 V3.2
NMHZ disks. The tables were
produced by using "Resource"
and the annotations derive
from both Jim Butterfield's
memory maps (COMPUTE!II, June/
July 198~) and my maps of
OS650 (COMPUTE!, January-March
1981) •

All addresses within the ex
ample tables are in hex and
the first address on any line
is the called address. There
after, the addresses refer to
Copyright 1982, Small System Services, Inc.
Reprinted by permission from COMPUTEt MAGAZINE

the place where the calling
code resides. In addition,
many of the addresses have
preceding letters. These let
ters mean different things in
different tables. In a JMP or
JSR table, an M means the
calling code is a JUMP in
struction.

An S means the calling code is
a JUMP TO SUBROUTINE instruc
tion. In the MEMORY table,
the letter is always the first
letter of the calling opcode.
For example,

10F3 STA $01~~, Y

is referenced in the table be
side ~l~~ as SIOF3. The Zpage
table has no leading letters.
This table was produced by an

Tabl~ I. Keyword Action Addre!'>!oes

Wurd Token A.dd~1IIS

t:ND eo 082A TO '0 t'OR 81 0748 FN 'E
NEXT 82 OC40 SPC OF
DATA OJ 08t'9 THEN AO
INPUT s. OD2e NOT Al
DIM SS Of'24 STEP " READ 8. OS58 + A3
Ll::T B7 091\6 - ..
GOTO 8S 081\6 AS
RUN .. 087F. I ..
IF SA 0929 . A7
nt:S1'ORt: 6B OBM AND AD
GOSUO 8e 08B9 OR M
m:TUItN So 0803 > ..
Rf.M Sf. 09le . AO
,s'I'OI) SF 0828 < Ae
ON •• 094C SGN AD
tlULL 91 0060 INT A.
WAJ1' 92 169C ARS AF
EXIT 93 2:23C DSR D.
DISK .. 225) FR' 01
DEr 95 1235 POS .2
POKE 9. 1693 SOR 03
PRINT .7 21AA RNO •• CONT 9S 005) LOG .,
LIST •• 0689 EX. 116
cr.F.AR •• 067<: cos ", ru:w ... 0662 SIN •• TAB !Ie

early version of
before the extra
was added.

Editors note:

Resource follow up.

"Resource,"
information

There is more to come!

The preceding article by Mr.
Berger was brought to our
attention by Mr. Dana Skip
worth (Skip) who has been
working with the programs and
Mr. Tom Berger for quite some
time. The result is that
"Skip" has put together a
series of comments and tips
which will appear here in the
coming months, along with
further notes and utilities
from Tom. Stay tuned!

TAN B. IFF'2
ATN 'A 2056
I-'I;L:K UU 16t18
LEN Be 15r6

1&B9 STR$ BD 12£9
VAL Be 1621

1609 ABC or 1605
16C2 etllu co 1566
18f'4 LEFT$ el 157A
lAOD RICHTS e2 15A6
lE4F MIOS e3 15nl
DEBe N" e. EHRon
01:;89 SN es ERHOR

RG c. £IH!nr~

00 C7 L:IIltOJl
pc eu L:IHtoH

1334 OV co EIWOR
IDC7 OM eA LRRUk

1853 liS en f:ltHOIt
22r7 liS ee 1:IUrul(
1204 DO co 1;/lI<Olt

1225 /0 ce L:IlROlt
lE45 10 er H<kOR
lr66 T" DO EIWOR
18r13 Lo 01 EkROR
IEel ST 1>2 1:IH:(JII
IfA2 CN D) ERKOH
It'A9 u,' D' i::IH<on

Cont.

HAS YOUR HARD DISK GONE S-O-F-F-T?
BTl is your Authorized Service Agent for:

Okidata, OSI and DTO 14-inch disk drives.

BTl service includes:
• Maintenance contracts • Product exchange
• On-site service • Depot repair

Over 15 years' computer systems maintenance experience.
More than 5000 disk drives currently supported in the field.

For information or service, contact:
u.s. and Canada
Greg De Bord
Sunnyvale, California
408-733-1122

COMPUTER SYSTEMS

Europe
Victor Whitehead
Birmingham, England
021-449-8000

870 W. Maude Avenue, Box 3428, Sunnyvale, CA 94088-3428 (408) 733-1122
Regional offices in Minneapolis, MN; Ramsey, NJ; Atlanta, GA; Dayton, OH

PEEK [65] March, 1985 7

Tahlt· 2. Mt'mury Tahle

'Zp •• qf>
0001 1.1·'.11\
0002 1.1 7])
(00) J.17:!C
0004 LJ 725
0016 sOSr:r L05r2 50612
0017 [.(l~ 12
0018 S062n
OOAO OOEan
00A2 00909
QOfF SIcr6 51067 51070 SIon4 SIODE: LIOOI SIE:

or

0100
0101
0102
010)
0104
0109
alar
0110
0111
0112
OIOE
Olor

0200
0201

0266
0267
0260

028)
0284

0)64
0)65

07A9
09A2
OEA2
1410

iE21
IE22
!E2)
lE24

2105
2101\

Stolck
sion SlE14
(.0)A6 1.10713 51086 SIOEE
I.o)r\l CO)C2 LorC9 LI071 51081 SlEDS
LO)1I6 CO)BB SIEOI
:;IEOI\
I.OG7!i SOC90
I,OC90
LOC95
LOC9r
LOC91\
LOE:79
1.0 I:.;J r.

Start of keyword address table
L07f"9
L07r5

Start of operator hierarchy and address
tabl~

COD20 C0048 L0064
I.OIlS)
LOll4r

Table of BASIC keywords (Start $0294)
L061[l
S051~O L0622 L0736 L013E

Ic:rror messages
L0456
L04SC

BIT hiding code
8057C
BIOcr
809E)
BI9BE

Conotants
AI091
AI08A
AI(8)
AI07C

Operand pointing to 10 flaqa
52104
52101\

'l'ahll' :1. Zpot~t· Tahle

• ;Indcx fot 'ZPllqr.. Jump vectorc rOt lIMilC'
00 O~I\!) 05D9 0609 0627 13~,7
01 U5n 1700 1730 18)2 18)8 1848 184C 184£

II!~O
, j!;l',H<"11 ("t.,lI.lI:t~r

010 U:.!O HWr II:/U It:t:~

OA OgOe 0914 0916 0976 09518 0095 OB90 DE!)7
OEB2 1)00

ISClin between quotes ,LAG
00 Dar IJ24
au 05B3 OG07 0600 O!llO 0!H2 0918 091£ OBA2

OE90 OEM

• ; POINTER I Input Duffer •• of SUbliCflptB
OC DEAD OEBO OEM 1028 1091 100E 1108 112F

1175 llAO
OC 049C 04r7 asap 0501 OS£9 061A OESE OE9S

OE9B OEA7

• ; Ocfaul t DIM rLAG
00 Or)3 IOS9 109£ 1007 1113 116£

Table ·I.JMI' alldJSK Tahle

DOH

001d

Jump Vl:ctor for eVllIluatlon
H0084

Jump vector for tunctions
SOEO)

• CIIRGET subroutine: 9~t BAISC character
OOCO S16}S SICOS 51C12 SIC)S 5216) M2208

52259
OOCO 50464 50600 S079t' 507EO M07rD 50960

SO 9AO SOACI 50B8E
OOCO SOCB) 50000 SOOB6 HOEIB SOE40 50r48

SeW5) SOF7B 510JO

• Subentry: get previous ch~r.8cter
00C6 S}6S2 5161\) M2160 521BO 52H:O
OOC6 SOCAC SOCE7 SOr2S SOr30 SOr)7 S108A

512CS 51SaS M1624
00C6 506C7 50790 50890 S092C 50941 SOA)2

50078 SOBCl 50BDU

10 f<FM ** RF:~(JIRCE 2 **
20 Hili " SOJk{;E ANU I1;!UATE FILE BUIWEH "
30 REM " T.R.BER;E:n 11/80 "
40 REM " REnNE <XX-IMI\ NID SEMIOJLON **
50 POKE 2972 ,13: POKE 2976,13

i26F

2281.

22CO
22C9
22CI\

22f'2
22F3

2321

2J22

2)2 ~

2BA9

2AC6

2CM

2CES

Stack pointer
5211r

Table index tor OS bu[ter w!lte routtne
S217f'

Buffer read write dllta (or 05
L22£2
L2206
L22DC

USR pointe;r to OS and dlSk
52209
S220r

os Input flag
S20rS L2101 52106 52201 L2215

os Output flag
S20rS L2107 52150 S210r! L21rc 52208

OS Passed char, (Control ()
L0019 5082)

OS Disk sector number
S22AC

BIT hiding code
BOEOr

OS Default 10 flalj

L20r2

BIT hiding code
BOE12

05 Read buffer pointer
52142

OS End of buffer on read
2CEO 5211)

2E7,\
Transient GET and PUT pOlnter
L22A6

as Swapped value (SE1. U:2) Stilrt pointer
for buffer read

30SA 52116
3050 52119

Pointer to SOURCE f'i Ie head'"!!
)178 s2J26 L2273

3170

)PA9
A4A2

Number of tracks in SOURCr: file
52136

BIT hidinq code
BOAES
BIAC4

02 135r 1136 102E IIlH)85A lA5C~RSt:
UJ 172r 182A HIlO 1866 1860 186A
04 1728 lR26 lR2e 1872 1074 1876

,Typel t't'.titClllq OO-nUmcllc
CE 09aS OA40 OB91 OCBf' 0010 00)6 OOH4 OEJl

OED) 0F44
at; 0f'6) 105£ 1097 1204 121A 1360 1601

,
OF 0982 OBUC OE)6 or46 0f71 1050 109A

,subscript FLAG; rNa FLAG
11 QUB OHA OF6B OrBI Oroc 1240 126A

: O-Input I UO-GET, US-READ
12 ODOO DOSE OBBO CC12

Search sUck for FOR and COSUB activity
S074P :dl009 50CS8

Open space 1n memory
OJCr 50504 SOrpl
OJ06 Sl4A2

our

Teat stack (h.·llth
50750 s088n SOcOO

Check available memory
SO)er S10EC 51142

Send error message thenl
DUC nll94
044E !HA07
044E MOOSB N08E6 MOCCA HOE20 HI002 fU 2)2

MI)52 "1404 NI021

Warm start DASIC

60 PRurr: PRIN'I'''HfSOJRCE " STEP 2-BUILD SOJRCE AND EQUATE FILES
70 PRIt-rr: PRlt-rr
80 INPUT"SCRIITCIl FILE" ,SF$
90 Itll\JT"CBJLCI' FILE" ;O~'$
100 PH1NT:TNRITIISYMBOI. F'ILE.:";F5$
11 0 INPU'I'" I1;lUII'I'E FILL", U'$
120 SP$=" "

Copyright 1982, Small System Services, Inc. Reprinted by permission from COMPUTE I MAGAZINE

8 PEEK [65) March, 1985

130 IU:101 ** CCllN1' t;'it-1l30LS **
140 POKE 8998,OO:POKE 8999,128
150 POKE 9000,OO:POKE 9001,140
160 POKE 9006,OO:POKE 9007,140
170 POKE 9008,OO:POKE 9009,152
180 DISK OPEN,6, FS$
190 REM ' SYI'IBClL CCXlN!'ER '
200 SN=-1
210 INPUT .6, IN$
220 IF IN$="XIT" 'ruEN 250
230 SN=SNtI
240 GCYIO 210
250 DISK Cl.OSE,6
260 HEN ** LOAD SYI'IBOLS "
270 DISK OPEN,6,FS$
280 lID! ' DIMENSION STRltol> AND Ml\RI<ER I\RRI\YS '
290 DIM SS$(SN) ,SS(SN)
300 FOR' 1=0 ill SN
310 INPUT .6,55$(1)
320 NEXT I
330 DISK Cl.OSE,6
340 JIDo1 ** MAIN PRa:;Rl\M **
350 REM • LINE tuMIJERS NID IOCHEMEN!' '
360 Cl.=10000: IN=10
370 DISK OPEN,6,SF$
380 DISK OPCN,7 ,Of'S
390 REM ' LOOP BlICK HERE '
400 UlPUT #6, IN$
410 IF IN$="XIT" THEN 670
420 IIDI ' GET NJDRFSS OF LINE '
430 1Il$=LEFT$(IN$,4)
440 REM " BINARY SEARCH FOR SYMBOL "
450 REM ' SEARCH '
460 L=O: R=SN
470 r,I:IN!'((L+R)/2)
480 REM 'EXIT HERE IF NOI' Fa.lND '
490 IF L}R 'ruEN OJ$=SP$HIID$(IN$,5):GCYIO 580
500 REM 'EXIT HERE IF Fa.lNIl '
510 IF 1Il$=SS$ (M) 'ruEN 560
520 IF 1Il$}SS$(M) nlEN L=M+l:GCYIO 470
530 R=M-l:GCYIO 470
540 REM ' END OF SF.ARCH '
550 RfM ' CREATE S'floIBClL NID MI\RI< NJDRESS USED '
560 SS(M) =1 :ClJ$="HIl"+lN$
570 REM ' CREATE RFSClJRCE LINE'
580 OJ$=STR$(Cl.) +" "+ClJ$
590 REM ' INCREl'.EN'I' LINE NUMBER '
600 CL=Cl.+IN
610 REM ' PRlt-rr LINE'
620 PRIN!'.7,OJ$
630 PRIN!' ClJ$
640 GCYIO 400
650 IIDI ' LOOP IlJ\CK FRCM HERE '
660 REM ' CLOSE FILES •
670 PRIN!'#7, IN$
680 PlnN!' t7, "E"
690 PRIt-rr 17, "E"
7 00 DISK Cl.OSE, 7
710 DISK CLOSE,6
720 RfM 'END OF MAIN PRCGRAM '
730 IIDI ' WRITE 'lliO BYTE EQUATES '
740 DISK OPEN, 7 , EF$
750 REM 'FIRST LINE NUMIJER '
760 CL=5000
770 REM ' TI'lLE '
780 PRINT#7,SI'R$(Cl.)+" ,EQUATES"
790 CL=Cl.+IN
800 IIDl ' CCXlN!'ER FOR EQUATES '
810 K=O
820' REM ' PRlt-rr EQUATES '
830 FOR 1=0 ill SN ,
840 REM ' SKIP SYMBClL:.; MUCH IIRl' LAIltL:.; ,
850 IF 55(1)=1 'ruEN 930
860 1Il$=STR$(Cl.)+" HH"+SS$(I)+" = $"+SS$(I)
870 PHIN!'17,1Il$,
880 PRlt-rr 1Il$
890 RfM ' NE:X1' LINE NUMIJER '
900 CL=Cl.+ IN
910 REM ' INCREMEN!' EQUATES CCXlNf '
920 K=K+l
93'0 NEXT I
940 PRINT47, "XIT"
950 PRIN!'t7, "E"
960 PRlt-rrl7, "E"
970 DISK Cl.OSE,7
980 REM 'FINISHED WI'ru EQUATES '
990 PRIN!': PRIt-rr
1000 PRIN!'"OJDE SOJRCE FILE REGENERATED": PRIN'I'
1010 PRIN'I'I'AB(lO) "RFSOJRCE FILE : "OF$
1020 PRIN'I' TAB(lO) "EQUATE FILE: ",EF$
1030 PRIN!' TAB(lO) "SCMTCH FILE:"SF$
1040 PRIN'I' TAB (l 0) "SYMBOL FILE: "FS$
1050 PRIN!' TAB(9) SNtl" SYMBOLS"
1060 PHIN!' TI\I3(9) K" EOUAT(;S"
1070 PRIN!':PRlt-rr"PASS 2 CDlPLETED"
1080 PRlt-rr:PRIN'I':rno

10 Iill'! **' R(;sOJRCE 3 - cnrus R1PEHI:lJCE BUILDER **'
20 lID! '" T,R.BER;ER 11/80 '"
30 1ill1 ' DtLI':I'F. a::w-I/\ lIND SEMImLON •
40 POKE 2972,13:POKE2976,13
50 PRIt-rr:PRIN!''''' RFSOJRCE " STEP 3-CROSS REFERENCE

GENERA1OR"
60 PRlt-rr:PRIN'I'
70 PRIll!" TAB (20) "TYPES OF REFERENCES"
80 KlKE 8998,00:POKE 8999,128

1

•

•

•

•

•

•

90 POKE 9000,00:POKE 9001,140
100 POKE 9006 ,00: POKE 9007,140
110 POKE 9008,00:POKE 9009,152
120 PRINT: PRUII'"B"TAB (l 0) "BRlINCH"
130 PR="J"TAB(10) "JSR AND JMP"
140 pmm"M"TAB(10) "rIDllRY"
150 PRIm"Z"TAB(lO) "Z PI'GE"
160 PRIm: PRIm: PRIm
170 INPUT"yooR QjOICE (J/BlWZ) " ;CR$
180 IF CR$<> "B" AND CR$<>"J" AND CR$<>"M" AND CR$<>"Z" WEN 170
190 PRIm:INPUT"SCRA'lCH FILE";SF$
200 INPUT"REFERENCE FILE" ;RF$
210 PRIm:INPUT"NU~IBER OF REFERENCES";NR
220 REM • DIMENSION ARRAYS •
230 DIM SS$(NR) ,SII$(NR) ,V(NR)
240 REM • SET SYMIlCL t{JMBER AND TYPE'
250 'l'=l:SN=-l
260 IF CR$="M" WEN '1'=2
270 IF CR$="Z" THEN '1'=3
280 REM • SYMBOL fi,UCKER •
290 8=13: NL=4
300 IF CR$="Z" WEN 8=15:NL=2
310 REM ** MAIN PHC13RAM **
320 DISK OPEN,6,SF$
330 DISK OPEN ,7 ,RF$
340 REM • LOOP BACK HERE •
350 INPUT '6, IN$
360 IF IN$="XIT" WEN 800
370 REM • TOO SHORT, NO SYMIlCL •
380 IF LEN(IN$) <16 WEN 350
390 REM 'CBECK FOR NO SYMIJa., •

400 IF MID$(IN$,11,2) <>"HH" WEN 350
410 REM 'DISPLAY LINE WIW SYMIlCL •
420 PRIm IN$
430 REM • DETERMINE SYMBOL TYPE *
440 ON T GOaJIl 970,1050,1140
450 REM 'CBECK FOR RELEVANT SYmOL •
460 IF FL=O THEN 350
470 REM • GET ADDRESS OF LINE'
480 Al $=M$+ LEF'I'$ (IN$, 4)
490 REM *GET SYMBOL •
500 A2$=MID$(IN$,S,NL)
510 REM • SEARCH SYMBOL TABLE *
520 illl • BINARY SEARCH •
530 L=O: R=SN
540 REM • SYMBOL NOT FOOND, INSERT IT •
550 IF L>R THEN 620
560 M=lm((L+R)/2)
570 REM • snlBOL IN TABLE'
580 IF A2S=SS$(V(M)) WEN 700
590 IF A2$>SSS(V('I)) wrn L=M+l:GO'IO 550
600 R=M-l:GO'IC 550
610 REM * ADD A SYMBOL •
620 SN=SN+l:SS$(SN)=A2$
630 REM • POlm 10 ITS PROPER POSITION IN ORDERING •
640 IF L=SN WEN 680
650 FOR 1= SN-l 10 L STEP -1
660 V(HI) =V(I)
670 NEXT I
680 V(L)=SN:M=L
690 REM • ADD A CROSS REFERENCE •
700 SII$(V(~I)) =SA$(V(M)) +" "+Al$
710 REM • OIECK IF CROSS REFERENCE LINE IS TOO LONG •
720 IF LEN (SA$(V(M))) <50 WEN 350
730 REM • PRIm CROSS REFERENCE LINE'
740 PRIm #7 ,SS$ (V(M)) +" "+511$ (V(M))
750 PRIm SS$(V(M))+" "+SII$(V(M))
760 SII$(V(~I))=""
77 0 GO'IO 350
780 REM 'LOOP BACK FR<l-I HERE •
790 REM * CLOSE SCRA'lCH FILE'
800 DISK CLOSE,6
810 REM • PRIm REMAINING CROSS REFERENCE LINES •
820 FOR 1=0 10 SN
830 IF 511$ (V(I)) ='" WEN 860
840 PRIm '7, SS$(V(I))+" "+SA$(V(I))
850 PRIm SS$(V(I)) +" '+511$ (V(I))
860 NEXT I
870 Plum #7, "X IT"
880 DISK CLOSE ,7
890 REM • END OF MAIN PRO:;RAM •
900 PRIm: PRIm
910 PRIN'l' 1Nl(l0)Cll$" REFEHENCES rutPL~"l'Ul "
920 PRIm TAB(lO) "SYMIlCLS FOOND: "SN+l
930 PRIm TAB(lO) "REFERENCE FILE: "RF$
940 PRIm: PRIm: END
950 REM •• SUBROJTINES ••
960 REM • BRlINCH AND J ('1'=1) •
970 IF MID$(IN$,6 ,1) <>CR$ THEN FL=O: GO'IC 1030
980 REM • SIFT OJT BIT INSTRUCTIONS •
990 IF MID$(IN$,6,3)="BIT" WEN ''[.=O:GO'IO 1030
1 000 REM 'LABEL FOR TYPE •
1010 M$=MID$(IN$,7,1)
1020 FL=l
1030 RmURN
1040 REM • MEMORY ('1'=2) •
1050 M$=MID$(IN$,6,1)
1060 A2$=MID$(IN$,13,l)
1070 IF M$="J" OR A2$="Z" WEN FL=O:GO'IO 1120
1080 REM • SIFT 00'1' BRANOIES •
1090 IF M$="B" AND MID$(IN$,6,3) <>"BIT" WEN FL=O:GO'IO 1120
1100 REM • LABEL TYPE'
1110 FL=1
1120 RETURN
1130 REM • Z PAGE REFERENCES ('1'=3) •
1140 IF MID$(IN$,13,l)<>CR$ THEN FL=O:GO'IO 1190
1150 M$=" "
1160 REM • LABEL FOR INDEXING •

1170 IF LEN(IN$»16 THEN M$=RIGHT$(IN$,l)
1180 FL=1
1190 RmURN

IO HfJo1 *** REf>(I1HCE 4 Z PJ'lCF. rQlJNrES H.

20 1<lM T,R,BERiER 11/80
30 PRIm:PRIm
40 PRlm"RESOJRCE STEP 4 Z PI'GE FCUATE FILE"
50 PRIm:PRIm:INPUT"Z PI'GE CROSS REFERENCE FII.F:",ZF$
60 INPUT"Z PI'GE EQUIITE FILE", ZES
70 POKE 8998,00: POKE 8999.12R
80 POKE 9000,00:POKE 9001,140
90 POKE 9006,00: POKE 9007,140
100 POKE 9008,00:POKE 9009,152
110 PRIN'l': INRlT"NUMBER OF SYMBOLS" ;NS
120 REM • LINE t{JMBER AND INCRflo'.ENT •
130 FL=1000: IN=10
140 REM • DIMENSION ARRAYS •
150 DIM SS$(NS) ,V(NS)
160 REM • snlBOL (UlmER •
170 SN=-1
180 REN • LOAD SYMBOLS •
190 DISK OPEN,6,ZFS
200 PI<INT:PRIm"LOADING SYr>UlOLS"
210 REM • LOOP BACK HERE •
220 INPUT #6, INS
23U If' IN$="XI1'" WEN 47U
240 REM • JUST WE Z PI'GE REFERENCES •
250 INS=LEF'I'S (INS, 2)
260 lID! • PUT SYmOLS IN ORDER •
270 REM • SEARCH FOR SYr>IIlOL •
280 REM • BINARY SEARCH •
290 L=O: R=SN
300 REM • GO ADD Nfiol SYmOL •
310 IF L>R WEN 380
320 M=IN'!'((L+R)/2)
330 IIDl • HAVE WIS ONE ,GET /\NoniE!< •
340 IF INS=SSS(V(M)) WEN 220
350 IF IN$>SSS(V(N)) WEli L=M+l :GO'IC 310
360 R=/l-l:GO'IO 310
370 REM • ADD SYMBOL 10 LIST *
380 SN=SN+ 1 : SSS (SN) = INS
390 RIM * FOlm 10 ITS PROPER roSITION IN ORDERING •
400 IF L=SN WEN 440
410 FOR I=SN-l 10 L STEP -1
420 V(I+l)=V(I)
430 NEXT I
440 V(L) =SN
450 GO'IO 220
460 lID! • LOOP BACK HERE *
470 DISK CLOSE,6
480 REM • SYMBOLS ALL LOADED *
490 REM • PRIm ElJUATES *
500 DISK OPEN,6,ZES
510 REM *TITLE •
520 PRIm #6,S'!ll$(FL)+" ;Z PI'GE EQUATES"
530 illl • PRIm ElJUATES NQ; •
540 FOR 1=0 '10 SN
550 FL=FL+lN
560IN$=S'!ll$(FL)+" HHZZ"+SSS(V(I))+" = $"+SSS(V(I))
570 PRIm 16,IN$
580 PRIm INS
590 NEXT I
600 PRIm #6, "XIT"
610 PRINT '6, "En
620 PRINT #6, "E"
6 3 0 REM • BUFFER 6 REI;lUIRES A PUT •
640 DISK ruT
650 DISK CLOSE,6
660 PRIm: PRIm
670 REM • OJTPUT ~TA •
680 PRIm TAB(9) SN+l" SYMBOLS"
690 NEXT I
700 V(L)=SN:'I=L
710 REM • ADD A CROSS REI'ERrnCE •
720 SII$(V(~Il)=SA$(V(N))+" "+Al$
730 REM • CllECK IF CROSS REFF.RENCE LINE IS '!OO LONG •
740 IF LEN (SIIS(V(M))) <50 THEN 410
7 50 REM • PRIm CROSS REFERENCE LINE •
760 PRIm #7,SS$(V(M))+" "+SII$(V(/I))
770 PRIN'l' SS$(V('Il) +" "+SIIS(V(N))
780 SA$(V('1l)=""
790 GO'IO 410
800 REM 'LOOP BACK FR<l-I HERE'
810 REM • CLOSE SCRA'lCH FILE'
820 DISK CLOSE,6
830 REM • PRIm REMAINING moss REFERENCE LINES *
840 FOR 1=0 '10 SN
850 IF SII$(V(I))="" WEN 880
860 PRIm #7, SSS(V(I))+" "+SIIS(V(I))
870 PRIm SS$(V(I))+" "+SII$(V(I))
880 NEXT I
890 PRIm 17, "XIT"
900 DISK CLOSE ,7
910 REM • END OF MAIN PRa:;RIIM •
920 PRlm:PRlm
930 PRIm TAB(lO)CR$" REFERENCES WlPLl'TED "
940 PRIm TAB(lO) "SYMBa..s FOOND: "SN+l
950 PRIm TAB(lO) "REFERENCE rILE: "RI'S
960 PRIm: PRIm: END
970 REM •• SUBROJTINES ••
980 REM • BRANOI AND J ('1'=1) •
990 If' MID$(IN$,6,l)<>CRS 'l11EN FL=O: GO'IO 1050
1000 RI:M • SIFT OJT BIT IN51'RlJCI'JONS •

PEEK [65] March, 1985

Cont.

9

1010 IF MID$(IN$,6 ,3) ="BIT" WEN FL=O:GO'lD 1050
1020 REJo1 *LABEL FOR 'lYPE *
1030 M$=MID$(IN$,7,l)
1040 FL=l
1050 RmURN
1060 REJo1 * MEI'£lRY (T=2) *
1070 M$=MID$(IN$,6,l)
1080 A2$=flIDS(IN$,13,l)
1090 If' M$="J" OR A2$="Z" WEN FL=O:GO'lD 1140
1100 REJo1 * SIFT ClJT BRANCHES *
1110 IF f!$="B" AND MID$(IN$,6,3) <>"BIT" WEN FL=O:GO'lD 1140
1120 REJo1 * LABEL 'lYPE *
1130 FL=l
1140 R1.'1URN
1150 Rtz.t * Z PI'GE REFERENCeS (~"3) *
1160 IF MID$(IN$,13,l)<>CR$ '!llEN FL=O:GO'lD 1210
1170 M$=" "
1180 REJo1 * LABEL FOR INDEXI!oli *
1190 IF LEN(IN$»16 WEN M$=RIGHT$(IN$,l)
1200 FL=1
1210 REWRN

10 fill1 *** HESQJRCE S ***
20 REJo1 T. R. RER:;ER 2/81
30 PRINT TAB(10) "REl;WRCE-SINGLI" PIISS"
40 REJo1 ** REJoICNE ru~1A AND SEJo1ICOLOO **
50 POKE 2972 ,13: roKE 2976,13
60 roKE 8998,OO:POKE 8999,128
70 roKE 9000.00:PCKE 9001,140
BO I'OKC 9006,OO:roKE 9007,140
90 POKE 9008.00:roKE 9009,152
100 INPUT" SaJRCE rILE"; SF$
llO ItiPUT"llliSWflCE flLE" ;RF$
120 INPUT"EQUATE FILE";EF$
130] NrtJT"CHo.s~; I~Ei"I':I{j'NCI': Fll.I';"; CF$
140 INfl.IT"SCHATCH FILE" ;JF$
150 INPUT"NUl-UlER 01' SYfIDOLS" ;NS
160 INPUT"NUf1BER OF Z PI'GE SYMBOLS" ;NZ
170 IIDI **DIMENSION SYMBOL AND roIN'fER ARRAYS
180 DIN SSS(NS) ,SB$(NS) ,SJ$(NS) ,SM$(NS) ,V(NS) ,SS(NS)
190 DIM ZS$(NZ) ,ZII$(N'l) .U(NZ)
200 RI'M ** SYI>UlOL croNTER **
210 SN=-l:ZN=-I:SP$=" ..
220 REM ** FIRST PASS **
230 DISK OPEN,6,SF$
240 DISK OPEN,7 .JF$
250 REM ** LOOP BACK HERE **
260 HlPUT 16, IN$
270 IF IN$="XIT" WEN 1120
280 IF LEN(IN$)<15 ~'iEN 260
290 Ril', ** ADJUST SWRCE, PICK UP SYMI3CLS **
300 lID! Al $=XXXX ADDRESS
310 REM A2$=OPCOOE +
320 REJo1 A3$=OPERAND (SYMBCL)
330 IUM II4S=I\IJDRESS roDE
340 IIDI ClJ$=Al$+A2$+A3$+M$
350 Rll-! IN$=INPUT FRCJoI OSI DlSASSENIlLER
360 A3$="" :114$=""
370 REJo1 .. GET ADDRESS **
380 Al $=LEf'l'$ (IN$, 4)
390 REM *'It 00 ERRORS **
400 IF MID$(IN$,13,l)="?" WEN A2$=" .BYTE $"+IUD$(IN$,6,2) :GOTOl070
410 REM ** DO REFORfIA~TING **
420 REM ** ELIMINATE END SPACES **
430 IN$=lnD$(IN$,12) :L=LEN(IN$)
440 IF MID$(IN$,L,l)=" " WEN L=L-l:G0T0440
450 IN$=L~'$ (IN$, L)
460 REM ** DO IMPLIED,ACCUMULATOR, IMMEDIATE ADDRESSI!oli **
470 IF L<7 OR MID$(IN$,6,l)="#" WEN A2$=IN$:GO'lD 1070
480 RfM ** ADJUST OPERAND rosITION **
490 IF MIDS(IN$,6,l)="$" WEN K=7:A2$=LEfTS(IN$,5)+" HH":GO'lD 520
500 K=8:A2$=L~'$(IN$,6)+"HH"
510 REJo1 ** Z PI'GE CHECK **
520 f1=K+2
530 REJo1 ** DO Z PI'GE OPERIINllS
540 IF M)L WEN A3$=RIGHT$ (IN$,2) :A2$=A2$+"ZZ":GO'lD 690
550 IF MID$(INS,M,l»"/" WEN 580
560 A3S=MID$(IN$,K,2) :A2$=A2$+"ZZ":A4$=fIID$(IN$,M):GO'lD 690
570 REJo1 ** '1\010 BYTE OPERAND CHECK **
580 M=K+4
590 REM ** DO '!WO BYTE OPERANDS **
600 IF M>L WEN A3S=RIGHT$(IN$,4) :Gam 630
610 A3$=MID$(IN$,K,4) :A4$=fIID$(IN$,11)
620 REM ** SEARCH FOR SYMBOL **
630 GOruB 2310
640 Rm ** SYMBCL NOr FClJND, INSERT IT **
650 IF L>R WeN 930
660 REM ** SYMI3CL FClJND,ADD CROOS REFERENCE **
670 GO'lD 1010
680 REM ** SEARCH FOR Z PI'GE REFERENCE **
690 L=O:R=ZN
700 RfM ** SYMBOL lUI' FClJND, INSERT IT **
710 IF L>R WEN 790
720 qA77
730 fI=INT((L+R)/2)
740 REM .. SYfIDCL FClJND,ADD CROSS REFERENCE
750 IF I13S=ZS$(U(N» ·WeN 870
760 IF A3$>ZS$(U(M» WEN L=M+l:GO'lD 710
770 R=fl-l:Gam 710
780 RfM * * AVIl SYNKL **
790 ZN=ZN+l:ZS$(ZN)=A3$
BOO HI'M .. fOINT ~o PROPER roSI~'ION IN ORDERI!oli **
BID IF L='lN '!lIEN B~;O
820 FOR I·ZN-l TO L STEP-l

10 PEEK [65) March, 1985

830 U(I+l)=U(I)
840 NEXT I
850 U(L)=ZN:M=L
860 REJo1 ** GET ADDRESSI!oli roDE **
870 M$=" "
B80 IF 114$0 "" mEN M$=RlG!IT$(IN$,I)
890 REJo1 ** ADD CROSS REFERENCe TO STRI!oli
900 ZA$(U(M)) =ZA$(U(ft))+" "+M$+Al$
910 GO'lD 1070
920 REJo1 ** ADD SYMBOL **
930 SN=SN+l:SS$(SN)=A3$
940 REJo1 ** roINT TO PROPER rosITION IN CRDERI!oli **
950 IF L=SN WEN 990
960 FOR I=SN-l TO L STEP -1
970 V(l+l) =V(I)
980 NEXT I
990 V(L) =SN:M=L
1000 REJo1 ** FIND CORREJ:'!' CROSS REFERENCE ~'ABLE **
1010 M$=MID$(A2$,2,l) :AD=l
1020 IF M$="B" AND MID$(A2$,2,3) <>"BIT" WEN AD=2
1030 IF M$="J" '!lIEN AD=3
1040 Rtz.t ** ADD CROSS REFERENCE ~o TABLE **
1050 ON AD GOruB 2250,2270,2290
1060 Rtz.t ** GE1JEHA~'E LINE FOR SCHA~CH FILE **
1070 ClJ$=Al$+A2$+A3$+M$
1080 PIUN'!' 17,ClJ$: PIUN'f OU$
1090 GO'lD 260
1100 REJo1 ** LOOP BACK HERE **
1110 lID! ** CLOSE SClJRCE AND SCRA~H FILES **
1120 PRINT t7, IN$
1130 DISK CLOSE,6
1140 DISK CLOSE,7
1150 REJo1 ** END FIRST PASS **
1160 REJo1 ** PASS 2, WRITE CROSS REFERENCE FILES **
1170 DISK OPEN ,7 ,CF$
1180 PRINT #7,", moos REFERENCES"
1190 PRINT #7,"."
1200 PRINT #7,". Z PI'GE"
1210 PRINT 17,"."
1220 REJo1 ** DO Z PI'GE REFERENCES **
1230 FOR 1=0 TO ZN
1240 AD$=ZA$(U(I) :ZA$(U(I))="":A2$=ZS$(U(I»
1250 IIDI ** BREAK UP LO!oli LINES,PRINT FILE **
1260 GOSUB 2400
1270 NEXT I
1280 PRIN'!' 17,". ":PRINT t7,"."
1290 PRINT.7,". JMP & JSR"
1300 PRINT 17,"."
1310 REM ** DO JMP & JSR REFERENCES
1320 FOR 1=0 TO SN
1330 AD$=SJ$(V(I» :SJ$(V(I» ='''' :A2$=SS$ (V(I)
1340 REI'. ** BREAK UP LO!oli LINES, PRINT FILE **
1350 GOSUB 2400
1360 PRINT 17 .. ·.": PRINT 17,"."
1370 PRINT #7 .. •• MEI'£lRY": PRINT .7 .. ·."
1380 REJo1 ** DO MEKlRY REFERENCES **
1390 FOR 1=0 TO SN
1400 AD$=SM$(V(I» :SM$ (V(I» ="" : A2$=SS$(V(I»
1410 RfM ** BREAK UP LO!oli LINES,PRINT FILE **
1420 GOSUB 2400
1430 NEXT I
1440 PRINT #7;". ":PRINT #7
1450 PRINT 17,". BRANCH": PRINT 17 .. ·."
1460 RfM ** DO BRANOi REFERENCES **
1470 FOR 1=0 TO SN
1480 AD$=SB$(V(I» :SB$(V(I)) = :A2$=SS$(V(I))
1490 REJo1 ** BREAK UP LO!oli LINES, PRINT FILE **
1500 GOSUB 2400
1510 NEXT I
1520 PRINT '7, "XIT"
1530 DISK CLOSE,7
1540 REJo1 ** END REFERENCE FILES **
1550 REJo1 ** GENERATE RESClJRCE FILE **
1560 DISK OPEN,6,JF$
1570 DISK OPEN,7 ,RF$
1580 REJo1 ** LINE NUMBER AND INCREMENT **
1590 CL=10000: IN=10
1600 REJo1 ** LOOP BACK HERE **
1610 INPUT 16, IN$
1620 IF IN$="XIT" WEN 1780
1630 REJo1 ** GET ADDRESS LINE **
1640 A3$=LEFT$(IN$,4)
1650 REM ** SEARCH FOR SYMBOL **
1660 GOruB 2310
1670 REJo1 ** SYMBCL FClJND,MARK IT,ENTER LABEL **
1680 IF L<=R WEN SS(M)=l:ClJ$="IIH"+IN$:GO'lD 1720
1690 lID! ** SYfUlCL lUI' FClJND,DELE'l'E ADDRESS **
1700 ClJ$=SP$HIID$(IN$,5)
1710 IIDI ** ADD LINE NUMBER AND ClJTPUT **
1720 ClJ$=S'lR$(CL) +" "+ClJ$
1730 CL=CL+IN
1740 PRINT t7 ,ClJ$:PRINT ClJ$
1750 GO'lD 1610
1760 REJo1 ** LOOP BACK FR01 HERE **
1770 REM ** CLOSE SCRA~H· AND RESClJRCE f'ILES **
17 80 PRINT 17, IN$
1790 DISK CLOSE,6
1800 DISK CLOSE,7
1810 REM ** RESClJRCE FILE DONE **
1820 REM ** DO EQUATE"FILES **
1830 DI~K OPEN,7, E'F$
1840 REJo1 ** LINE NUMBER **
1850 CL=1000
1860 PRINT 17,S'lR$(CL)+" ;EQUATE FILE"
1870 CL=CL+IN:PRINT #7,STR$(CL)+" ;"
1880 CL=CL+IN:PRINT 17,S'lR$(CL)+" ;Z PI'GE"
1890 CL=CL+IN:PRINT 17,S'lR$(CL)+" ;"

1

•

•

Continued •

•

•

•

1900 REM " ro Z Pl>GE E\lUATES "
1910 FOR 1=0 '10. ZN
1920 CL=CL+IN
1930 PRIm' .7 ,S'Il!$(CL)" HHZZ"ZS$ (U(I)) "=$"ZS$ (U(I))
1940 PlUm' b"JR$(CL)" IIHZZ"ZS$(U(I))" = $"ZS$(U(J))
1950 NEXT I
1960 CL=CL+IN
1970 PRIm' t7,S'Il!S(CL)+" ;"
1980 CL=CL+IN:PRIm' t7,S'Il!$(CL)+" ;"
1990 CL=CL+IN: PRUIl' 17 ,S'Il!S (CL) ," ;'1WO BYTE"
2000 CL=CL+IN:PRlm' #7,STR$(CL)," ;"
2010 REM " ro 'lWO BYTE E\lUATES "
2020 FOR 1=0 ~O SN
2030 IF SSII)=l '!HEN 2070
2040 CL=CL+IN
2050 PRIm' '7,S'Il!$(CL)" HII"SS$(V(I))"=$"SS$(V(I))
2060 PRINT b"IR$(CL)" IIII"SS$(V(I))" = S"SS$(V(J))
2070 NEXT I
2080 PRINT 17, "XIT"
2090 PRIm' n,"E":PRlm' n,"E"
2100 DISK CLOSE,7
2110 REM " END OF E\lUATES '~
2120 REM " FINAL DATA ..
2130 PRlm':PRlm' TAB(10) "=RCE o:x.tPLETE"
2140 PRIm' TAB(7) SN+1" SYMBCLs"
2150 PRIm' TAB(7) ZN+1" Z Pl>GE LCCATIONS"
2160 PRIm' TAB(8) "SQJRCE FILE: ";SF$
2170 PRIm' TAB(8) "SCllA'ICH FILE ";JF$

* BEGINNER I SCORNER

By: L. Z. Jankowski
Otaio Rd 1 Timaru
New Zealand

PROBLEM SOLVING

PAIN AND PLEASURE

Writing programs is enjoyable.
The reason no doubt is because
programming is very much about
solving p~oblems. The whole
process 1S highly creative,
demanding much mental effort.
But if there is too much ef
fort the task ceases to be
pleasurable and becomes a
chore. And that would never
do!

When writing programs, reduc
tion of effort is certain if a
few simple techniques of
problem solving are employed.
Applying them to a problem
will provide a much better
description of it. The more
detailed the description, the
better the problem is under
stood.

Rather than begin coding im
mediately, it's a good idea to
first go through a few pre
liminaries, and then make a
plan. Once the plan is fully
formed, it can be coded. The
text that follows illustrates
a way of doing this.

THE PROBLEM

The problem is: write a pro
gram that will produce a list
of the names of the months.
Examples of program output
would be: a list of names
beginning with January and
ending with December, or a
list beginning with April,
going on through December, and
ending with March. In fact,
the program should be capable

2180 PRIm' TAB(e) "E\lUATE FILE: ";EF$
2190 PRIm' TAB(8) "RESQJRCE FILE: ";RF$
2200 PRINT TAB(8) "CROSS REF. FILE . ";CF$
2210 PHINT:PRINT:END
2220 Rf}', " END OF PRCGRIIM "
2230 REM " SUBROUTINES "
2240 I<EI'. " ME/"ORY CROSS REFERENCES "
2250 SM$(V(M)) =SMS(V(~I)) ," ",AS$,Al$:RE'IURN
2260 REN " BRANCH CROSS REFERENCES "
2270 SB$ (VIM)) =SB$ (V(M)) ," ",MID$(A2$,3 ,I) +Al$:RE'IURN
2280 ruM .* JMP & JSR Q~OSS REFIilil:NCES **
2290 SJ$(V(H)) =SJ$(V(M)) ," "ttHO$(A2$,3 ,1) ,AlS: RETURN
2300 REM " SEARCH FOR SYMBCL "
2310 LeO:R=SN
2320 REM " SYloIBCI. NOT FOUND "
2330 IF L>R '!HEN RE'IURN
2340 Helm'((L+R)/2)
2350 REM ** SYMB<L FUlND **
2360 IF A3$=SSSIV(M)) THEN RETURN
2370 IF A3$>SS$(V(M)) THEN LeM+I:GaID 2330
2380 R=1+-1:GaID 2330
2390 REM " BREAK UP LCJr-li LINES, PRIm' CROSS REFERENCE FILE ..

. 2400 LeLEN(AO$)
2410 IF LeO '!lIEN RE'IURN
2420 IF L(49 '!HEN Al$=AO$:AO$= :GaID 2440
2430 Al$=LEFT$(AO$,48) :AO$=MID$(AO$,49)
2440 PRINT 17,A2$" "Al$:PRlm' A2$" "Al$
2450 GaID 2400

* of printing a list with any
number of month names in it,
up to a maximum of 12.

Another example of output is:

October
November
December
January
February

Having identified and under
stood the problem, the ques
tion that follows is: nIs this
a useful problem to solve?"
Well, yes it 'is. The solution
is useful in a budgeting pro
gram that produces reports
based on financial data. Each
monthly report looks back on
the previous 12 months or a
projection could be made to
look forward to the year
ahead. Examine the example
(fictitious!) at the end of
this text.

THE TOOLBOX

The next step is to assemble a
TOOLBOX of information that
will help solve the problem.

TOOLBOX

1. The 12 names of the month
are and they will be
reduced to three characters,
e.g., Jan.

2. In BASIC, lists are best
stored in arrays.

3. FOR ••• NEXT loops are a good
way to printing lists.

4. Use INPUT to request the
month numbers.

5. IF ••. THEN can be useful.

At this point it is tempting
to begin coding at once, but
there are a few more questions

* that could be asked.

MORE QUESTIONS

"What type of problem is it,
and can it be solved?" Some
problems cannot be solved on a
computer. For example,
"Computer! Solve the Balance
of Payments Problem!" Other
problems would take too long
to solve. For example,
produce a list of all possible
l~ character names and print
them. Some millions of years
would pass before the task
would be finished. The prob
lem at hand deals with lists
and it can be solved.

nWhat is the connection be
tween the problem and the in
formation in the TOOLBOX?" As
far as one can tell none of
the information is redundant,
but useful information could
be missing.

OSI/ISOTRON
MICRO COMPUTER SYSJEM SERVICE

'C2 AND C3 SERIES

'200 AND 300 SERIES

'FLOPPY DISK DRIVES

'HARD DISK DRIVES

CD 7/23/36/74

'TERMINALS, PRINTERS, MODEMS

'BOARD SWAPS

'CUSTOM CONFIGURATIONS

'CUSTOM CABLES

'SERVICE CONTRACTS

PHONE (616) 451-3778

COMPUTERLAB. INC.
307 MICHIGAN ST. N.E.

GRAND RAPIDS, MI. 49503

PEEK [65) March, 1985 11

The month names are to be
stored in a list (a one
dimension array). How can
this be done? The names could
be typed in like this:
M$(1)="Jan",M$(2)="Feb" .••. how
tedious. Why not let the
computer do the work and read
the names in from DATA
statements? So add: "and held
in DATA statements" to point 1
in the TOOLBOX. It is now
time to make a formal plan.

THE PLAN

The plan need not be anything
as formal as a diagram. The
structure diagram shown here
is merely one example of a
plan. What is required is
that the programmer be clear
on the sequence of actions to
be followed when writing the
program.

The program would 'naturally
begin by clearing the screen
and printing a title, if any.
Next, the number of months and
the array would be declared:
M=12 and DIM M$(M). Month
names are placed in DATA
statements. For reasons of
space this box has been omit
ted from the diagram. '

The rest of the progr.am, di
vides out into four blocks, as
shown by the first row of the
structure diagram. Subsequent
rows of the diagram reveal how
the problem can be broken' up
into smaller units. (Read the
diagram from left to :)right,
and down from any par-'ticular
box in anyl particular', row).
It is evident that if this
procedure is followed coriect
ly then the plan will be
complete. Coding is reduced
to merely 'copying' the pla~
into BASIC.

THE SOLUTION

Even the simplest of programs
can pose a challenge when it
comes to the idea that will
produce the required output.
Producing a list from·. any
month to December is easy.
That problem can be s,olved
using a simple FOR ••• NEXT
loop.

But what if the list required
is from October to February?
The answer lies in a statement
made earlier when the problem
was identified - see paragraph
four. The list would begin
with 'April' and go through
'December' to 'March'. The
list is in fact two lists.
The first is from 'April' to
'December' and the second is
from 'January' to 'April'.
What is \more significant is
that the, first list. always
ends with month twelye, and

12 PEEK [65] March, 1985

.I)UUGEl PROGkAM. dated 01/01/8:5

____ a __ ._ .. __ •• ____________ ._. ___ • ___

I Apr I I "IY I I ~Lln I I ~ul I I AuQ I I SIP I I Dct I ,MDVI I DIe I I ~Ift I I Feb I I ftar I
------------------------------------_.---- .. ----_.------.------- .. -------._---------------------------------

01 lif' In 50.00 10.00 10.00 50.00 50.00 50.00 50.00 50.00 10.00 50.00 50.00 50.00' 100.00
02 Hou .. I lBI.21 lB1.21
03 Car Ins ''''' "." 04AIIR;. m.1I m.1I
05H .. lth 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 30.00 10.00 10.00 10.00' 110.00
00 Other J 41.22 41.22
07 611 10.00 10.00 10.00 10.00 lIO.OO
os Doctor 12.50 • 12.50
09D.nti,t ".00 55.00
10 C., I', 41.11 210.21 14.71 96.42 170.23 24.75' 5BMB
11 Loc 1n 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 • 1200.00
12PhDn. 56.61 41.11 41.11 120.lI 40.22 70.B4 lIB.4B
II IV 60.00 10.00
115,1. B5.00 41.10 57.11 51.10 • m.ll
15 £Iocl.1 122.n 2l.!1 ".00 7B.14· llI.IO
II N ... PIP 5B.II 57.Bl 1ll.12
17V,1 20.00 20.00
l11lilony 500.00 500.00 500.00 100.00 100.00 500.00 500.00 500.00 500.00 100.00 100.00 500.00 • 6000.00
lIlA 0.00
20 OTHER 69.00 12.00 • 11.00

Exp. .\ 1215.95 m.ll 111.44 Bl'.11 1020.12 m.O! !lMI m.Bl m.1S 155.00 181.07 8l1.41 • 11141.11
lncOi •• , 2000.00 2000.00 2000.00 2000.00 2000.00 2000.00 2000.00 2000.00 2000.00 2000.00 2000.00 2000.00 • 24000.00

------.--.--_.----.. _._.-.-._ ... _ .. _._.-_.-----------------------_ .. _._._-_ .. _.-.
ill. .\ .m.05 1041.67 1081.56 1110.14 171.61 1071.17 1011.11 lUI. 11 10ll.15 1245.00 1011.13 1140.51' 12156.14

MON1HS PROBLEM.

that the second list always
begins with month one.

The simpler problem stated
initially revealed that a
FOR ••• NEXT loop could be used
to produce a list. So use two
FOR ••• NEXT loops to produce
the list in the more complex
example - see part two of the
diagram, labeled 'A'.

The structure diagram, the
plan of the solution,' clearly
states what the required code
will be. Can you write the
program? Use a FOR ••• NEXT
loop when coding a REPEAT box
and IF •••• THEN for the CHOICE
box. Solution next month plus
an improved algorithm for
OUTPUT.

*

x x x x x x x x x x x x x x x x
x DATA PROCESSING x
x KEY ENTRY x
x DATA CONVERSION x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

9 - Track

I
PC--Data--OSI

I
Mini/Mainframe

New I Used

OSI - Corona
Nec - Okidata

&
MORE

Accounting & Business
Systems

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x 612-252-5007 x
x x x x x x x x x x. x x x x x x

•

•

•

•

•

•

COLOR PLUS REVISITED

By: Earl Morris
32"" Washington
Midland, MI 4684"

The December 1984 issue of
PEEK(65) included a review of
Generic's Color Plus board
written by Bob Baldassano. I
must agree with Bob that this
board makes a very nice ad
dition to an OSI system. I
wanted to add a few technical
details about this hi-res
graphics board.

Previous versions of the soft
ware would add graphics com
mands to 650 3.2 or 3.3. A
new version is now available
to add these same commands to
OS-65U. Thus the Color-Plus
board can be used with any of
these operating systems.

The Color Plus uses the Texas
Instruments TMS99l8A CRT con
troller chip. The board comes
in two versions: One using
2118 five volt memory, and the
other using 4116 memory which
requires plus and minus 5
volts and plus 12 volts. The
sUbstantial price difference
for the five volt chip is the
cause of the $5" difference
between the two versions of
the finished board. Apple
compatible joysticks are re
quired. For non-Apple owners,
this means joysticks with 15"
K ohm pots. One of the sev
eral brands of Apple compat
ible bit pads should also work
here.

The object code for the
graphics patches are included
on the demo disk. For the
real hackers, the source code
for the entire graphics pack
age is available on a second
disk at extra cost. The
source code is reasonably com
mented, but requires 32 pages
to print out. The new BASIC
graphics commands are well
documented in the instruction
manual. However, the 'MOVIES'
program creates pictures by
calling a data table from
machine code. No instructions
are included on how to create
your own pictures using this
program. If you are a Machine
language programmer, this is
easily figured out from the
'MOVASM' source code on the
DEMO disk.

My biggest complaint about the
Color Plus is that the address
is set to $C9"" and, short of
cutting foils, cannot be al
tered. I happen to use $C8""
to $0""" to hide an extra 4K
of RAM. If you purchased the
source code, the plot routines
can be· reassembled for a
different board location by
changing one line of code.

After all these words about
this graphics board, I thought
the readers of PEEK might want

to see what it all looks like.
Thus several photographs are
shown here of the output from

PEEK [65) March, 1985 13

the MOVIES demo program. The
actual output is, of course,
not in B&W but in color. The
output can be displayed on a
B&W monitor in shades of gray.
But after seeing the colors,
you had better be prepared to
dig into your pocket and spend
the additional $$$$ for a
color monitor. It is diffi
cult to' show sprites ,on a
still photograph, but the two
photo sequence attempts to
demonstrate the solid color
block sliding between the two
shaded blocks. Sprites don't
have to be just blocks, but
any shape describable in an 8
by 8 or 16 by 16 grid.

*
WAZZAT CORNER I

By: L. Z. Jankowski
Otaio Rd. 1 Timaru
New Zealand

Accounting and budgeting pro
grams provide comprehensive
reports quickly' and easily.
But before that can happen,
some unfortunate soul has to
type in all those money
amountsl It would be great if
that decimal point did not
have to be typed' EVERY time

·and if the c~mputer somehow
knew that the number was "in"
and did not wait for the
~Carriage Return". And what
does the program do with
"q23.85", when it should have
been "123.85"? The program
listed here (for DOS 3.3)
solves all these problems.

The program only accepts the
numbers 0 to 9, backspace (for
deletions), and the '-' sign
if it occurs at the start of
the number. As it .stands, the.
program has been designed
mainly to demonstrate that the
idea works. It can be adapted
to not only provide extended
input for money amounts, but
to also echo the numbers as
they are typed in, and provi~e
full editing of amounts Vla
back and forward scrolling
through all the entries that
have been made.

If more than four digits are
required' before the decimal
point, change "usn in line 40.
Merely add more "i"s the
program takes care of every
thing else.

Line 120 may be puzzling. A
program such .as this one needs
speed if it is to be useful.
So the' Boolean Algebra state.
ments in line 120 are used to
replace three lines of BASIC
IF ••• THEN statements. They
wo'uld be as follows:

14 PEEK [65] March, 1985

Iv 1"UNr ! (2l:U;. REM Extended Input for, Numbers by LIJ
20 :
SU DIM N(99): M=45: 2=47: V=58: 8=95: L5=CHRS(B): R$=CHR$(lb)
40 Fi=905'1: us= "; LcoLEN(U$)
50 L2S=L$."tt""'L$: FOR t;=1 10 LI Ll$=L1StLS. NEXT
6() :

7v 0$=" ": PRINT "Type number" US Lt.;
80 FOro{ C=l TO L-l: GOSU8 110: NEXT C: N<X)=VAL(OS)/100
90 PRINT: PRINT USING(U$) TAD(30) N(X): X=X<I: GOTO 70
lOU ;.
110 DISI(!"GO 2336"; V=PEEKtR): V$=CltRS(Y): IF Y=127 fHEN V=B
120 ON«(Y=M AND C=l) OR (Y}Z AND V(V»+(Y=B AND C>1)*2)'~lGOTO 150,170
130 GOro I1v
140 ;.
15u O$=1.)$i Yf,: prUNT V,,;;, IF C=L-3 fl-II:::N ('rUNT R$;
Ibu HC·' UI..:I\I
I/O lr- C=L-2 IIiEN pnlNr L$;
180 O$=LE~'r"(Df"LEN(IJ")-l): IF C}l THEN PRINT L2";
J 90 c=c -2: I .. C(1 1 HEN C=O
:':00 HLrUI~N

120 IF Y=M AND C=l THEN 150
125 IF Y>Z AND Y<V THEN 150
128 IF Y=B AND C>l THEN 170

If any statement is evaluated
as true, BASIC "thinks" -1.
This value of -1 is then
multiplied to provide the
correct value for the "ON"
branch - see end of line 120.

The statement in line 120
checks for the minus sign and
whether this is the first
character typed. If it is,
then the branch to line 150 is
taken. If the answer is "no"
then the program falls through
to line 130. Line 125 checks

*
A CONVENIENT REGRESSION

PROGRAM

By: Richard H. Puckett
706 Clarmar St.
Johnson City, TN 37601

For an Ohio Scientific, ade
quate statistical software is
hard to find. Unfortunately,
progr.ams for least squares
multiple regression, one of
the most popular and useful
statistical tools, are no ex
ception.

Some generic programs are
available. (See, for example,
Lon Poole and Mary Borchers,
Some Common BASIC Programs,
3rd ed. Berkeley, CA, Osborne/
McGraw-Hill, 1979; and F. R.
Ruckdeschel, BASIC Scientific
Subroutines, Peterborough, NH,
Byte/MCGraw-Hill, 1981. Vol.
2.)

But these and most other pro
grams have severe limitations.
A few don't compute at" o.r "F"
statistics. Almost all don't
calculate a Durbin-Watson sta
tistic, necessary for time
series analysis. Nor do they
perform data transformations
to eliminate serial correla
tion. Moreover, the programs
place significant constraints

that the character typed is in
the range 1 through 9 to 0.
Line 128 looks for a back
space and not the first char
acter. It is not possible to
backspace off the first char
acterl

Notice that "0$" is initial
ized to a blank. The way VAL
works it does not matter if
the leading character is a
blank. If 0$ is at least one
character in length then a
null check of 0$ is not re
quired before line 180. 0$
always enters line 180 with a
length of at least two.

Well that's itl

*
on the number of variables and
observations you can use.
Also, data can't be read from
files, so data available in
other programs or files have
to be re-keyed. Data trans
formation -- for example, tak
ing logarithms or first dif
ference -- may also require
data to be re-entered.

By contrast, the program list
ed below, designed to run on
an Ohio Scientific (C8-PDF,
OSU), is relatively flexible
and complete. It calculates:

R squared,

R squared adjusted for degrees
of freedom,

the "F" value for the regres
sion,

the standard error for the de
pendent variable,

the "t" values for the regres
sion coefficients,

the Durbin-Watson statistic,
and

rho hat (the estimated regres
sion coefficient for succes
sive regression residuals).

•

•

•

•

•

•

THE DATA SYSTEM
• Stored Report Formats

• Stored Jobs, Formats, Calcs.

• Multiple Condition Reports

• Multiple File Reports

• Calc. Rules Massage Data

• Up to 100 Fields Per Record

HARDWARE REQUIREMENTS: 48K OSI, Hard Disk, serial
system, OS-65U 1.42 or Later: Space required: 1.3 megabytes
for programs and data.

• User Designed Entry/Edit Screens

• Powerful Editor

• Merges - Append, Overlay, Match

• Posting - Batch Input

• Nested Sorts - 6 Deep

• Abundant Utilities

PRICE: $650.00 (User Manual $35.00. credited towards TDS
purchase). Michigan residents add 4% sales tax. 30 day free
trial. if not satisfied, full refund upon return.

TIME & TASK PLANNER
30 DAY FREE TR/AL - /F NOT SA TlSF/ED, FULL REFUND UPON RETURN

• "Daily Appointment Schedule" • Work Sheets for all Aspects

• "Future Planning List" - sorted • Year & Month Printed Calendar

• "To Do List" - by rank or date • Transfers to Daily Schedule
A SIMPLE BUT POWERFUL TOOL FOR SUCCESS

HARDWARE: 48K OSI, 8" floppy or hard disk, serial terminal PRICE: $300.00 (User Manual, $25.00, credited toward TTP
system, OS·65U v. 1.3 or later. purchase). Michigan residents add 4% sales tax.

FINANCIAL PLANNER
• Loan/Annuity Analysis
• Annuity 'Due' Analysis
• Present/Future Value Analysis

HARDWARE REQUIREMENTS: 48K OSI, 8" floppy or hard
disk, serial terminal system, OS·65U v. 1.2 or later.

DEALERS: Your Inquiries Most Welcome

GANDER SOFTWARE, Ltd.

• Sinking Fund Analysis
• Amortization Schedules
• I nterest Conversions

PRICE: $300.00 (User Manual, $25.00, credited toward
Planner purchase). Michigan residents add 4% sales tax.

FROM THE FOLKS WHO BROUGHT YOU:
All This
THERE IS MORE COMING SOON:

3223 Bross Road
"The Ponds"
Hastings. MI 49058
(616) 945·2821 "It Flies"

Program Generator for TOS
Proposal Planner
Time and Billing AIR

PEEK (65) March, 1985 15

The program will also:

handle any number
vations up to the
your disk file,

of obser
limit of

take at least 20 explanatory
variables on a 48K machine,

allow data transformations
without re-keying the data,

allow special labeling of var
iables for output, and

perform Cochrane-Orcutt trans
formations of the regression
to eliminate first order ser
ial correlation.

The program presupposes data
are read as string variables
from an input file. Data

transformations may be made
when creating the file. The
data need to be read, observa
tion by observation: that is,
observation 1 -- variable 1,
variable 2, ••• , variable k;
observation 2 -- variable 1,
variable 2, ••• , variable k;
and so on. No other infor
mation about the program is
required. It is self-prompt
ing.

With a hard disk, run times
for 100 observations and 10
explanatory variables are
about 6 minutes. Twenty ex
planatory variables and 200
observations take close to 29
minutes; 20 explanatory vari
ables and 500 observations
take about an hour.

10 REM*** ••• ************** •• ******REG.*******.****** ••• *._.*_t_ ... ____ _
11 REM
12 REM
14 REM
16 REM
17 REM

MULTIPLE REGRESSION PROGRAM
RICHARD H. PUCKETT

12/28/84

18 REN THE PROGRAM IHLL TAKE AT LEAST 20 EXPLANATORY VARIABLES.
20 Rr.H ~IITH TilE NU~IOER OF OOSERVATIOtlS LIMITED ONLY BY TilE CAPACITY
22 RE~1 OF THE DISK FILE USED BY THE PROGRAM AS AN INPUT DEVICE. THE
24 REM PROGRAM PRESUPPOSES DATA ARE READ FROM A DISK FILE OBS,:RVATION
26 REN BY OBSERVATION -- OBSERVATIon 1, VARIABLE 1 ••••• VARIABLE K;
28 REM OBSERVATION 2. VARIABLE 1 ••••• VARIABLE K; AND SO ON. THE
30 REI~ NAME OF TfiE FILE flAY BE ANY LEGAL FILE NAME.
32 REI~ OUTPUT INCLUDES R SQUARED. R SQUARED ADJUSTED FOR DEGREES OF
34 REI1 FREEDon. TilE STANDARD ERROR OF ESTII1ATE FOR THE REGRESSION. "T"
36 REM STATISTICS. TilE "F" STATISTIC, THE DURBIN-WATSON STATISTIC.
38 REf! AnD RHO HAT FOR THE REGRESS IOU RESIDUALS. THE PROGRMI WILL CO~I-
40 REM PUTE A COCIIRANE-ORCUTT TRANSFORMATION TO ELIMINATE SERIAL CORRE-
42 REM LATIOIl.
44 RE~I
100 REfl MAIN
200 GOSUB 1000:REM TO SET UP DATA FILE
210 GOSUB 2000:RE~1 TO SET UP REGRESSIOn
220 CR=I: REI~ FLAG TO COMPUTE CROSS PRODUCTS
230 GOSUB 30D0:REM TO INPUT ROUTINE
240 GOSUD 6000,REM TO COMPUTE COEFFICIENTS
250 CR=0: REfl FLAG TO ACCUHULATE DATA FOR TEST STATISTICS
260 GOSUB 30D0,REM TO INPUT ROUTINE
270 GOSUB 7000:REM TO OUTPUT TEST STATISTICS
280 PRINT : INPUT "COCHRANE-ORCUTT TRANSFORMATION? (Y/N) ";AN$
290 IF AN$ < > "Y" AND AN$ < > "N" THEN 280: REM TO TRY AGAIN
300 IF AN$="Y" TIIEN GOSUB 8000,REM TO INITIALIZE FOR COCHRANE-ORCUTT
310 IF AN$="Y" THEN 220: REM TO RESTART FOR COCIIRANE-ORCUTT
320 PRINT, INPUT "ANOTHER REGRESSION? (Y/N) ";AN$
330 IF AN$ < > "Y" AND AN$ < > "N" THEN 329. REM TO TRY AGAIN
340 IF AN$="Y" THEN GOSUB 8S00.REM TO INITIALIZE FOR ANOTHER REGRESSION
350 IF AN$a"Y" THEN 210, REM TO SET UP REGRESSION
360 END '.
999 REM**** •• ****************.*******.****** •• *~**** •• ***. _**.t ______ ._
1000 REM SET UP DATA FILE
1010 PRINT. INPUT "NMIE OF DATA FILE", NF$
1020 PRINT • INPUT "f OF OBSERVATIONS III DATA FILE"; NO
1030 PRINT. INPUT "f OF VARJABLES IN FILE",NV
1040 ML = 4. REI~ MAX f OF OBSERVATIONS STORED IN IMMEDIATE MEMORY
1050 DIM A(NV) .CX(NV,2*NV) ,CY(NV)
1060 DIM LV(NV) ,SC(NV) ,VN$(NV) ,X(ML,NV) ,Y(ML)
1070 PRINT. PRINT "NAMES OF VARIABLES IN FILE?",PRINT
1080 FOR leI TO NV.INPUT VN$(I).NEXT
1100 RETURN 1999 REM-·_·--···-·_-_·-···· __ ·····_···-· __ ···_········_----------_._.
2000 REM SET UP REGRESSIOn
2010 PRINT I PRINT. PRINT "f OF FIRST OBSERVA~'IOtI USED IN REGRESSION (E.G •• lOR"
2020 PRINT "5.) (IGNORE 08S USED IN LAGS OR 1ST DIFF.)"
2030 INPUT NF
2040 PRINT • INPUT "f OF LAST ODSERVATIO~I USED IN REGRESSIOIl"; NL
2050 NL=NL-NF+1. REM f OF OBS IN REGRESSION .
2060 PRINT.PRINT"f OF REGRESSION COEFFICIENTS TO BE ESTIMATED. INCLUDING"
2065 INPUT "CO~ISTANT"; K
2070 PRINT. INPUT "f OF DEPENDENT VARIABLE";LV(0)
2080 PRINT: PRINT "f OF EACH EXPLANATORY VARIABLE IN REGRESSION?" • PRINT
2090 FOR 1=2 TO K • INPUT LV(I) • NEXT
2100 RETURN
2999 REM-·_··· __ ····_·_· ••• ·····_-_·_··-.--_·_··_·_-_·_·_.- ••• _---_ •••
3000 REM INPUT ROUTINE
3110 OPEN NF$.l
3200 IF ~IFel TUEN 3400. REM TO READ CURRENT DATA
3210 REM ELSE READ DACK DATA
3220 FOR Iel TO nF-1
3230 II-I-(NF-ML)
3240 REM GET ALL DATA FOR ODSERVATION
3250 FOR Jel TO NV. INPUT'l. A$: SC(J) a VAL(A$), NEXT
3260 IF II <= 0 Til EN 3320. REM TO EtlD I LOOP
327U REM ELSE utlSCRAMBLE DATA IN REGRESSION
3280 TPeLV(B). REM ,LOCATI.ON OF Y
3290 Y(II) a SC(TP)
3300 X(II.1)=1. REM DUMBY FOR COUSTANT

16 PEEK (65) March, 1985

WP 6582 V1.2

By: John Whitehead
17 Frudal Crescent
Knoxfield 3180
Australia

John explains and fixes
number of shortcomings of
6502. cassette version.
of which are directly or
directly applicable to
versions.

a
WP

many
in

disk

I have a cassette based Super
board II with 24 x 24 and 48 x
12 screen, 32K of RAM (mainly
6ll6LP3) and 28K of EPROM on a
Tasker Bus System.

I have an Australian 2K moni
tor (DABUG 3J) that contains
the 48 x 12 screen driver,
single key BASIC and correctly
decoded keyboard. I modify
all text type programs to work
in 48 x 12.

I have 3 8K EPROMS containing
BASIC utilities, WP6502 and
~ssembler. These are paged
all at $8000 and run there.
They are not down loaded, with
the exception of small sec
tions of self modifying code
between $0222 and $02FF and
use workspace from $0300 to
the end of RAM.

Over the past year I have
noted alterations I wanted to
make to WP6502. As my EXMON
disassembled listing of WP was
a bit tatty, I decided to make
an Assembler Source Code list
ing of it. This was per
formed by using a Symbolic
Disassembler which converts M/
CODE into an Assembler Source
and puts it out on tape. This
tape is then fed into the
Assembler. The lines contain
ing data are then tidied up
and comments added. The
Disassembler is written in
BASIC and was converted to
Symbolic by myself.

Now, after two months, I have
a 32 page Source listing of my
DABUG compatible 48 x 12 EPROM
version of WP 6502 Vl.2. It
contains comments on the M/
CODE functions that I have
found, and mods that I have
made. Sub-routines are listed
where the calls come from, if
there are less than six calls.

When I made my EPROM version
of WP, I put the main core in
the same place as it was in
the tape version with just the
individual Bytes changed where
needed. Code that was at
$0222 to $0FEF was relocated
to $8222 to $8FEF which makes
the listing compatible with
both versions. Also, when I
modified the code, I did not
re-assemble it; just patched

•

•

•

•

•

•

TURNS ANY FLOPPY BASED COMPUTER INTO HARD DISK BASED, INSTANTLY.

• PLUGS INTO ANY OSI TYPE BUS
• ONE RIBBON CABLE CONNECTS

TO DRIVE
• COMPLETELY SELF CONTAINED
• 32 BIT ERROR DETECTION AND

CORRECTION
• HAS REAL TIME CLOCK

*CALENDAR W/BATTERY ON SCSI
ADAPTER BOARD

• CAN BOOT DIRECTLY FROM OSI
505/510 CPUs OR DENVER BOARDS
W/SCSI PROM

• IDEAL BACK-UP FOR ALL OSI HARD
DISK COMPUTERS

The SPACE-COM SUPER SUBSYSTEM Uses 5114" Industry Standard Hard Disk drives interfaced to
the OSI bus by the DS-1 SCSI Host Adapter Board at the computer end and the state of the art OMTI
5000 series Intelligent Disk/Tape Controllers at the disk end. The Denver DS-1 Board not only pro
vides the Bus Translation, but gives Real Time of Day, Day/Week, AM/PM, and Day/Mo. With on
board battery, Date and Time are maintained w/o power.

The chassis is beautifully engineered with
lighted on/off switch, standard a/c cord, and
insulated spade terminals for easy service. A
Corcom Emi Filter is incorporated in the alc
jack, and power is provided by an extremely
efficient switching power supply. The case is
also available in dual, side by side configura
tion and looks like an IBM PC box. It incor
porates a larger power supply and can support
2 Winchester drives, or 1 drive and tape, or 2
5" floppies in place of one of the above.

Drives can be accessed from any single or
multi-user OSI system by running an overlay
program on that partition, or can be booted
directly by replacing current ROM/PROM with
our SCI 500 PROM, available for $49.00 extra.

Single 20 MIS drive (15.7 formatted) single case $1 ,999.00
Single 26 MIS drive (21 formatted) single case $2,199.00
Dual 20 MIS drives (31.4 formatted) dual case $2,999.00
Dual 26 MIS drives (42 formatted) dual case $3,299.00
Super Fast 85 MIS drive (70 formatted) single case $3,999.00
Dual 85 MIS drives (140 formatted) dual case $6,699.00

SPACE-COM International
22991 La Cadena Drive, Laguna Hills, CA 92653 (714) 951-4648

PEEK (65) March, 1985 17

3310
3329
3400
3410
3420
3430
3440
3453
3460
3480
3500
3510
3529
3539
3540
3699
3619
3629
3639
3649
3650
3700
3710
3800
4999
5900
5920
5030
5040
5050
5960
5100
5499
5599
5513
5520
5530
5540
5550
5560
557"
5580
5590
5600
5610
5629
5630
5640
5659
5660
5700
5999
6030
6310
6029
6030
6040
6050
6060
6070
6080
6390
6100
6110
6199
6200
6210
6229
6230
6240
6250
6260
6270
6280
6290
6300
6400
6410
6420
6440
6500
6510
6520
6530
6540
6550
6560
6570
6600
6610
6620
6630
6643
6650
6660
6670
6689
6690
6700
6710
6720
6800
6999
7000
7020
7100
7105

FOR Ja 2 TO K: TPcLV(J): X(II,J)aSC(TP): NEXT
NEXT I
REM READ CURRENT DATA
FOR I=NF TO NL
REM GET ALL DATA FOR OBSERVATION
FOR J = 1 TO NV: INPUT'1, A$: SC(J) = VAL(A$): NEXT
REM UNSCRAMBLE DATA IN REGRESSION
TPaLV(0): Y(ML) = SC(TP): X(NL,l) • 1: REN DUmlY FOR COIlSTAtIT
FOR J a 2 TO K: TP • LV(J): X(ML,J) • SC(TP): NEXT
REM COCIIRAUE-ORCUTT TRANSFORHATION
IF RH = 0 THEN 3530: REII SKIP COCIIRANE-ORCUTT TRANSFORllATION
Y(ML) = Y(ML) - RII * Y(lIL - 1)
FOR J a 1 TO K: X(NL,J) • X(llL,J) - RII * X(ML - l,J): lIEXT
IF CR <> 3 THEN GOSUB 5093: REM TO FORM CROSS-PRODUCTS
IF CR = 9 THEN GOSUB 5599: REM TO COLLECT DATA FOR TEST STATS
REII SHIFT Df,TA TO REFLECT NEI~ OBSERVATION
FOR J = 1 TO ML - 1
Y(J) a Y(J + 1)
FOR II a 1 TO K
X(J,Il) = X(J + l,ll)
NEXT II ,J
NEXT I: REM END I4AIN LOOP
CLOSE
RETURN

REM-------_···_-------------------------_·_---_·-· __ ·- .** ••• **.~.
REM FORM CROSS-PRODUCT HATRICES
FOR II a 1 TO K
CY(ll) = CY(II) + X(IIL,II) * Y(llL)
FOR J= II TO K: REM USE SYMMETRY PROPERTY OF MATRIX
CX(ll,J) ~ CX(ll ,J) + X(ML,lI) • X(ML,J)
NEXT J ,II
RETURN

REM·_·_·-----------_··· __ ·····_-----_····_·-.-·_---_·-***._._----
REM DATA FOR TEST STATISTICS
YH a0: REM Y HAT
FOR Jc1 TO K
YII a YII + A(J) * X(llL,J): NEXT
MY = Y(ML) + MY: REM SUfi Y'S
SH c YH * YII + SII: REM SUM Y IIAT' S SQUARED

~Y : ~ ~:t: : ~I\~L~E~ S~~S~~~AL SUM Y SO~ARED
DD = E * E + DD: REM DENOIIlNATOR OF DURBIN-WATSON
IF = NF THEN EF = E: REM SAVE FIRST RESIDUAL
IF I • NF THEN 5660: REM TO SAVE CURRENT RESIDUAL
REM ELSE I > NF & EL <> 0
ND = (E - EL) * (E - EL) + ND: REM NUMERATOR OF DURBIN-WATSON
NR • E * EL + NR: REM NUIIERATOR OF RIIO HAT
DR = EL * EL + DR: REM DENOIIlNATOR OF RIIO HAT
IF I c'~L THEN EN a E: REM SAVE NTH RESIDUAL
EL a E. REM SAVE CURRENT RESIDUAL
RETURN
REH·······_--------------_·····_----------------_··*** •••••• *** ••
REM COMPUTE COEFFICIENTS
REI! IIA,l(E CX () SYMMETRIC
FOR 1=1 TO K-1: FOR Jal + 1 TO K
CY.(J,I) a CX(I,J)
NEXT J ,I
N1 = K: REM PARAlIETER FOR MATRIX INVERSIOIl
GOSUB 620B, REM TO MATRIX INVERSIOIl
REM VECTOR OF COEFFICIENTS
FOR 1=1 TO K, FOR Jal TO K
A(I) = A(I) + CX(I,K + J) * CY(J)
NEXT J,I
RETURN
REI1**·*··***-**********
REM MATRIX INVERSIOn
REM MATRIX TO BE INVERTED IS IN LEFT PART OF CX(N1, 2*N1) & IS
REI~ DESTROYED. INVERSE IS IN RIGIIT PART OF CX. N1 NEEDS TO BE
REM DEFINED, & CX(N1,2 • N1) NEEDS TO BE DEFINED.
REM CALLING ROUTINE
FOR R1a 1 TO N1: REM INITIALIZE CX
FOR C1= (N1 + 1) TO (2 * N1)
CX(R1,C1) = B
IF (C1 - Ill) = R1 THEN CX(R1,C1) = 1
NEXT C1,R1
FOR R1c1 TO N1, REM IT~RATE atl ROWS
FOR K1a R1 TO N1
IF CX(K1,R1) <> 9 THEN 6590, REM TO NEXT PROCEDURE
NEXT K1
PRINT ·SINGULAR MATRIX·, STOP
REM CHECK IF NON-ZERO ELEMENT IS IN ROW R1
IF K1 = R1 TUEN 6609: REI~ TO CREATE A UNIT VECTOR
REI4 ELSE SWAP ROWS K1 , R1
FOR L1 = R1 TO (2 * N1)
SW a CX(K1,L1)
CX(K1,Ll) c CX(R1,L1)
CX(R1,L1) = SW
NEXT L1
REM CREATE A UNIT COLUlIN VECTOR IN COLUMN R1
T1 a CX(R1,R1)
FOR C1 = R1 TO (2 * N1)
CX(Rl,C1) = CX(R1,C1) / T1
NEXT C1
FOR L1 = 1 TO til
IF L1 • R1 TUEN 6710, REM TO END LOOP
T1 a CX(L1,R1)
FOR C1 a R1 ,TO (2 * N1)
CX(L1,C1) a CX(L1,C1) - T1 * CX(R1,C1)
NEXT C1
NEXT L1
NEXT R1: REM END OF MAIN LOOP
RETURN
REM-****---*-**-***-****-*-**·********-*--**-**-***·*************
REM OUTPUT TEST STATISTICS
DEF FN R(Z)=INT(Z*109000+.5)/100B00:REM ROUND TO NEAREST 10B00BTH
TP = LV(0): REM DEPENDENT VARIABLE LOCATION
REM HEADER

18 PEEK [65) March, 1985

it in. This way I do not
require another printout of
the whole listing, but the
code is not so tidyl In the
following mods, where it re
fers to $833C for example, use
$033C.

My Source code can be fed into
the Assembler and assembled if
there is 32K of free RAM. An
assembled listing can be fed
into WP 6502 for printing out
a bit at a time if there is
not enough memory for Assem
bly.

If you would like a copy of my
Source code ready to feed into
the Assembler, or an Assembled
listing for feeding into WP
(state which one), send me one
blank C90 tape, money for
return postage, plus $2.00,
and proof that you already
have WP 6502 Vl.2 (e.g., WP
recorded in checksum on the
tape you send). This listing
could also be helpful to disk
users of VI. 2.

The following are the latest
changes I have made to WP with
the aid of the above Source
listing. The changes can be
patched in as required. I
have put mine in front and
behind the main core. With
the tape version you will need
to go after the existing code
and the "start of text" point
er at $0241-2 which should be
changed to the end of the add
ed code. Although, most mods
are small, it took a long time
to find out how to do it.

1) When I first modified WP
for DABUG and 48 x 12, I had
to change some of the special
characters to make it work.
The linefeed marker was CHR
$7F (DABUG screen clear CHR.)
at $8228 and I had to change
it to CHR $5B. DABUG 3 did
not allow CHR $18 to CHR $IF
to be used. Using $5B some
times made G/EDIT difficult to
read. With my modified DABUG
3J, I can use more characters
and have changed the linefeed
CHR to $IE. This also re
quired 'lowest CHR' at $8225
to be changed to $18. If you
have recorded text that has a
different linefeed character,
it is possible to do a G/EDIT
and change them all as:

Press Break and change $0025
to the linefeed character used
in the text, e.g., $5B. Run
WP at $8F0E. (Normal warm
start at $0000 Jumps to $8F0B
to reset the variables. By
entering three bytes later,
resetting is bypassed). Do a
G/EDIT (without pressing
"return to menu") to any un
used character, e.g., ***
Then press Return and do a

•

•

•

•

•

•

7119 PRINT : PRINT : PRINT 'DEPENDENT VARIABLE - 'VN$(TP): PRINT
7112 PRINT.S,. PRINT.S,
7114 PRINT.S, 'DEPENDENT VARIABLE - ,VN$(TP): PRINT.S,
7209 REM COEFFICIENTS & T'S
7294 PRINT 'COEFFICIENT'
7208 PRINT.5, 'COEFFICIENT'
7219 PRINT TAB(4)'(T)':PRINT
7214 PRINT.S, TAB(4)'(T)':PRINTIS,
7229 N a NL: REM • OBS IN REGRESSION
7239 SE = SQR(OD I (N-K»: REM STANDARD ERROR OF EST
7249 FOR I =1 TO K
7242 PRINT: PRINT.S,
7244 IF 1=1 THEN PRINT 'CONSTANT':PRINT TAB(l) FN R(A(l»
7248 IF 1=1 THEN PRINT.S, 'CONSTANT':PRINT'S, TAB(l) FN R(A(l»
7259 TP a LV(I)
7269 IF I > 1 THEN PRINT VN$(TP): PRINT TAB(l) FN R(A(I»
7264 IF I > 1 THEN PRINT.5, VN$(TP): PRINT.5, TAB(l) FN R(A(I»
7270 TP = SE * SQR(CX(I,K+I»
7289 PRINT"('/FN R(A(I)/'£P) ,')'
7284 PRINT'S, '(',FN R(A(I)/TP)/')'
7290 NEXT
7399 REM OTHER STATS
7319 IIY = MY I N: REM MEAN OF Y
7329 R2 a SH I N - MY * MY: REM VARIANCE OF Y HAT
7337 R2 = R2 I (SY I N - MY * MY): REM R SQUARED
7340 PRINT: PRINT 'R SQUARED '/ FN R(R2)
7344 PRINT'S, : PRINT'S, 'R SQUARED '/ FN R(R2)
7359 F • R2 * (N-K) I «1-R2)*(K-l»
7369 PRINT 'F IHTH ('/ (K-1) /' ,';(N-K) I') DF ',FN R(F)
7364 PRINT.S, 'F WITH (',(K-1)/',',(N-K)/') DF '/ FN R(F)
7379 R2= R2-(K-1)*(1-R2)/(N-K)
7389 PRINT 'R BAR SQUARED '/ FN R(R2)
7384 PRINT.S, 'R BAR SQUARED ',FN R(R2)
7399 PRINT 'STANDARD ERROR OF ESTIMATE '/ FN R(SE)
7394 PRINT.S, 'STANDARD ERROR OF ESTIMATE '/ FN R(SE)
7400 DW • ND I DD
7419 PRINT 'DURBIN-~IATSON STATISTIC '/ FN R (DW)
7414 PRINT.S, 'DURBIN-WATSON STATISTIC '/ FN R(DW)
7429 TP • (N-l)*(N-l)
7439 RH = NR/(N-l) - EF*EL/TP
7449 RH = RH/(DR/(N-l)-EL*EL/TP)
7459 PRINT 'RHO HAT '/ PN R(RH)
7454 PRINT.5, 'RHO HAT '/ PN R(RH)
7460 RETURN
7999 REM-- ••• _._-_._ ••• _ •••••• _---_ •• _ ••••• _.--_._ ••••• -.--***--... _.-
8909 REM RE-INITIALIZE FOR COCHRANE-ORCUTT TRANS
8019 CO = 1: RE~I SET COCHRANE-ORCUTT FLAG
8020 NF = NF +1: REM RESET 1ST OBS
8939 NaN - 1: REM ADJUST TOTAL OBS
8949 GOSUB 8609: REM TO ZERO OUT VARIABLES
8959 RETURN
8499 REM.--------_ ... _--------- _._ _ .. -._ ... _____ _ .. ___ _
8500 REM SET UP ANOTHER REGRESSIOn
8510 CO = 9: REM SET COCHRANE-ORCUTT FLAG
8529 RH = 0: REM RESET RHO HAT
8539 GOSUB 8609: REM TO ZERO OUT VARIABLES
8549 RETURN
8599 REM-.----------_.-... _-_.- .. _-._._--_._._-______ *** ••• _. __ _
8690 REM ZERO OUT VARIABLES
8610 RE~I CROSS-PRODUCT MATRICES & COEFFICIENT VECTOR
8629 FOR 1=1 TO NV
8630 CY(I) ='"0: A(I) a 9
8649 FOR Ja 1 TO NV
8650 CX(! ,J) = 9
6669 NEXT J ,I
8670 REII PARAIIETERS
8689 MY • 0: SH a 9
8690 SY = 0: DO • 9
8799 ND = 9: NR • 9
8710 DR = 9
8729 RETURN

cOIDputer
• repaIr

Board level service on :
e OSI j Isotron
eTeleVldeo
e IBM PCjxt
Floppy drive alignment:
eSiemens
e Shugart
eTeac
Terminal repair:
eTeleVldeo
eMlcro-Term

(1 week turnaround)
Sokol Electronics Inc.

~
474 N, Potomac St.

• Hagerstown, Md. 21740 I. (301) 791-2562

DISK DRIVE
RECONDITIONING
WINCHESTER DRIVES

FLAT RATE CLEAN ROOM SERVICE.
(parts & labor included)
Shugart SA4008 23meg 5550.00
Shugart SAI004 10meg5450.oo

Seagate 5T412 10meg $350.00

FLOPPY DRIVE FLAT RATES
8" Single Sided Shugart $190.00
8" Double Sided Shugart 5250.00
8" Single Sided Siemens D&E Series 5150.00
8" Double Sided Siemens P Series S 170.00

Write or call for detailed brochure
90 Day warranty on Floppy & Large Winch.
1 Yr. Warranty on 5" & 8" Winch esters.

Phone: (417) 485-2501

rEJ FESSENDEN COMPUTERS
116 N. 3RD STREET

cs OZARK. MO 65721

second G/EDIT from *** to your
linefeed character.

2) When using CTRL keys (I,
M, X & B) with the shiftlock
up, two characters a~pear in
place of one. This 1S fixed
by inserting STA $41 after STA
$0217 at $8558. To do this,
replace the STA $0217 with JSR
CTRLFIX and at CTRLFIX put STA
$0217, STA $41 and RTS.

3) When entering the L/EDIT
mode, it allows "FROM" to be
used to start editing anywhere
in the text. I have altered
the "VIEW" and "PRINT" modes
to also use "FROM". I have
also added a "SIMULATE and
HOLD" mode that bypasses turn
ing the printer on, to show
where a page ends. (I think
this is already in the disk
version). Change the existing
code between $87E9 and $87FA
to BEQ $87F4, CMP#'S (SIMULATE
and HOLD), BEQ $87F7, LDA
#$60, STA $0247, JSR teletype
on (INC $0205 for normal
printer), JMP VIEWP, NOP. Add
new code as: VIEWP LDA $3A,
STA $38, LDA $30, STA $56,
VIEWF LDA $0247, PHA, LDA
#$4C, STA $0247, JSR $82El,
JSR $8784, JSR $84E9, JSR
$8335, JSR $82F4, PLA, STA
$0247, JMP $87FB. Also,
change the JUMP at $87Al to
JMP VIEWF.

I use a teletype model 35 as a
printer. This uses paper on a
roll without perforations.
So, I have added code to print
perforations for me consisting
of a line of dashes at the
beginning of the first page
and at the end of every A4
page. Details of this can be
gotten from my listing on the
tape.

5) It may be necessary to
delete a large amount of text
from an existing file to use
for another purpose. I have
added a Block Delete that
works the same as 'DELETE
SENTENCE'. You enclose the
text to be deleted with a CTRL
B and a CTRL X. Use the BLOCK
VIEW to check .the text to be
deleted, then go to L/EDIT and
put the cursor under the CTRL
B cha'racter and press DB.

The new code for this is:
BLOKX CMP #'B, BEQ DELB, LDA
$47, JMP $8C06, DELB LDX $26,
JMP $8C99. Change at $8C8F to
NOP, NOP, JMP BLOKX.

(6) When the last word in a
line contains a decimal point,
the word can end up being
split in two. When it's time
for WP to do a linefeed, it
looks backwards until it finds
either a hash "#", a fullstop
".", linefeed marker or a

PEEK [65) March, 1985 19

space. If one is found, it
automatically starts a new
line. This code is at $8840.

The detecting for a full stop
is not needed as it will be
followed by a linefeed marker
or a space if a new line is
needed. So at $8856, change
CMP #'. and BNE $8862 to four
NOPS. The same thing happens
if an embedded character is in
the middle of the last word,
e.g., AB#C67DE. To fix, it
needs extra code to look at
the character that comes after
the "#". If it's "C", don't
split the word.

Change code at $8852 to: CMP
$2B, BNE S885A, JMP ENDLX,
.BYT SFF add new code some
where: ENDLX INY, LOA ($14) ,Y,
DEY, and #%01011111, CMP #'C,
BEQ ENDLXl, JMP $8862, ENDLXl
JMP $8840

The "AND" instruction above
allows both upper and lower
case C to be detected. Notice
in a line above that "AND
#%01011111" has been cut in
half. This can now be fixed
by replacing the space with
#C32.

(7) My last mod was to alter
the "ZAP" so that the whole
word "ZAP" had to be entered
for ZAP to work. As stated at
the beginning, a warm start is
at $8F0B which sets up
variables and prints the menu,
then waits for a key press at
$8F3F. Below this are all the
compares required for the mod.
New code needed is: GZAP JSR
$83FF, CMP #'A, BNE $8F9D
(this branch has to point to
JMP $8465; it may not be at
8F9D), JSR $83FF, CMP #'P, BNE
$8F9D (as above), JSR $833C,
JSR $8345, JSR $8332, JMP
$0000. Existing code to
change is at $8F45 as: CPX
#'Z, BEQ GZAP, JSR $82El, NOP,
NOP, NOP. And at $8F63 as:
CPX #'V, BNE $8F73, JMP $8795.

(8) There is another fault
with WP that I have not been
able to sort out yet and that
is to do with workspace full.
This is what I have found so
far: "ZAP" puts an @ at the
start of workspace. "TYPE"
checks memory and fills it up
with $FB from the first @ to
the end of RAM. If the top of
RJl.M is $,lFFF, workspace top is
set to $lEFF and stored in $10
and $5B. The last 256 bytes
are used for line and global
editing. When text is entered
and the characters get to
$lEFE, "TYPE" shows 0 bytes
free and $lEFF contains @.
When one more character is
entered it shows 65535 bytes
free. More text can be enter
ed until it reaches $lFFE.

20 PEEK [65] March, 1985

OM?> shows and this gives
65280 bytes free. Once the
"bytes free" has passed "0
bytes free", line and global
editing will not work cor
rectly and may delete all of
your text.

For those of you that use
WP6502 Vl.2 and are not too
familiar with M/CODE, have a
go at one of the above Mods.
As long as you keep your
original tape, no harm can be
done even if you make a
mistake. You will need a
mnemonic to hex conversion
chart and the extended monitor
to check the modified code.

The M/CODE above contains la
bels. These are swapped for
the address where you put the
new code, e.g., GZAP in (6)
above could be $1003.

It is not possible to have
EXMON at the top of RAM and
protect it from WP as can be
done with BASIC, as WP fills
all unused RAM with $FB nearly
every time return is pressed.
EXMON can be in write pro
tected RAM, EPROM or in a
section of RAM that is not
continuous from WPS workspace.
It can be below WPS workspace
and the start of text pointer
at $8241-2 set to the end of
EXMON.

If you are an expert at
M/CODE, you can have a go at
(7) above.

*

·MAGIC SQUARS·

By: R. R. Groome
824 W. Main Street
Richmond, IN 47374

Remember the Aardvark rag?
The Dec '81 issue had on page
13 a program called "MAGIC
SQUARS" which turned out to be
a nice graphics ditty. MICRO
COMPUTING/KILOBAUD in the Feb
'81 issue had "MAGIC SQUARS"
by Dr. Marc Lewis ••••• but it
would not run on C2-4P's.

Here is my revison of that
program that does run on OSI.
For lP's drop lines 80 & 1470.

In the listing, the CHR$(29)
CHR$(3l) type lines are print
er commands.

If anyone wants a cassette
copy, send me a cassette with
a couple programs (anythingl),
and I will return both on the
other side of cassette (C-60).

My system started in 1976 as
C2-4P and has grown to a 40K
backplane system with PIA, OKI
Microline 80 printer, Zenith
green tube, D&N memory and
disk board, TAN DON Disk (5
1/4"), cassette and high speed
baud rate generator.

I've been a reader since your
beginning ••• please- hang in
there and keep publishingl I
like the simple do-something
programs.

"MAGIC SQUARS" PROGRAM

0/) GOT02
Z GOSU&5
3 GOT040
5 A=PEEK (129) :B=PEEK (130) : POKE12'3. 192: POKE130. 215::9 ... =11 ..
10 FOR S=1 TOG2 :S$=5-.+" I. :NEXT: POKE129, 1: PUKE13.". &: kETURN
40 I=0.J=0:Q9=0.M=0.Q=0.M9=0:P=0:T=0:C=0:R=0:S=0.V=0
60 PRINT"Number squarti"
70 PRINT"-------------"
80 POKE5G832,0:PRINT
85 :
90 PRINTIlWelcome 1:0 the world of"
10tl1 PRINT "C'oYlfusiorl. There are two"
110 PRINT"versions of 5qu~rs"
120 PRINT:PRINT" SeQUENTIAL"
130 PRINT. PRINT" & ":PRINT
135 PRINT" MAGIC SQUARE".PRINT
138 PRINTTAB(3);

_140 PRINTItWhich l.S your pieasu,..e .. :PfilNT
145 INPUT"l FOR SEQUENTIAL 2 FOR MAGIC";T
150 IF T=l THEN35~
160 IF T()2THEN140
170
180 REM SET UR MAGIC SQUAHE
210 FORI=lT04
220 FOHJ=lT04
230 READM (I, J)
240 B(I~J)=M(I,J)
250 NEXTJ
2G0 NEXT!
270 DATA 1,6, lS, 8,12,11,2,5,10,13,4,3,7,16, '3, 4
280 11=4
290 .11=.2
300 GOT0440
310
320 REM SET UP SEQUENTIAL SQUARE

,350 DIMB (4,4)
3G0 FOR C=lTo4
370 FOR D=lTo"
380 B(C,O)=(C-l).4+D
390 NEXTD Continued

•

•

•

•

•

•

400 NEXTC
410 Il~4
420 Jl=4
430 •
435 REM SCRAMBLE BOARD

... 440 PRINT"I am now 5crambliYIQ th~ board II

450 PRINT"How diFFIcult do you want it"
~?I!I fllHllIl: INPUT" 10 to 500 ";Q9
480 FOR Q=lTOQ9

-~490 M=INT(3*RNO(1)+ll
500 ON M GOTO 510,560,610,660

·-510 IF Il~IGOT0490. REM M=l
520 B(Il.Jl)~8(Jl-l,Jl)
530 B(Il-l,Jl)-16
540 11=11-1
550 GOT0700
555 •

-550 IF I1~4 THEN GOTO 490. REM M=2
570 B(11,Jl)-S(Il+1,Jl)
580 B(Il+l,Jl)=15
590 11=11+1
500 GOT0700

-510 IF Jl=l THEN GOT0490: HEM M=3
520 8(Il,Jl)~B(ll,Jl-1)
5308(I1,Jl-l)=15
640 Jl=Jl-l
550 GOTO 700
555

-550 IF Jl=4 THEN GOTO 490. REM M=4
5708(Il,Ji)cB(Il,Jl+l)
5808(Jl,Jl+1)=15
590 Jl=Jl+1 .

-700 NEXTQ
705
710 REM PRINT 80ARD
720 ,

- 740 M9aM9 1
750
755 R=0,S=0
770 PRINT"--------------------------"I:: REM 26'-'
775 U=0:V=0
780 FOR U=l TO 4
790 FOR V=l TO 1+
800 PRINT".";
810 IF 8(U,V)=1€. THEN PRINT" ";.GOT0840
820 IF 8(U,V) (10 THEN PRINT" ";
830 PRINT B(U,V);

-a40 NEXT V
850 PRINT"."
850 PRINT"--------------------------"
870 NEXT U
875
880 FOR K=lT01000.NEXTK
890 REM SOUND POKE 57832,_
900 REM INPUT MOVE
910 •

... 960 INPUTu"'o'VB which piec."iP
970 11=0,Jl=0
975 H=0,G=0
977
980 FOR G=lT04
990 FOR H=l T04
1000 IF B(G,H)=PTHEN Il=G.Jl=H
1010 NEXTH
1020 NEXTG
1025
1030 IF 11=0 THEN PRINT"I can't f'ind that "",GOT0950
1"'40 I2=0:Jc:=0
1050 FOR 1=11-1 TO 11+1
1060 IF 1)4 THEN 1090
1070 IF 1(1 THEN GOT01090
1080 IF&(I,Jl)-16 THEN 12-I:J2-Jl:GOT01170

-.1090 NEXT I .
1095
1100
1110
1120
1130

-1140
1145
1150

_1170
1175
1180
1190
1200
1210
1220

-1230
1240
1250
1260
1270
1280
1290
1300
1305
1310
1320
1330
1340

_1350
1370
1380
1390
1400
1410
1420

FOR J=Jl-l TO Jl+l
IF J)4 THEN GOTO 1140
IF J(l THEN GOTO 1140
IF B(Il,J)m15 THEN I2=Il.J2=J.GOT01170
NEXT J

PRINTIlNot a val id move ~ It : GOT0'960
B(12, J2)=P
1=0:J=0IR=0:S-0
8(Il,Jl)=15
ON T GOTO 1230, 1360 ,
REM SEQUENTIAL SOLUTION
• Cz0
FOR R=lT04
FOR S=lT04
IF B(R,S) (C THEN GOTO 740
C= B(R,S)
NEXTS
NEXT R
PRINT" •• YOU GOT IT •• "
PRINTuIN ";""9;" MOVES .. H

GOTO 1450 ,
REM MAGIC SOLUTION ,
FOR R=l T04
FOR S=l TO 4

REM NOT SOLVED

IF B(R,S) () M(R,S) THEN GOTO 740, REM NOT GOLVED
NEXT S
NEXT R
•
REM DECLARE WIN

1430
1440

---.1450
1460
1470

""1500
1900
1910
1920
1930
1940
2000
2003
2004
2005
2010
2015
2020
2030
2035
2040
2045
2050

PRINT"That is the correct solut~on!"
INPUT"Want to play again ";AS:A=ASC(A$)
IF A()78 THEN GOTO 1500
POKE56832,1:END
CLEAR.RESTORE,GOTO 2
REM 9/30/84
REM BASED ON IDEA IN KILOBAUD 2.81 PAGE 114
REM BY DR. LEAVEY.
REM OSI VERSION BY R. GROOME Vl.0 1983
REM RELEASED FROM ALL NON-COMMERCIAL USES
REM C/D,G/H
REM I/J,R/S
REM I/J,R/S
REM T

FOR/NEXT COUNTERS
MAGIC OR GEOUENTIAL
MIX UP BOARD REM M

REM Q9 HOW MUCH
REM M9 .. MOVES
REM K TIME DELAY
REM P PIECE TO MOVE
REM C
REM AS
REM A & 8

CHECK FOR SOLUTION
PLAY AGAIN PROMPT
MARKERS FOR SC ROUTINE

LETTERS
ED:

As you may recall, I have been
working with the WP65~2 word
processor coding. On page 18
of the WP65~2 manual there is
a paragraph: "Pressing Break
Key ACCidentally". It gives
instructions to recover, but
with the BAD NEWS that the
disk operations will not work!
Then a note that OSI is aware
of the problem. The other
day, I had the misfortune of
accidentally hitting the break
key while typing. They are
correct, the disk operations
will not work.

If OSI was aware of the prob
lem, they did not do anything
about it. The problem is not
in WP65~2. It is in OS-65D
versions V3.2 and V3.3. If
you boot up the system and
then hit the break key, then
(M) to go to the ROM Monitor
and (.2547G) to go to DOS.,
the A* prompt comes up on the
screen. However, none of the
disk operations will work.

Since my WP65~2 uses V3.2 and
this is the version that I
disassembled, I worked with it
first.

From the ROM disassembled cod
ing, it was found that the (D)
response directs the operation
to coding which initializes
the disk PIA and ACIA, and the
Dev 1 ACIA. It then reads
track zero into memory and
transfers control to Coldstart
at $22~~. In Coldstart for
some reason the disk PIA is
initialized again, different
than in ROM.

The ROM Monitor with (M) does
none of the above done by (D),
so this is part of the prob
lem.

Because an Assembly language

PEEK [65) March, 1985 21

program, (FIX), to initialize
the disk PIA and ACIA with a
jump to $2547 did not fix the
problem, a more complete study
of Rml was made. It was found
that in the path of (.nnnnG)
there was not a setting of the
Drive selection and that a
"push to the stack" was made
without a balancing "pull from
the stack". The program FIX
was changed to select drive A
and to do a pull from the
stack. GOOD NEWS, the disk
operations workedl

In DOS V3.2 there is almost
one page of open coding called
DOS EXTENSION. It starts at
$3179. OSI put three commands
in this space, so it is open
from $318~. In my system I
have put a subroutine in this
location which moves the open
space to $31A2 which is where
FIX is now located. This part
of DOS is on Track 1.

with FIX in the system, after
a (BREAK), a (M) (.31A2G) will
transfer control to DOS A* and
all commands work including
the disk operations.

With FIX on the WP65~2 disk,
after a (BREAK) do (M) then
(.~26BG) which brings up the
WP65~2 prompt AI then (GO
31A2) will reset the system.
The (.~26BG) transfers control
to WP65~2 which is necessary
because of changes which
WP65~2 makes to DOS in order
to return to WP65~2 after a
disk operation.

The program FIX has not been
added to V3.3 because all of
DOS EXT. was used on V3.3 and
I do not know at this time
where some open space exists
to put FIX.

Some of your readers may be
interested in this problem fix
for DOS. A listing of FIX is
shown. If anyone knows where
it will fit into V3.3, I would
like to know.

10 .. =t.:~lH2 ;STHiiT AlJDRESS
2O LI-Jl'~ ""'~Ill ;F<ESET u16" PIA
30 51" .(;~\!l1

"<'I 51A ~c.~~.3
511 LDA ft'·4~ ;INIT'IHLIZE PIA
61<l SofA toCrlIidlD
7O LDA .'.FF
8<'1 STA .CiII<l4:

"M ~DH .',\'J"
1OO SIA $C1<l12H
110 SIA "C0~.3
12121 LilA ."o3 ; RESET ACIA'S
130 srA .C010 ;0151(
140 5TA .FCI<l0 ;OEV "I
150 SIA $FBI2II2I ;TWO SERIAL PORTS >lDDED
160 5TH .. FBi02 ;1'0 MY SYSTEM
170 LOA 11.58 ,INITIALIZE DISt(ACIA
180 STA .. C010
19\!l LOA 11.11 ,INITlHLlZE StORIAL PORTS
200 STA .. FC0121
21iO STA .F~\!l0
220 STA .FB02
23121 LOA 11"o1 SET TO SELECT
24121 JSR .:C9C9 DRIVt: A
250 TSX TO G£T STACK IN ORDER
260 JI'IP $Z547 GOTD DOS
900 • END

22 PEEK [65] March, 1985

J. Edward Loeffler, Jr.
Huntsville, TX 7734~

* * * * *

ED:

I have a C4PMF with OS-65D
v3.2. I am working on some
applications using the serial
port in a character-by-char
acter mode. The users manual
indicates FC~~ as the port
register and FC~l as the stat
us register and indicates how
to set the baud rate by
POKEing FC~l. However, some
additional information would
be helpful:

a) I recall reading in PEEK
that there is a register to be
POKEd to inform the system
whether the serial port is
used as a modem or a printer.
In combing over my past
issues, I can't find that in
formation. Could you please
repeat it?

b) I have gleaned some infor
mation from articles in PEEK
on the use of FC~l to report
on the state of the port.
What are the possible states
and their meanings?

T. G. ~loore

Freehold, NJ ~7728

T.G. :

The serial port on the C4P-MF
is a standard 685~ ACIA that
is routed through either a PIA
or a UART (I forget which),
which in turn selects one of
the two DB-25 connectors on
the back of the system. The
address of the PIA (or UART)
is $F7D3. POKEing this loca
tion with $34 selects the mo
dem connector and $6~ selects
the printer connector. $FC~l
is a data register. PEEKing
that location is only signifi
cant when there is an incoming
piece of data ready for re
trieval. $FC~~ is the status
register and PEEKing this
location will tell you if
there is any data waiting, but
little other information nor
mally available from a 685~
can be gleaned from this port
due to the fact that OSI hard
wired some of the other pins
to always show ready.

Rick Trethewey

* * * * *

ED:

For sometime I have wished for
a simple program that would
automatically switch from
drive A to drive B if a
program was not located on
drive A. The 3.3 version of
OS65D has the TRAP statement
and it will, when enabled,

jump to a line number when an
error is encountered in a
program. The following short
program will accomplish the
function that I wished for.

When run, the program first
looks at the A directory and
if the file is not found will
issue a #C error and also
print the statement that the
file is not on this drive. It
will then activate drive Band
search its directory and will
load the requested program.
If it doesn't find the file on
drive B, it will then prompt
for another try or load
BEXEC*, as desired.

I have found this simple pro
gram to be useful and hope
others find it of use also.
When a program is found, sev
eral error indications will be
output. The first will be SN
and then US, followed by OK.

62000 TRAP 62050;REM DUAL DRIVE LOADER
PROGRAM

62005 REM M. BERNS~'EIN, ASBURY PARK, NJ
10/23/84

62010 DISK! "SE A"
62020 INPUT "FILENAME";A$
62030 DISK! "LOAD "+A$"
62050 PRINT"FILE NOT FOUND ON DRIVE A"
62060 TRAP 62100
62070 DISK! "SE B"
62080 DISK! "LOAD '+A$'
62100 PRINT "FILE NOT FOUND ON DRIVE B"
62110 INPUT"TRY AGAIN (T) OR RUN BEXEC*

(B)" ;B$
62120 IF B$="T"THEN 62000
62130 RUN 'BEXEC*"

NOTE: A SPACE MU ST FOLLCA'i TIl E WORD
I LOAD'.

M. Bernstein
Asbury Park, NJ ~7712

* * * * *
ED:

In regard to Gary Florence's
letter in the Dec '84 issue of
PEEK(65), regarding tape to
disk conversions, I have con-

MEDIA CONVERSION

9 TRACK 1600 BPI TAPE

• 8 INCH FLOPPY
(OSI 65U)

• 5 1/4 INCH FLOPPY
(DBI FORMAT)

IOMEGA CARTRIDGE
(DBI FORMAT)

MED-DATA MIDWEST, INC.
246 Grand

St. Louis, MO 63122
314-965-4160

•

•

•

•

•

•

verted the Minos (Maze) pro
gram to use on a ClP under
HEXDOS. I can't remember all
the details of conversion, but
it does require altering and
relocating the machine code
portion. perhaps I'll try to
write it up someday. The Tiny
Compiler is available to
HEXDOS users from the HEXDOS
user's library (c/o Vern
Heidner, 1440 Co. Rd 110 N.,
Mound, MN 55364).

Jim McConkey
Rockville, MD 20855

Jim:

Don't stop there. You have
just whetted our appetite.
Please do tell us the details
of the conversion process
hardware and software. I am
sure that there are others in
the same boat, but just don't
know how to go about it.

Eddie

* * * * *
ED:

I have just acquired a Grafix
SEB-3 80 column board for my
C2-8P. Does anyone have any
information about its cap
abilities, etc.? Please ask
if any current users will
write about their experiences
with this board.

Thanks!

Alen Cohen
Staten Island, NY 10312

Readers:

Please help!

NEWS RELEASE

Sierra Madre, CA., January 9.
-- The "Third Wave" officially
arrived today with the an
nouncement of new organization
designed to support the grow
ing number of people who work
in their homes with personal
computers. The newly formed
Association of Electronic Cot
tagers will bring focus to
this group, foreshadowed by
Alvin Toffler in his best
selling book "The Third Wave."

"We will provide actual busi
ness services to both computer
entrepreneurs and telecom
muters who work at home on a
salary," the group's founders,
husband-and-wife team Paul and
Sarah Edwards, said in an
nouncing the group's forma
tion.

Members of AEC can obtain mar
keting assistance, business
consultation and other ser
vices. They can also access

up-to-the minute news about
local, state, national and
international developments af
fecting their interests
through a monthly newsletter,
an online hotline, bulletin
boards, electronic conferences
and private databases avail
able to AEC members through
CompuServe Information Ser
vice. Aspiring cottagers can
get help finding work at home
and assistance in setting up a
computer-based business.

Electronic cottage members are
already mobilizing to protect
their rights to work at home
with a computer by opposing
AFL/CIO efforts to ban tele
commuting and by setting forth
the Electronic Cottage Bill of
Rights.

Those interested in AEC can
write the Association for free
information at 677 Canyon
Crest Drive, Sierra Madre, CA
91024. CompuServe # 76703,242.

AD$
* * * * * GIVE AWAY * * * * *
Multi-Strike Printer Ribbons

What do you currently pay for
a multi-strike ribbon cart
ridge? About $4.00 each in
lots of 6?

We have found a solution that
may cause you never to use a
fabric ribbon again. 1) Did
you know that most all multi
strike ribbon cartridges use
the same ribbon bobbin? It is
just pressed on a different
size hub and put in your cart
ridge type. 2) We have found
a source of recently outdated
(yes, many are dated) Diablo
Hi-Type I cartridges. We took
the oldest one we could find,
put it in our NEC cartridge
and printed this ad. Now,
honestly, do you see any
difference? We can't either.
So we are offering those of
you who use Hi-Type I, or are
willing to pry open whatever
cartridge you are using and
replace the bobbin, a deal you
can't refuse.

BUY one box of 6 cartridges
for $8.00 and we will give you
a second box FREE. That's
66.66 cents a piece or 83%
off. At that rate, how can
you lose? Add $3.00 for post
age and handling. Make check
or money order (in u.S. funds,
drawn on a u.S. bank) payable
to PEEK (65) • P.O. Box 347,
Owings Mills, Md. 21117. Or
der NOW, supply limited!

* * * * *
MUST SELL. Still in original
wrappings, KEYWORD CP/M Word
Processor, CP/M v 2.25. Cost

was $400.00 each. Will sacri
fice $250.00 each, or $400.00
for set. Reply PEEK, Box K,
c/o PEEK(65), P.O. Box 347,
Owings Mills, MD 21117.

* * * * *
C3C 56K 2-USER OSU/OSDMS/HDM
DUAL FLOPPY, AMCAP LEVEL 3
BUSINESS SYSTEM, 2 HAZELTINE
1520's. $4000/0FFER. Paul
Drummond, P. O. Box 2057,
Woodland, CA 95695, 1-916-661-
6600.

* * * * *

Send for free catalog, Aurora
Software, 37 South Mitchell,
Arlington Heights, IL 60005.
Phone (312) 259-4071.

* * * * *

FOR SALE: OSI UTI Board with
Vortrax, CBT Coupler, software
& documentation. $200.00 or
best offer. (Terry) 512-824-
7471.

* * * * *
CUSTOM BUILT C8P. Profession
ally assembled with dual 8"
drives, cassette interface,
RS-232, parallel board, Hi-res
color, ten key pad & joy
sticks. Works perfectly •• ,. I
need the money. Over 30 disks
including MDMS, OS65D V3.3,
OS65U, WP-65 Word Processor,
numerous financial programs,
personal accounting & games.
10" green BMC monitor. $750
firm. Phone (918) 333-5043 or
661-7998.

* * * * *

FOR SALE: C3-C, 1 MHz, 23
MByte, 3 user computer system
with Dual 8" double sided
floppy drives; includes three
Televideo 925 Terminals and
Qume Sprint 5 printer. Would
consider selling this system
as component pieces. Asking
$250.00 each for the termi
nals, $300.00 for the Qume,
and $1,100.00 for the C3-C-23.
If purchased together, asking
$1,900.00. Boards already in
stalled in the system include
470, 510, 590/525, CA-9, CM-4,
535, 555-4 for terminals, 555/
2 for serial printers, and 2
CM-20 memory boards. Includes
OS-65U Ver 1.42. The system
is fully operational. This is
a great entry system, or could
be used as spare parts for an
existing installation. For
more information, call (216)
743-3186 between 9:00 A.M. and
5:00 P.M. EST. Ask for
Marilyn.

* * * * *

WANTED: C3-B or C3-C in. good
working condition. Also, tape
back-up. Call Richard (201)
666-3250 (NJ).

PEEK [65) March, 1985 23

.EEIIIII
The Unofficial OSI Users Journal

P.O. Box 347
Owings Mill&, Md. 21117

DELIVER TO:

..:~ ." ~ ' .• : :_ ... ,' -" I t j.,.

. . '.
:.1

• • .. ~ j.".:

'.., .. : .

BULK RATE
U.S. POSTAGE

PAID
Owings Mills, MD
PERMIT NO. 18

GOODIES for 051
IIEEIIIII

Users \
The Unofficial OSI Users Journal

P.O. Box 347 • Owings Mills, Md. 21117 • (301) 363-3268

C1 P Sams Photo-Facts Manual. Complete schematics, scope waveforms and board photos. All you
need to be a C1 P or SII Wizard, just

C4P Sams Photo-Facts Manual. Includes pinouts, photos, schematics for the 502,505,527,540 and
542 boards. A bargain at

C2/C3 Sams Photo-Facts Manual. The facts you need to repair the larger OSI computers. Fat with
useful information, but just

OSl's Small Systems Journals. The complete set, July 1977 through April 1978, bound and reproduced
by PEEK (65). Full set only

Terminal Extensions Package - lets you program like the mini-users do, with direct c'ursor positioning,
mnemonics and a number formatting function much more powerful than a mere "print using." Requires
65U.

RESEQ - BASIC program resequencer plus much more. Global changes, tables of bad references,
GOSUB's & GOTOs, variables by line number, resequences parts of programs or entire pr09rams,
handles line 50000 trap. Best debug tool I've seen. MACHINE LANGUAGE - VERY FASTI Requires 65U.
Manual & samples only, $5.00 Everything for

Sanders Machine Language Sort/Merge for OS-65U. Complete disk sort and merge, documentation
shows you how to call from any BASIC program on any disk and return it orany other BASIC program
on any disk, floppy or hard. Most versatile disk sort yet. Will run under LEVEL I, II, or III. It should cost
more but Sanders says, "".sell it for just"."

KYUTIL - The ultimate OS-OMS keyfile utility package. This implementation of Sander's SORT IMERGE
creates, loads and sorts multiple-field, conditionally loaded keyfiles. KYUTIL will load and sort a keyfile of
over 15000 ZIP codes in under three hours. Never sort another Master File.

Assembler Editor & Extended Monitor Reference Manual (C1 P, C4P & C8P)

65V Primer. Introduces machine language programming.

C1P, C1P MF, C4P, C4P OF, C4P MF, C8P OF Introductory Manuals ($5.95 each, please specify)

Basic Reference Manual - (ROM, 650 and 65U)

C1P, C4P, C8P Users Manuals - ($7.95 each, please specify)

How to program Microcomputers. The C-3 Series

Professional Computers Set Up & Operations Manual - C2-0EM/C2-0/C3-0EM/C3-0/C3-A/C3-BI
C3-C/C3-C'

Master Charge) VISA
TOTAL

$7.95 $ _____ _

$15.00 $ ____ ~_

$30.00 $ _____ _

$15.00 $ _____ _

$50.00 $ _____ _

$50.00 $ _____ _

$89.00 $ _____ _

$100.00 $ ____ _

$6.95 $ _____ _

$4.95 $ _____ _

$5.95 $ _____ _

$5.95 $ _____ _

$7.95 $ _____ _

$7.95 $ _____ _

$8.95 $ _____ _

$
Cash enclosed

Account No. ____________ Expiration Date ________ _ MD Residents add 5% Ta~ $

Signature _________________________ ___ C.O.D. orders add $1.90 $

Name Postage & Handling $ 3.70

Street ___________________________ _ TOTAL DUE $

City __________ _ State _______ _ Zip POSTAGE MAY VARY FOR. OVERSEAS

24 PEEK [65] March, 1985

•

•
~.

•

